Asymptotics of smoothed Wasserstein distances in the small noise regime Supplementary Material

Yunzi Ding ${ }^{1} \quad$ Jonathan Niles-Weed ${ }^{2}$
${ }^{1}$ Courant Institute of Mathematical Sciences, NYU
${ }^{2}$ Courant Institute of Mathematical Sciences and the Center for Data Science, NYU yunziding@gmail.com jnw@cims.nyu.edu

Contents

1 Omitted proofs for Section 3 1
1.1 Proof of Proposition 3.6 1
1.2 Proof of Proposition 3.8 2
1.3 Proof of Proposition 3.13 3
1.4 Proof of Proposition 3.14 4
2 Omitted proofs for Section 4 4
2.1 Proof of Theorem 4.1 4
2.2 Proof of Lemma 4.2 5
2.3 Proof of Proposition 4.3 5
2.4 Proof of Theorem 4.4 6
3 Omitted proofs for Section 5 7
3.1 Proof of Theorem 5.1 7
3.2 Proof of Lemma|5.2 8

1 Omitted proofs for Section 3

1.1 Proof of Proposition 3.6

Proof. Suppose Γ is f-strongly cyclically monotone for some positive residual f. Denote

$$
M:=\max \left\{\max _{i}\left\|x_{i}\right\|, \max _{i}\left\|y_{i}\right\|\right\}
$$

We will show that Γ is ϵ-robust for any $\epsilon>0$ satisfying

$$
4 M \epsilon<\min _{i \neq j} f(i, j)
$$

In fact, for any distinct $\tau(1), \tau(2), \ldots, \tau(n) \in[k]$, by the definition of f-strong cyclical monotonicity,

$$
\sum_{i=1}^{n}\left\langle x_{\tau(i)}, y_{\tau(i)}-y_{\tau(i+1)}\right\rangle \geq \sum_{i=1}^{n} f(\tau(i), \tau(i+1))
$$

Thus for any choice of $\alpha_{\tau(1)}, \ldots, \alpha_{\tau(n)}$ such that max $\left\|\alpha_{\tau(i)}\right\| \leq \epsilon$, we have

$$
\begin{aligned}
& \frac{1}{2} \sum_{i=1}^{n}\left\|\left(x_{\tau(i)}+\alpha_{\tau(i)}\right)-\left(y_{\tau(i+1)}+\alpha_{\tau(i+1)}\right)\right\|^{2}-\frac{1}{2} \sum_{i=1}^{n}\left\|x_{\tau(i)}-y_{\tau(i)}\right\|^{2} \\
= & \sum_{i=1}^{n}\left\langle x_{\tau(i)}, y_{\tau(i)}-y_{\tau(i+1)}\right\rangle+\sum_{i=1}^{n}\left\langle\alpha_{\tau(i)}, x_{\tau(i)}-x_{\tau(i-1)}+y_{\tau(i)}-y_{\tau(i+1)}\right\rangle+\frac{1}{2} \sum_{i=1}^{n}\left\|\alpha_{\tau(i)}-\alpha_{\tau(i+1)}\right\|^{2} \\
\geq & \sum_{i=1}^{n} f(\tau(i), \tau(i+1))-4 n M \epsilon \\
> & 0
\end{aligned}
$$

Hence $R(\Gamma)>0$.
On the other hand, given $R(\Gamma)>0$, we show that Γ is the unique optimal transport plan from $\left\{x_{i}\right\}$ to $\left\{y_{i}\right\}$. We prove by contradiction. If Γ is not unique, then there exists distinct $\tau(1), \ldots, \tau(n) \in[k]$ such that

$$
\begin{equation*}
\sum_{i=1}^{n}\left\|x_{\tau(i)}-y_{\tau(i)}\right\|^{2}=\sum_{i=1}^{n}\left\|x_{\tau(i)}-y_{\tau(i+1)}\right\|^{2} \tag{1}
\end{equation*}
$$

Since $R(\Gamma)>0$, for $\epsilon_{0}=R(\Gamma) / 2$ and any choice of $\tau(1), \ldots, \tau(n)$ with $\|\tau(i)\| \leq \epsilon_{0}$, we have

$$
\sum_{i=1}^{n}\left\|x_{\tau(i)}-y_{\tau(i)}\right\|^{2} \leq \sum_{i=1}^{n}\left\|\left(x_{\tau(i)}+\alpha_{\tau(i)}\right)-\left(y_{\tau(i+1)}+\alpha_{\tau(i+1)}\right)\right\|^{2}
$$

Specifically, for any $j \in[n]$, letting $\tau(i)=0$ for all $i \neq j$ in the above equation gives

$$
2\left\langle\alpha_{\tau(j)}, x_{\tau(j)}-y_{\tau(j+1)}\right\rangle \leq\left\|\alpha_{\tau(j)}\right\|^{2}
$$

for any $\alpha_{\tau(j)} \in \mathbb{R}^{d}$ with $\left\|\alpha_{\tau(j)}\right\| \leq \epsilon_{0}$. Therefore we must have

$$
x_{\tau(j)}=y_{\tau(j+1)}, \quad \forall j \in[k] .
$$

Using (1), we also know that

$$
x_{\tau(j)}=y_{\tau(j)}, \quad \forall j \in[k]
$$

which violates the assumption that $\left\{y_{i}\right\}$ are distinct points in \mathbb{R}^{d}. Thus we conclude that Γ is unique; hence it is also strongly cyclically monotone due to Proposition 3.8 .

1.2 Proof of Proposition 3.8

Proof. (i) to (ii). The idea is borrowed from [1, 2, 3]. Suppose Γ is f-strongly cyclically monotone for a positive residual function f. For $i \in[k]$, denote

$$
v_{i}:=\inf _{\substack{\theta(1)=1, \theta(n+1)=i \\ \theta(2), \ldots, \theta(n) \in[k], \theta(s) \neq \theta(s+1)}}\left(\sum_{s=1}^{n}\left\langle x_{\theta(s)}, y_{\theta(s)}-y_{\theta(s+1)}\right\rangle-\sum_{s=1}^{n} f(\theta(s), \theta(s+1))\right)
$$

By the f-strong cyclical monotonicity, we have $v_{1} \geq 0$. Furthermore, for $i>1$ and any sequence $\{\theta(s)\}$ with $\theta(1)=1, \theta(n+1)=i$ and $\theta(s) \neq \theta(s+1)$, there holds

$$
\sum_{s=1}^{n}\left\langle x_{\theta(s)}, y_{\theta(s)}-y_{\theta(s+1)}\right\rangle+\left\langle x_{i}, y_{i}-y_{1}\right\rangle \geq \sum_{s=1}^{n} f(\theta(s), \theta(s+1))+f(i, 1)
$$

and it follows that

$$
v_{i} \geq f(i, 1)-\left\langle x_{i}, y_{i}-y_{1}\right\rangle>-\infty
$$

For any $j \neq i$ and any fixed $\epsilon>0$, there exists a sequence $\{\theta(s)\}$ with $\theta(1)=1, \theta(n+1)=i$ and $\theta(s) \neq \theta(s+1)$, such that

$$
\begin{equation*}
\sum_{s=1}^{n}\left\langle x_{\theta(s)}, y_{\theta(s)}-y_{\theta(s+1)}\right\rangle-\sum_{s=1}^{n} f(\theta(s), \theta(s+1)) \leq v_{i}+\epsilon \tag{2}
\end{equation*}
$$

Consider the same $\{\theta(s)\}$ with one more term $\theta(n+2):=j$. By definition of v_{j} we have

$$
\begin{equation*}
v_{j} \leq \sum_{s=1}^{n}\left\langle x_{\theta(s)}, y_{\theta(s)}-y_{\theta(s+1)}\right\rangle+\left\langle x_{i}, y_{i}-y_{j}\right\rangle-\sum_{s=1}^{n+1} f(\theta(s), \theta(s+1)) \tag{3}
\end{equation*}
$$

Comparing (2) and (3) we get

$$
\begin{equation*}
v_{j} \leq v_{i}+\left\langle x_{i}, y_{i}-y_{j}\right\rangle-f(i, j)+\epsilon \tag{4}
\end{equation*}
$$

We set $\varphi\left(x_{i}\right)=-v_{i}$. Letting $\epsilon \downarrow 0$ in (4) yields

$$
\left\langle x_{i}, y_{i}-y_{j}\right\rangle \geq \varphi\left(x_{i}\right)-\varphi\left(x_{j}\right)+f(i, j)
$$

Hence Γ is f-strongly implementable.
(ii) to (iii). We prove by contradiction. Suppose Γ is not the unique optimal transport plan; this means either Γ is not optimal or there exists a different coupling Γ^{\prime} with the same cost. Either case, there exists a sequence $\{\theta(s)\}_{s=1}^{n}$ such that

$$
\sum_{s=1}^{n}\left\|x_{\theta(s)}-y_{\theta(s)}\right\|^{2} \geq \sum_{s=1}^{n}\left\|x_{\theta(s)}-y_{\theta(s+1)}\right\|^{2}
$$

Summing over s, we get

$$
\begin{aligned}
\sum_{s=1}^{n} f(\theta(s), \theta(s+1)) & \leq \sum_{s=1}^{n}\left\langle x_{\theta(s)}, y_{\theta(s)}-y_{\theta(s+1)}\right\rangle \\
& =\frac{1}{2}\left(\sum_{s=1}^{n}\left\|x_{\theta(s)}-y_{\theta(s+1)}\right\|^{2}-\sum_{s=1}^{n}\left\|x_{\theta(s)}-y_{\theta(s)}\right\|^{2}\right) \\
& \leq 0
\end{aligned}
$$

a contradiction.
(iii) to (i). Suppose Γ is the unique optimal transport plan from $\left\{x_{i}\right\}$ to $\left\{y_{i}\right\}$. Denote c_{0} the transport cost of Γ. For any other transport plan in the form of a bijection between $\left\{x_{i}\right\}$ and $\left\{y_{i}\right\}$, denote c_{1} the minimum among their costs, then $c_{1}>c_{0}$. Choose a small enough $\lambda>0$, such that for any choice of $\tau(1), \tau(2), \ldots, \tau(n) \in[k]$ with no duplicates, there holds

$$
\frac{\lambda}{2} \sum_{i=1}^{n}\left\|y_{\tau(i)}-y_{\tau(i+1)}\right\|^{2} \leq c_{1}-c_{0}
$$

Now for $f(i, j)=\frac{\lambda}{2}\left\|y_{i}-y_{j}\right\|^{2}$ we have

$$
\sum_{i=1}^{n}\left\|x_{\tau(i)}-y_{\tau(i+1)}\right\|^{2}-\sum_{i=1}^{n}\left\|x_{\tau(i)}-y_{\tau(i)}\right\|^{2} \geq c_{1}-c_{0} \geq \sum_{i=1}^{n} f(\tau(i), \tau(i+1))
$$

If there are duplicates in $(\tau(1), \tau(2), \ldots, \tau(n))$, we break the loop $\tau(1) \rightarrow \tau(2) \rightarrow \cdots \rightarrow \tau(n) \rightarrow$ $\tau(1)$ into separate loops without duplicates, apply the above inequality to each loop and sum them up. We conclude by definition that Γ is f-strongly cyclically monotone.

1.3 Proof of Proposition 3.13

Proof of Proposition 3.13. We only need to show that, for an ϵ satisfying (7), and any choice of $\tau(1), \tau(2), \ldots, \tau(n) \in[k]$, and $\alpha(1), \ldots, \alpha(n)$ with $\|\alpha(i)\| \leq \epsilon$, there holds

$$
\begin{equation*}
\sum_{i}\left\|x_{\tau(i)}-y_{\tau(i)}\right\|^{2} \leq \sum_{i}\left\|\left(x_{\tau(i)}+\alpha_{\tau(i)}\right)-\left(y_{\tau(i+1)}+\alpha_{\tau(i+1)}\right)\right\|^{2} \tag{5}
\end{equation*}
$$

In fact, (5) is equivalent to

$$
\begin{equation*}
2 \sum_{i}\left\langle\alpha_{\tau(i)}, y_{\tau(i+1)}-y_{\tau(i)}+x_{\tau(i-1)}-x_{\tau(i)}\right\rangle \leq 2 \sum_{i}\left\langle x_{\tau(i)}, y_{\tau(i)}-y_{\tau(i+1)}\right\rangle+\sum_{i}\left\|\alpha_{\tau(i)}-\alpha_{\tau(i+1)}\right\|^{2} \tag{6}
\end{equation*}
$$

Since $\|\alpha(i)\| \leq \epsilon$ for all i, we have

$$
\begin{aligned}
& 2 \sum_{i}\left\langle\alpha_{\tau(i)}, y_{\tau(i+1)}-y_{\tau(i)}+x_{\tau(i-1)}-x_{\tau(i)}\right\rangle \\
& \leq 2 \sum_{i} \epsilon \cdot\left(\left\|y_{\tau(i+1)}-y_{\tau(i)}\right\|+\left\|x_{\tau(i+1)}-x_{\tau(i)}\right\|\right) \\
& \leq \sum_{i} f(\tau(i), \tau(i+1))
\end{aligned}
$$

where we used the choice of ϵ in the last inequality. In the meantime, strong implementability gives

$$
2 \sum_{i}\left\langle x_{\tau(i)}, y_{\tau(i)}-y_{\tau(i+1)}\right\rangle+\sum_{i}\left\|\alpha_{\tau(i)}-\alpha_{\tau(i+1)}\right\|^{2} \geq \sum_{i} f(\tau(i), \tau(i+1))
$$

Therefore (6) holds, which completes the proof.

1.4 Proof of Proposition 3.14

Proof. Following the proof of Proposition 3.13 , we only need to show that, for the residual $f(i, j)$ defined in Theorem 3.10, there holds

$$
\begin{equation*}
2 \sum_{i} \epsilon \cdot\left(\left\|y_{\tau(i+1)}-y_{\tau(i)}\right\|+\left\|x_{\tau(i+1)}-x_{\tau(i)}\right\|\right) \leq \sum_{i} f(\tau(i), \tau(i+1)) \tag{7}
\end{equation*}
$$

By the choice of ϵ, we have

$$
\begin{aligned}
& 2 \sum_{i} \epsilon \cdot\left(\left\|y_{\tau(i+1)}-y_{\tau(i)}\right\|+\left\|x_{\tau(i+1)}-x_{\tau(i)}\right\|\right) \\
& \leq \sum_{i} \max \left\{\frac{1}{\beta}\left\|x_{\tau(i+1)}-x_{\tau(i)}\right\|^{2}, \alpha\left\|y_{\tau(i+1)}-y_{\tau(i)}\right\|^{2}\right\}
\end{aligned}
$$

Meanwhile,

$$
\begin{aligned}
& \sum_{i} f(\tau(i), \tau(i+1)) \\
& =\frac{1}{\beta-\alpha} \sum_{i}\left(\left\|x_{\tau(i)}-x_{\tau(i+1)}\right\|^{2}+\alpha \beta\left\|y_{\tau(i)}-y_{\tau(i+1)}\right\|^{2}-2 \alpha\left\langle y_{\tau(i)}-y_{\tau(i+1)}, x_{\tau(i)}-x_{\tau(i+1)}\right\rangle\right) \\
& \geq \frac{1}{\beta-\alpha} \sum_{i}\left(\left\|x_{\tau(i)}-x_{\tau(i+1)}\right\|^{2}+\alpha \beta\left\|y_{\tau(i)}-y_{\tau(i+1)}\right\|^{2}-\alpha\left(\lambda\left\|x_{\tau(i)}-x_{\tau(i+1)}\right\|^{2}+\frac{1}{\lambda}\left\|y_{\tau(i)}-y_{\tau(i+1)}\right\|^{2}\right)\right)
\end{aligned}
$$

The last inequality holds for any $\lambda>0$ by the Cauchy-Schwarz inequality. Choosing $\lambda=1 / \beta$ and $\lambda=1 / \alpha$ yields

$$
\sum_{i} f(\tau(i), \tau(i+1)) \geq \max \left\{\frac{1}{\beta}\left\|x_{\tau(i+1)}-x_{\tau(i)}\right\|^{2}, \alpha\left\|y_{\tau(i+1)}-y_{\tau(i)}\right\|^{2}\right\}
$$

Therefore (7) holds, which completes the proof.

2 Omitted proofs for Section 4

2.1 Proof of Theorem 4.1

Proof. Define the truncated smoothing kernel

$$
\tilde{\mathcal{N}}_{\sigma}:=\mathcal{N}\left(0, \sigma^{2} I\right) \cdot \mathbf{1}\left\{\|X\| \leq \epsilon_{*}\right\}+(1-p) \delta_{0}
$$

where

$$
p=\mathbb{P}\left[\left\|\mathcal{N}\left(0, \sigma^{2} I\right)\right\|<\epsilon_{*}\right] .
$$

Since $\tilde{\mathcal{N}}_{\sigma}$ is supported on $B\left(0, \epsilon_{*}\right)$, by Lemma 4.2, we know

$$
W_{2}\left(\mu * \tilde{\mathcal{N}}_{\sigma}, \nu * \tilde{\mathcal{N}}_{\sigma}\right)=W_{2}(\mu, \nu) .
$$

Therefore,

$$
\begin{aligned}
& \left|W_{2}\left(\mu * \mathcal{N}_{\sigma}, \nu * \mathcal{N}_{\sigma}\right)-W_{2}(\mu, \nu)\right|^{2} \\
= & \left|W_{2}\left(\mu * \mathcal{N}_{\sigma}, \nu * \mathcal{N}_{\sigma}\right)-W_{2}\left(\mu * \tilde{\mathcal{N}}_{\sigma}, \nu * \tilde{\mathcal{N}}_{\sigma}\right)\right|^{2} \\
\leq & \left(W_{2}\left(\mu * \mathcal{N}_{\sigma}, \mu * \tilde{\mathcal{N}}_{\sigma}\right)+W_{2}\left(\nu * \mathcal{N}_{\sigma}, \nu * \tilde{\mathcal{N}}_{\sigma}\right)\right)^{2} \\
\lesssim & \mathbb{E}_{z \sim \mathcal{N}\left(0, \sigma^{2} I\right)}\left[\|z\|^{2} \mathbf{1}_{\|z\| \geq \sigma_{*}}\right] \\
= & \sigma^{2} \mathbb{E}_{z \sim \mathcal{N}(0, I)}\left[\|z\|^{2} \mathbf{1}_{\|z\| \geq \sigma_{*} / \sigma}\right] \\
\lesssim & \sigma \sigma_{*} e^{-\sigma_{*}^{2} / 2 \sigma^{2}} .
\end{aligned}
$$

Here the second inequality is yielded by considering a coupling of $\mu * \mathcal{N}_{\sigma}$ and $\mu * \tilde{\mathcal{N}}_{\sigma}$ that is the distribution of $\left(X+Z, X+Z \cdot 1\left\{\|Z\| \leq \epsilon_{*}\right\}\right)$, where X and Z are independent, $X \sim \mu$ and $Z \sim \mathcal{N}\left(0, \sigma^{2} I\right)$, and the same coupling for μ replaced with ν. Taking square root on both sides yields the result.

2.2 Proof of Lemma 4.2

Proof. We naturally split the source measure into k parts:

$$
\mu * Q=\sum_{i=1}^{k}\left(\frac{1}{k} \delta\left(x_{i}\right) * Q\right)
$$

Consider a map T which, for each $i \in[k]$, is defined by

$$
T(x)=x+y_{i}-x_{i} \quad \forall x \in B\left(x_{i}, \sigma_{*}\right) .
$$

We can obtain a transport plan between $\mu * Q$ and $\nu * Q$ by considering the distribution of a pair of random variables $(X, T(X))$ for $X \sim \mu * Q$. The support of this plan lies in the set $\bigcup_{i=1}^{k} \bigcup_{\alpha \in B\left(0, \sigma_{*}\right)}\left(x_{i}+\alpha, y_{i}+\alpha\right)$. By the definition of $R(\Gamma)$, this set is cyclically monotone, so this coupling is optimal for $\mu * Q$ and $\nu * Q$ by Theorem 3.2. Therefore

$$
\begin{aligned}
W_{2}^{2}(\mu * Q, \nu * Q) & =\int\|x-T(x)\|^{2} d(\mu * Q)(x) \\
& =\frac{1}{k} \sum_{i=1}^{k}\left\|y_{i}-x_{i}\right\|^{2}=W_{2}^{2}(\mu, \nu),
\end{aligned}
$$

as claimed.

2.3 Proof of Proposition 4.3

Proof. For $M>0$, denote
$g(m):=\sup \left\{\sum_{i=1}^{n}\left\|x_{\tau(i)}-y_{\tau(i)}\right\|^{2}-\sum_{i=1}^{n}\left\|\left(x_{\tau(i)}+\alpha_{\tau(i)}\right)-\left(y_{\tau(i+1)}+\alpha_{\tau(i+1)}\right)\right\|^{2}: \max _{i}\left\|\alpha_{\tau(i)}\right\|=m\right\}$,
then $G(M)=\sup \{g(m): m \in[0, M]\}$. We first prove that $g(m)$ is concave in m. In fact, denote the set

$$
\mathcal{I}=\left\{\left(\tau(1), \ldots, \tau(n), \alpha_{\tau(1)}, \ldots, \alpha_{\tau(n)}\right): \tau(i) \in[k], \tau(i) \neq \tau(j), \max _{i}\left\|\alpha_{\tau(i)}\right\|=1\right\}
$$

By definition,

$$
\begin{aligned}
g(m)= & \sup \left\{\sum_{i=1}^{n}\left\|x_{\tau(i)}-y_{\tau(i)}\right\|^{2}-\sum_{i=1}^{n}\left\|\left(x_{\tau(i)}+m \alpha_{\tau(i)}\right)-\left(y_{\tau(i+1)}+m \alpha_{\tau(i+1)}\right)\right\|^{2}:\right. \\
& \left.\left(\tau(1), \ldots, \tau(n), \alpha_{\tau(1)}, \ldots, \alpha_{\tau(n)}\right) \in \mathcal{I}\right\}
\end{aligned}
$$

Note that, for every choice of $(\tau(1), \ldots, \tau(n))$ and $\left.\alpha_{\tau(1)}, \ldots, \alpha_{\tau(n)}\right) \in \mathcal{I}$,

$$
\sum_{i=1}^{n}\left\|x_{\tau(i)}-y_{\tau(i)}\right\|^{2}-\sum_{i=1}^{n}\left\|\left(x_{\tau(i)}+m \alpha_{\tau(i)}\right)-\left(y_{\tau(i+1)}+m \alpha_{\tau(i+1)}\right)\right\|^{2}
$$

is a concave function in m. Therefore, $g(m)$ is concave in m, and $G(M)$ is also concave in M.

2.4 Proof of Theorem 4.4

Proof. For $M>\sigma_{*}$, pick $\tau(1), \tau(2), \ldots, \tau(n) \in[k]$ and $\left\{\alpha_{\tau(i)}\right\}_{i=1}^{n} \subset \mathbb{R}^{d}$ such that $\left\|\alpha_{\tau(i)}\right\| \leq M$ and

$$
\sum_{i=1}^{n}\left\|x_{\tau(i)}-y_{\tau(i)}\right\|^{2}-\sum_{i=1}^{n}\left\|\left(x_{\tau(i)}+\alpha_{\tau(i)}\right)-\left(y_{\tau(i+1)}+\alpha_{\tau(i+1)}\right)\right\|^{2}=G(M)
$$

For every $i \in[k]$, denote $B_{\tau(i)}$ the ball centered at $x_{\tau(i)}+\alpha_{\tau(i)}$ with radius σ, and $\hat{B}_{\tau(i)}$ the ball centered at $y_{\tau(i)}+\alpha_{\tau(i)}$ with radius σ. Also denote

- $\gamma \in \Pi\left(\mu * \mathcal{N}_{\sigma}, \nu * \mathcal{N}_{\sigma}\right)$ the law of $(X+Z, Y+Z)$, where $(X, Y) \sim \frac{1}{k} \sum_{i=1}^{k} \delta\left(x_{i}, y_{i}\right)$ and $Z \sim \mathcal{N}_{\sigma}$ are independent.
- $\gamma_{\tau(i)} \in \Pi\left(\operatorname{Unif}\left(B_{\tau(i)}\right), \operatorname{Unif}\left(\hat{B}_{\tau(i)}\right)\right)$ the coupling associated with the transport map

$$
x \mapsto x+y_{\tau(i)}-x_{\tau(i)} ;
$$

- $\tilde{\gamma}_{\tau(i)} \in \Pi\left(\operatorname{Unif}\left(B_{\tau(i)}\right), \operatorname{Unif}\left(\hat{B}_{\tau(i+1)}\right)\right)$ the coupling associated with the transport map

$$
x \mapsto x+y_{\tau(i+1)}-x_{\tau(i)} ;
$$

- A constant $m=c_{d} \exp \left(-\frac{(M+\sigma)^{2}}{2 \sigma^{2}}\right)$, where c_{d} is a constant only dependent on the dimension d.

Consider the following measure in $\mathbb{R}^{d} \times \mathbb{R}^{d}$:

$$
\tilde{\gamma}:=\gamma-m \sum_{i=1}^{n} \gamma_{\tau(i)}+m \sum_{i=1}^{n} \tilde{\gamma}_{\tau(i)} .
$$

We shall show that $\tilde{\gamma} \in \Pi\left(\mu * \mathcal{N}_{\sigma}, \nu * \mathcal{N}_{\sigma}\right)$. We first verify that $\tilde{\gamma}$ is a positive measure on $\mathbb{R}^{d} \times \mathbb{R}^{d}$. In fact, for $x, y \in \mathbb{R}^{d}$,

$$
\gamma(d x, d y)=\frac{1}{k} \sum_{i=1}^{k}\left(\frac{1}{(\sqrt{2 \pi} \sigma)^{d}} e^{-\frac{\left\|x-x_{i}\right\|^{2}}{2 \sigma^{2}}} d x \cdot \delta_{x-x_{i}+y_{i}}(d y)\right)
$$

Meanwhile,

$$
\left(m \sum_{i=1}^{n} \gamma_{\tau(i)}\right)(d x, d y)=m \sum_{i=1}^{n}\left(\frac{\mathbf{1}\left\{x \in B_{\tau(i)}\right\}}{\operatorname{Vol}\left(B_{\tau(i)}\right)} d x \cdot \delta_{x-x_{\tau(i)}+y_{\tau(i)}}(d y)\right)
$$

For every $\tau(i)$ such that $x \in B_{\tau(i)}$, note that

$$
\left\|x-x_{\tau(i)}\right\| \leq\left\|x-\left(x_{\tau(i)}+\alpha_{\tau(i)}\right)\right\|+\left\|\alpha_{\tau(i)}\right\| \leq \sigma+M,
$$

hence (with a proper choice of c_{d})

$$
\frac{1}{k} \frac{1}{(\sqrt{2 \pi} \sigma)^{d}} e^{-\frac{\left\|x-x_{\tau(i)}\right\|^{2}}{2 \sigma^{2}}} \geq \frac{1}{k} \frac{1}{(\sqrt{2 \pi} \sigma)^{d}} e^{-\frac{(M+\sigma)^{2}}{2 \sigma^{2}}} \geq \frac{m}{\operatorname{Vol}\left(B_{\tau(i)}\right)}
$$

As a result, $\gamma-m \sum_{i=1}^{n} \gamma_{\tau(i)} \geq 0$, and $\tilde{\gamma}$ is a positive measure. Also note that its first marginal (i.e. the marginal on the first d dimensions) and second marginal (i.e. the marginal on the last d
dimensions) agree with the respective marginals of γ. Thus we conclude that $\tilde{\gamma} \in \Pi\left(\mu * \mathcal{N}_{\sigma}, \nu * \mathcal{N}_{\sigma}\right)$. Now note that

$$
\begin{aligned}
& \int c(x, y) d \gamma(x, y)-\int c(x, y) d \tilde{\gamma}(x, y) \\
= & m\left(\sum_{i=1}^{n}\left\|x_{\tau(i)}-y_{\tau(i)}\right\|^{2}-\sum_{i=1}^{n}\left\|\left(x_{\tau(i)}+\alpha_{\tau(i)}\right)-\left(y_{\tau(i+1)}+\alpha_{\tau(i+1)}\right)\right\|^{2}\right) \\
= & m \cdot G(M) .
\end{aligned}
$$

In the meantime,

$$
\int c(x, y) d \gamma(x, y)=\frac{1}{2 k} \sum_{i=1}^{k}\left\|x_{i}-y_{i}\right\|^{2}=W_{2}^{2}(\mu, \nu)
$$

therefore,

$$
\begin{aligned}
& W_{2}^{2}\left(\mu * \mathcal{N}_{\sigma}, \nu * \mathcal{N}_{\sigma}\right) \\
\leq & \int c(x, y) d \tilde{\gamma}(x, y) \\
\leq & W_{2}^{2}(\mu, \nu)-G(M) \cdot c_{d} \exp \left(-\frac{(M+\sigma)^{2}}{2 \sigma^{2}}\right)
\end{aligned}
$$

In particular, choosing $M=\sigma+\sigma_{*}$ yields

$$
W_{2}^{2}(\mu, \nu)-W_{2}^{2}\left(\mu * \mathcal{N}_{\sigma}, \nu * \mathcal{N}_{\sigma}\right) \gtrsim G\left(\sigma+\sigma_{*}\right) \exp \left(-c \frac{\sigma_{*}^{2}}{\sigma^{2}}\right)
$$

The rest follows from the observation that, for $\sigma \in\left(0,2 \sigma_{*}\right)$,

$$
G\left(\sigma+\sigma_{*}\right)=G\left(\sigma+\sigma_{*}\right)-G\left(\sigma_{*}\right) \geq \frac{G\left(3 \sigma_{*}\right)-G\left(\sigma_{*}\right)}{2 \sigma_{*}} \cdot \sigma
$$

since G is concave by Proposition 4.3

3 Omitted proofs for Section 5

3.1 Proof of Theorem 5.1

Proof. Suppose that there exists a transport plan π between μ and ν which achieves the optimal cost and is not a perfect matching. Without loss of generality, we assume that $\left(x_{1}, y_{1}\right)$ and $\left(x_{1}, y_{2}\right)$ both lie in the support of π. Let $\lambda=\min \left\{\pi\left(x_{1}, y_{1}\right), \pi\left(x_{1}, y_{2}\right)\right\}$. We decompose μ and ν as

$$
\begin{array}{cl}
\hat{\mu}=\mu-2 \lambda \delta\left(x_{1}\right), & \tilde{\mu}=2 \lambda \delta\left(x_{1}\right), \\
\hat{\nu}=\nu-\lambda\left(\delta\left(y_{1}\right)+\delta\left(y_{2}\right)\right), & \tilde{\nu}=\lambda\left(\delta\left(y_{1}\right)+\delta\left(y_{2}\right)\right) .
\end{array}
$$

By Lemma 5.2, there exists $c_{0}>0$ such that for $\sigma \in\left(0, c_{0}\right)$,

$$
W_{2}^{2}(\tilde{\mu}, \tilde{\nu})-W_{2}^{2}\left(\tilde{\mu} * \mathcal{N}_{\sigma}, \tilde{\nu} * \mathcal{N}_{\sigma}\right) \gtrsim \sigma
$$

Therefore, for $\sigma \in\left(0, c_{0}\right)$, we also have

$$
\begin{aligned}
& W_{2}^{2}(\mu, \nu)-W_{2}^{2}\left(\mu * \mathcal{N}_{\sigma}, \nu * \mathcal{N}_{\sigma}\right) \\
\geq & W_{2}^{2}(\hat{\mu}, \hat{\nu})-W_{2}^{2}\left(\hat{\mu} * \mathcal{N}_{\sigma}, \hat{\nu} * \mathcal{N}_{\sigma}\right)+W_{2}^{2}(\tilde{\mu}, \tilde{\nu})-W_{2}^{2}\left(\tilde{\mu} * \mathcal{N}_{\sigma}, \tilde{\nu} * \mathcal{N}_{\sigma}\right) \\
\geq & W_{2}^{2}(\tilde{\mu}, \tilde{\nu})-W_{2}^{2}\left(\tilde{\mu} * \mathcal{N}_{\sigma}, \tilde{\nu} * \mathcal{N}_{\sigma}\right) \\
\gtrsim & \sigma
\end{aligned}
$$

3.2 Proof of Lemma 5.2

Proof. First suppose that x, y_{1}, y_{2} are not on the same line with y_{1} between x and y_{2} or y_{2} between x and y_{1}. Let Δ be the bisecting hyperplane of $\angle y_{1} x y_{2}$, namely

$$
\Delta=\left\{z \in \mathbb{R}^{d}: \frac{\left\langle z-x, y_{1}-x\right\rangle}{\left|y_{1}-x\right|}=\frac{\left\langle z-x, y_{2}-x\right\rangle}{\left|y_{2}-x\right|}\right\}
$$

and define its unit normal vector \mathbf{m} such that $\left\langle\mathbf{m}, y_{1}-x\right\rangle>0$. We adopt the decomposition

$$
\begin{align*}
& \mu_{+}:=\mathcal{N}\left(x, \sigma^{2}\right) \mid\langle z-x, \mathbf{m}\rangle>0 \tag{8}\\
& \mu_{-}:=\mathcal{N}\left(x, \sigma^{2}\right) \mid\langle z-x, \mathbf{m}\rangle<0
\end{align*}
$$

and

$$
\begin{align*}
\nu_{1+} & :=\mathcal{N}\left(y_{1}, \sigma^{2}\right) \mid\left\langle z-y_{1}, \mathbf{m}\right\rangle>0, \\
\nu_{1-} & :=\mathcal{N}\left(y_{1}, \sigma^{2}\right) \mid\left\langle z-y_{1}, \mathbf{m}\right\rangle<0, \\
\nu_{2+} & :=\mathcal{N}\left(y_{2}, \sigma^{2}\right) \mid\left\langle z-y_{2}, \mathbf{m}\right\rangle>0, \tag{9}\\
\nu_{2-} & :=\mathcal{N}\left(y_{2}, \sigma^{2}\right) \mid\left\langle z-y_{2}, \mathbf{m}\right\rangle<0 .
\end{align*}
$$

Note that all the six sub-probability measures above have mass $1 / 2$. By the definition of W_{2}, we have

$$
\begin{equation*}
W_{2}^{2}\left(\mu_{0} * \mathcal{N}_{\sigma}, \nu_{0} * \mathcal{N}_{\sigma}\right) \leq \frac{1}{2}\left(W_{2}^{2}\left(\mu_{+}, \nu_{1+}\right)+W_{2}^{2}\left(\mu_{+}, \nu_{1-}\right)+W_{2}^{2}\left(\mu_{-}, \nu_{2+}\right)+W_{2}^{2}\left(\mu_{-}, \nu_{2-}\right)\right) \tag{10}
\end{equation*}
$$

It is obvious that

$$
W_{2}^{2}\left(\mu_{+}, \nu_{1+}\right)=\frac{1}{2}\left\|x-y_{1}\right\|^{2}, \quad W_{2}^{2}\left(\mu_{-}, \nu_{2-}\right)=\frac{1}{2}\left\|x-y_{2}\right\|^{2} .
$$

For $W_{2}^{2}\left(\mu_{+}, \nu_{1-}\right)$, consider the map

$$
T_{\#}(x+t)=y_{1}-t, \quad t \sim \mathcal{N}\left(0, \sigma^{2} I\right)
$$

we have

$$
\begin{aligned}
W_{2}^{2}\left(\mu_{+}, \nu_{1-}\right) & \leq \mathbb{E}_{u \sim \mu_{+}}\left\|u-T_{\#} u\right\|^{2} \\
& =\mathbb{E}_{u \sim \mu_{+}}\left\|u-\left(y_{1}-u+x\right)\right\|^{2} \\
& =\frac{1}{2}\left\|x-y_{1}\right\|^{2}-4 \mathbb{E}_{u \sim \mu_{+}}\left\langle y_{1}-x, u-x\right\rangle+4 \mathbb{E}_{u \sim \mu_{+}}\|u-x\|^{2} \\
& =\frac{1}{2}\left\|x-y_{1}\right\|^{2}-4 c_{1} \sigma\left\langle\mathbf{m}, y_{1}-x\right\rangle+4 c_{2} \sigma^{2}
\end{aligned}
$$

where c_{1} and c_{2} are absolute positive constants. Similarly,

$$
W_{2}^{2}\left(\mu_{-}, \nu_{2+}\right) \leq \frac{1}{2}\left\|x-y_{2}\right\|^{2}-4 c_{1} \sigma\left\langle\mathbf{m}, x-y_{2}\right\rangle+4 c_{2} \sigma^{2}
$$

Plugging into (10) we get

$$
W_{2}^{2}\left(\mu_{0} * \mathcal{N}_{\sigma}, \nu_{0} * \mathcal{N}_{\sigma}\right) \leq W_{2}^{2}\left(\mu_{0}, \nu_{0}\right)-4 c_{1} \sigma\left\langle\mathbf{m}, y_{1}-y_{2}\right\rangle+8 c_{2} \sigma^{2}
$$

hence $W_{2}^{2}\left(\mu_{0}, \nu_{0}\right)-W_{2}^{2}\left(\mu_{0} * \mathcal{N}_{\sigma}, \nu_{0} * \mathcal{N}_{\sigma}\right) \gtrsim \sigma$ for small σ, since $\left\langle\mathbf{m}, y_{1}-y_{2}\right\rangle>0$.

Finally, we consider the special case where x, y_{1}, y_{2} are on the same line and y_{1} is between x and y_{2}. We choose \mathbf{m} the unit vector along the direction $x-y_{1}$, and the same line of proof yields the conclusion.

References

[1] Jean-Charles Rochet. A necessary and sufficient condition for rationalizability in a quasi-linear context. Journal of mathematical Economics, 16(2):191-200, 1987.
[2] Ralph Rockafellar. Characterization of the subdifferentials of convex functions. Pacific Journal of Mathematics, 17(3):497-510, 1966.
[3] Ralph Rockafellar. On the maximal monotonicity of subdifferential mappings. Pacific Journal of Mathematics, 33(1):209-216, 1970.

