
A Win-win Deal: Towards Sparse and Robust
Pre-trained Language Models

Yuanxin Liu1,2,3∗, Fandong Meng5, Zheng Lin1,4†, Jiangnan Li1,4, Peng Fu1, Yanan Cao1,4,
Weiping Wang1, Jie Zhou5

1Institute of Information Engineering, Chinese Academy of Sciences
2MOE Key Laboratory of Computational Linguistics, Peking University

3School of Computer Science, Peking University
4School of Cyber Security, University of Chinese Academy of Sciences

5Pattern Recognition Center, WeChat AI, Tencent Inc, China
liuyuanxin@stu.pku.edu.cn, {fandongmeng,withtomzhou}@tencent.com

{linzheng,lijiangnan,fupeng,caoyanan,wangweiping}@iie.ac.cn

A More Information of Pruning and Debiasing Methods

A.1 Pruning Methods

A.1.1 Iterative Magnitude Pruning

Algo. 1 summarizes our implementation of IMP and IMP with weight rewinding. In practice, we set
the per time pruning ratio ∆s = 10% and the pruning interval ∆t = 0.1 · tmax.

A.1.2 Mask Training

As we described in Section 3.2.2 of the main paper, we realize mask training via binarization in
forward pass and gradient estimation in backward pass. Following [17, 11], we adopt a magnitude-
based strategy to initialize the real-valued masks. Specially, we consider two variants: The first
one (hard variant) identifies the weights in matrix W with the smallest magnitudes, and sets the
corresponding elements in m̂ to zero, and the remaining elements to a fixed value:

m̂i,j =

{
0 if Wi,j ∈ Mins(abs(W))

α× ϕ otherwise
(1)

where Mins(abs(W)) extracts the weights with the lowest absolute value, according to sparsity level
s. α ≥ 1 is a hyper-parameter. The second one (soft variant) directly utilizes the absolute values of
the weights for mask initialization:

m̂i,j = abs(Wi,j) (2)

To control the sparsity of the model, the threshold ϕ is adjusted dynamically at a frequency of ∆tϕ
training steps. In practice, we control the sparsity in a local way, i.e., all the weight matrices W ∈ θpr

should satisfy the same sparsity constraint s. Algo. 2 summarizes the entire process of mask training.

A.2 Debiasing Methods

We have introduced the PoE method in Section 3.3. Here we provide descriptions of the other two
debiasing methods, i.e., example reweighting and confidence regularization.

∗Work was done when Yuanxin Liu was a graduate student of IIE, CAS.
†Corresponding author: Zheng Lin.

Joint work with Pattern Recognition Center, WeChat AI, Tencent Inc, China.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Algorithm 1: Iterative Magnitude Pruning (+ weight rewinding)
Input: PLM f(θ0) w. θ0 = θft, maximum training steps tmax, pruning interval ∆t, per time

pruning ratio ∆s, target sparsity level s = k ·∆s (k ∈ {1, 2, · · · }), pruning method
p ∈ {imp, imp-rw}

Output: Pruned subentwork f(m⊙ θ
′

ft)

1 Initialize the pruning mask m = 1|θ0| and the number of pruning n = 0
2 while t < tmax do
3 if (t mod ∆t) == 0 then
4 # For imp, return the subnetwork after some further training
5 if n ·∆s == s and p==imp then
6 return f(m⊙ θt)
7 end
8 Prune ∆s · |θ0| from the remaining parameters m⊙ θt based on the magnitudes, and

update m accordingly
9 n← n+ 1

10 # For imp-rw, return the subnetwork directly after pruning
11 if n ·∆s == s and p==imp-rw then
12 return f(m⊙ θ0)
13 end
14 end
15 Update the remaining model parameters m⊙ θt via AdamW [12];
16 end

Example Reweighting directly assigns an importance weight to the standard CE training loss,
according to the bias degree β:

Lreweight = − (1− β)y · logpm (3)

Confidence Regularization is based on knowledge distillation [9]. It involves a teacher model
trained with the standard CE loss. The teacher model’s prediction pt is used as a supervision signal
to train the main model. To account for the bias degree of training examples, pt is smoothed using a
scaling function S (pt, β), and the final loss is computed as:

Lconfreg = −S (pt, β) · logpm

S (pt, β) =
(pj

t)
(1−β)∑K

k=1(p
k
t)

(1−β)

(4)

B More Experimental Setups

B.1 Datasets and Evaluations

We utilize eight datasets from three NLU tasks. The statistics of different dataset splits are summarized
in Tab. 1. If one dataset has a test set, we use it for evaluation, and otherwise we report results on the
dev set. For MNLI and QQP, since the official test server 3 only allows two submissions a day, we
instead evaluate on the dev sets, following [2, 11, 19]. For FEVER, we use the training and evaluation
data processed by [20] 4.

Tab. 2 shows the distribution of examples over classes. We can see that the distributions of the QQP
and PAWSqqp evaluation sets are imbalanced. Specially, in the OOD PAWSqqp, where a biased model
tends to predict most examples to the duplicate class, simply classifying all examples as non-duplicate
can achieve substantial improvement in accuracy (from 28.2% to 71.8%). To account for this, we use
the F1 score to evaluate the performance on the three paraphrase identification datasets. Specifically,
we calculate the weighted average of the F1 score of each class. However, the class imbalance
may still affect the evaluation on PAWS (as we discussed in Section 4.2.2) and therefore the OOD
improvement should be assessed by also considering the ID performance.

3https://gluebenchmark.com/
4https://github.com/TalSchuster/FeverSymmetric

2

https://gluebenchmark.com/
https://github.com/TalSchuster/FeverSymmetric

Algorithm 2: Mask Training
Input: PLM f(θ0) w. θ0 ∈ {θpt,θft}, maximum training steps tmax, frequency ∆tϕ, target

sparsity level s, threshold ϕ, hyper-parameter α, initialization method init ∈ {hard, soft}
Output: Pruned subentwork f(m⊙ θ0)

1 if init == hard then
2 Initialize the real-valued mask m̂ according to Eq. 1
3 Set threshold ϕ = 0.01
4 else
5 Initialize the real-valued mask m̂ according to Eq. 2
6 Set threshold ϕ according to the sparsity constraint
7 end
8 while t < tmax do
9 Get a mini-batch of B examples {(xb, yb)}Bb=1

10 Forward pass through binarization:

11 L(f(xb,m⊙ θ0), yb), where mi,j =

{
1 if m̂i,j ≥ ϕ

0 otherwise
12 Backward pass through gradient estimation:
13 m̂← m̂− η ∂L

∂m
14 if (t mod ∆tϕ) == 0 then
15 Update the threshold ϕ to satisfy the sparsity constraint
16 end
17 end
18 return f(m⊙ θ0)

Table 1: The number of examples in different dataset splits. The splits used for evaluation are
highlighted with red color. The dev set for MNLI is MNLI-m.

NLI Paraphrase Identification Fact Verification

MNLI HANS QQP PAWS-qqp PAWS-wiki FEVER FEVER-Symm1 FEVER-Symm2

Train 392,702 30,000 363,849 11,988 49,401 242,911 - -
Dev 9,815 30,000 40,432 677 8,000 16,664 - 708
Test - - - - 8,000 - 717 712

B.2 Software and Computational Resources

We use two types of GPU, i.e., Nvidia V100 and TITAN RTX. All the experiments are run on a single
GPU. Our codes are based on the Pytorch5 and the huggingface transformers library6 [26].

B.3 Training Details

B.3.1 Bias Model

As mentioned in Section 4.1.3, we train the bias model with spurious features. For MNLI and QQP,
we adopt the hand-crafted word overlapping features proposed by [3], which includes:

• Whether all the hypothesis words also belong to the premise.
• Whether the hypothesis appears as a continuous subsequence in the premise.
• The percentage of the hypothesis words wh = {wh

1 ,w
h
2 , · · · ,wh

|wh|} that appear in the

premise wp = {wp
1,w

p
2, · · · ,w

p
|wp|}. Formally |wh∩wp|

|wh| .

• The average of the maximum similarity between each hypothesis word and all the premise
words: 1

|wh| sum({max({sim(wp
i ,w

h
j)|∀w

p
j ∈ wp})|∀wh

i ∈ wh}), where the similarity
is computed based on the fastText word vectors [15] and the cosine distance.

5https://pytorch.org/
6https://github.com/huggingface/transformers

3

https://pytorch.org/
https://github.com/huggingface/transformers

Table 2: Data distribution over classes. The meaning of the abbreviations are: ent (entailment), cont
(contradiction), dulp (duplicate), supp (support), not-info (not-enough-info). “Eval” represents the
dataset split used for evaluation, as described in Tab. 1

MNLI HANS

Train
ent 33.3% 50%
cont 33.3% 50%
neutral 33.3% 0%

Eval
ent 35.4% 50%
cont 32.7% 50%
neutral 31.8% 0%

QQP PAWSqqp PAWSwiki

Train
dulp 36.9% 31.5% 44.2%
non-dulp 63.1% 68.5% 55.8%

Eval
dulp 36.8% 28.2% 44.2%
non-dulp 63.2% 71.8% 55.8%

FEVER Symm1 Symm2

Train
supp 41.4% - -
refute 17.2% - -
not-info 41.4% - -

Eval
supp 47.9% 52.9% 50%
refute 52.1% 47.1% 50%
not-info 0% 0% 0%

Table 3: Basic training hyper-parameters.
#Epoch Learning Rate Batch Size Max Length Eval Interval Eval Metric Optimizer

MNLI 3 or 5 5e-5 32 128 1,000 Acc AdamW
QQP 3 2e-5 32 128 1,000 F1 AdamW
FEVER 3 2e-5 32 128 500 Acc AdamW

• The minimum of the same similarities above: min({max({sim(wp
i ,w

h
j)|∀w

p
j ∈

wp})|∀wh
i ∈ wh}).

For FEVER, we use the max-pooled word embeddings of the claim sentence, which are also based
on the fastText word vectors.

B.3.2 Full BERT

The main training hyper-parameters are shown in Tab. 3, which basically follow [25]. Most of the
hyper-parameters are the same for different training strategies, except for the number of training
epochs (#Epoch) on MNLI. For the standard CE loss and example reweighting, the model is trained
for 3 epochs. For PoE and confidence regularization, the model is trained for 5 epochs.

B.3.3 Mask Training and IMP

Mask training and IMP basically use the same set of hyper-parameters as full BERT, except for longer
training. The number of training epochs for mask training and IMP is 5 on MNLI, and 7 on QQP and
FEVER. The hyper-parameters specific to mask training or IMP are summarized in Tab. 4. Unless
otherwise specified, we adopt the hard-variant of mask initialization (Eq. 1) and fix the subnetwork
sparsity to target sparsity s throughout the process of mask training. Some special experimental
setups are described as follows:

Subnetworks from Fine-tuned BERT When we search for subnetworks at low sparsity (e.g., 20%)
from a fine-tuned BERT, we find that mask training (with debiasing loss) stably improves the OOD
performance, while the ID performance peaks at an early point of training and then slightly drops
and recovers later. Therefore, the ID performance favors the early checkpoints, which are not good
at the OOD generalization. To address this problem, we select the best checkpoint after 0.7 · tmax
of training, but still according to the performance on the ID dev set. This strategy is only adopted
for mask training on fine-tuned BERT (for all sparsity levels), and in other cases we select the best
checkpoint across training based on ID performance.

BERT Subnetworks Fine-tuned in Isolation When fine-tuning the searched subnetworks (with
their weights rewound to pre-trained values) in isolation, we use the same set of hyper-parameters as
full BERT fine-tuning.

Sparse and Unbiased BERT Subnetworks The OOD data is used in this setup. Specifically, we
utilize the training data of HANS and PAWS for NLI and paraphrase identification respectively. In
terms of the FEVER-Symmetric dataset, which does not provide a training set (see Tab. 1), we use
the dev set of FEVER-Symm2 and copy the data 10 times to construct the OOD training data. The
OOD and ID training data are then combined to form the final training set. Note that the evaluation
sets are the same as the other setups, and NO test data is used in mask training.

4

Table 4: Basic hyper-parameters related to pruning methods. tmax is the number of optimization steps
by training #Epoch epochs.

Mask Training IMP

Mask Init Sparsity Schedule ϕ α ∆tϕ ∆s ∆t

magnitude (hard) fixed to s 0.01 2 equal to Eval Interval 10% 0.1·tmax

0.0 0.2 0.4 0.6 0.8
Sparsity

0.74

0.76

0.78

0.80

0.82

0.84

M
NL

I d
ev

 A
cc

mask train (poe)
mask train (reweight)
mask train (conf_reg)
full bert (std)
full bert (poe)
full bert (reweight)
full bert (conf_reg)

0.0 0.2 0.4 0.6 0.8
Sparsity

0.525

0.550

0.575

0.600

0.625

0.650

0.675

0.700

HA
NS

 A
cc

0.0 0.2 0.4 0.6 0.8
Sparsity

0.76

0.78

0.80

0.82

0.84

0.86

0.88

QQ
P

de
v

F1
0.0 0.2 0.4 0.6

0.86

0.87

0.88

0.0 0.2 0.4 0.6 0.8
Sparsity

0.20

0.25

0.30

0.35

0.40

0.45

0.50

PA
W

S-
qq

p
F1

0.0 0.2 0.4 0.6 0.8
Sparsity

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50

PA
W

S-
wi

ki
 F

1

0.0 0.2 0.4 0.6 0.8
Sparsity

0.65

0.70

0.75

0.80

0.85

0.90

FE
VE

R
de

v
Ac

c

0.0 0.2 0.4 0.6

0.86

0.88

0.90

0.0 0.2 0.4 0.6 0.8
Sparsity

0.40

0.45

0.50

0.55

0.60

Sy
m

m
1

Ac
c

0.0 0.2 0.4 0.6

0.58

0.60

0.62

0.0 0.2 0.4 0.6 0.8
Sparsity

0.45

0.50

0.55

0.60

0.65

Sy
m

m
2

Ac
c

0.0 0.2 0.4 0.6

0.65

0.66

0.67

Figure 1: Results of subnetworks pruned from the CE fine-tuned BERT, with different debiasing
methods in pruning.

Gradual Sparsity Increase We mainly experiment with the gradual sparsity increase schedule
for subnetworks at 90% sparsity. Concretely, we increase the sparsity from 70% to 90% during the
process of mask training. The real-valued mask is initialized using the soft-variant (Eq. 2). This is
because we find that the hard-variant is difficult to optimize with sparsity increase.

C More Results and Analysis

C.1 More Debiasing Methods

In Section 4, we mainly experiment with the PoE debiasing method. Here, we combine mask training
with the other two debiasing methods, namely example reweighting and confidence regularization,
and search for SRNets from the CE fine-tuned BERT. Fig. 1 presents the results. As we can see: (1)

0.0 0.2 0.4 0.6 0.8
Sparsity

0.65

0.70

0.75

0.80

0.85

M
NL

I d
ev

 A
cc

bert-ft subnet
bert-pt subnet + ft
bert-pt subnet
full bert (std)
full bert (poe)
95% full bert (std)

0.0 0.2 0.4 0.6 0.8
Sparsity

0.6

0.7

0.8

0.9

1.0

HA
NS

 A
cc

0.0 0.2 0.4 0.6 0.8
Sparsity

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88

QQ
P

de
v

F1

0.0 0.2 0.4 0.6 0.8
Sparsity

0.2

0.3

0.4

0.5

0.6

0.7

0.8

PA
W

S-
qq

p
F1

0.0 0.2 0.4 0.6 0.8
Sparsity

0.4

0.5

0.6

0.7

0.8

0.9

PA
W

S-
wi

ki
 F

1

0.0 0.2 0.4 0.6 0.8
Sparsity

0.60

0.65

0.70

0.75

0.80

0.85

FE
VE

R
de

v
Ac

c

0.0 0.2 0.4 0.6
0.84

0.86

0.88

0.0 0.2 0.4 0.6 0.8
Sparsity

0.3

0.4

0.5

0.6

0.7

0.8

Sy
m

m
1

Ac
c

0.0 0.2 0.4 0.6 0.8
Sparsity

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Sy
m

m
2

Ac
c

0.0 0.2 0.4 0.6
0.64

0.66

0.68

0.70

Figure 2: Results of subnetworks found using the OOD information.

5

0 20000 40000 60000 80000 100000
Training Steps

0.3

0.4

0.5

0.6

0.7

0.8

M
NL

I d
ev

 A
cc

ft to end
ft step=0
ft step=5000
ft step=15000
ft step=20000

0 20000 40000 60000 80000 100000
Training Steps

0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675

0.700

HA
NS

 A
cc

0 20000 40000 60000 80000 100000
Training Steps

0.0

0.2

0.4

0.6

0.8

QQ
P

de
v

F1

ft to end
ft step=0
ft step=5000
ft step=15000

0 20000 40000 60000 80000 100000
Training Steps

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

PA
W

S-
qq

p
F1

0 20000 40000 60000 80000 100000
Training Steps

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

PA
W

S-
wi

ki
 F

1

0 20000 40000 60000
Training Steps

0.1

0.2

0.3

0.4

0.5

0.6

0.7

FE
VE

R
de

v
Ac

c

ft to end
ft step=0
ft step=5000
ft step=10000

0 20000 40000 60000
Training Steps

0.1

0.2

0.3

0.4

0.5

0.6

Sy
m

m
1

Ac
c

0 20000 40000 60000
Training Steps

0.1

0.2

0.3

0.4

0.5

0.6

Sy
m

m
2

Ac
c

Figure 3: Mask training curves starting from full BERT checkpoints fine-tuned for varied steps. The
sparsity levels are 70%, 70% and 90% for MNLI, QQP and FEVER respectively. At these sparsity
levels, the gap between “ft step=0” and “ft to end” is the largest, according to Fig. 5 of the main
paper.

Pruning with different debiasing methods almost consistently improves the OOD performance over
the CE fine-tuned BERT. (2) The confidence regularization method (the grey lines) only achieves mild
OOD improvement over the full BERT, while it preserves more ID performance compared with the
other two methods. This phenomenon is in accordance with the results from [24], which propose the
confidence regularization method to achieve a better trade-off between the ID and OOD performance.

C.2 Sparse and Unbiased Subnetworks

Fig. 2 shows the results of mask training with the OOD training data. We can see that the general
patterns in paraphrase identification and fact verification datasets are basically the same as the NLI
datasets. Although the identified subnetworks cannot achieve 100% accuracy on PAWS and FEVER-
Symmetric as on HANS, they substantially narrow the gap between OOD and ID performance, as
compared with the full BERT. An exception is on the Symm2, where the upper bound of SRNets
seems not very high. This is probably because we do not have enough examples (708 in total) to
represent the data distribution of the FEVER-Symmetric dataset. Therefore, we conjecture that the
existence of sparse and unbiased subnetworks might be ubiquitous.

C.3 The Timing to Start Searching SRNets

Fig. 3 shows the mask training curves on all the 8 datasets. Similar to the NLI datasets, mask training
on the other two tasks can achieve comparable results as “ft to end” by starting from an intermediate
checkpoint of BERT fine-tuning. For QQP, we can start from 15,000 steps of full BERT fine-tuning
(44% of tmax). For FEVER, we can start from 10,000 steps (44% of tmax).

C.4 Ablation Studies on Gradual Sparsity Increase

As we mentioned in Appendix B.3.3, we increase the sparsity from 70% to 90% and adopt the
soft variant of mask initialization. To explain the reason for using this specific strategy, we present
the ablation study results in Tab. 5. We can observe that: (1) Replacing the hard variant of mask
initialization with the soft variant is beneficial, which leads to obvious improvements on the QQP,
FEVER, Symm1 and Symm2 datasets. (2) Gradually increasing the sparsity further promotes the
performance, with the 0.7∼0.9 strategy achieving the best results on 7 out of the 8 datasets.

C.5 Results on RoBERTa-base and BERT-large

It has been shown by [8, 23] that pre-trained model RoBERTa [10] have better OOD generalization
than BERT. [23] also shows that larger PLMs, which are more computationally expensive, are more

6

Table 5: Ablation studies of the gradual sparsity increase schedule. The number of training epochs
are 3, 5 and 5 for MNLI, QQP and FEVER respectively. The subnetworks are at 90% sparsity. The
numbers in the subscripts are standard deviations.

MNLI HANS

fixed hard 72.090.92 52.560.92
soft 72.630.31 52.820.47

gradual
0.2∼0.9 73.610.28 53.900.87
0.5∼0.9 75.060.31 54.991.28
0.7∼0.9 76.840.46 56.720.75

QQP PAWSqqp PAWSqqp

fixed hard 71.641.85 55.701.92 49.591.84

soft 77.080.66 46.483.55 49.380.98

gradual
0.2∼0.9 75.790.39 51.570.69 47.940.98

0.5∼0.9 77.540.47 50.920.97 48.860.89

0.7∼0.9 79.490.58 46.591.81 51.150.73

FEVER Symm1 Symm2

fixed hard 49.565.09 27.452.94 29.754.40

soft 72.800.95 46.670.73 52.330.75

gradual
0.2∼0.9 73.531.36 46.471.66 52.421.39

0.5∼0.9 77.010.43 49.870.95 56.570.22

0.7∼0.9 79.010.68 51.740.71 58.170.33

Table 6: Results of RoBERTa-base and BERT-large on the NLI task. We conduct mask training
with PoE loss on the standard fine-tuned PLMs. “0.5∼0.7" denotes gradual sparsity increase. The
numbers in the subscripts are standard deviations.

RoBERTa-base MNLI HANS

full model std 87.140.21 68.330.88

poe 86.560.18 76.151.35

mask train
0.5 85.400.14 75.170.55

0.7 83.480.29 68.631.33
0.5∼0.7 84.410.15 71.951.23

BERT-large MNLI HANS

full model std 86.840.13 69.442.39

poe 86.250.17 76.271.55

mask train
0.5 85.470.28 75.400.64

0.7 77.546.10 60.197.56

0.5∼0.7 84.830.26 70.182.24

robust. To examine whether our conclusions can generalize to RoBERTa and larger versions of BERT,
we conduct mask training on the standard fine-tuned RoBERTa-base and BERT-large models and use
the PoE debiasing loss in the mask training process.

The results are shown in Tab. 6. We can see that, for RoBERTa-base: (1) At 50% sparsity, the searched
subnetworks outperform the full RoBERTa (std) by 6.84 points on HANS, with a relative small
drop of 1.74 on MNLI, validating that SRNets can be found in RoBERTa. (2) At 70% sparsity, the
vanilla mask training produces subnetworks with undesirable ID performance and OOD performance
comparable to full model (std). In comparison, when we gradually increase the sparsity level from
50% to 70%, the ID and OOD performance are improved simultaneously, demonstrating that gradual
sparsity increase is also effective for RoBERTa.

When it comes to BERT-large, the conclusions are basically the same as BERT-base and RoBERTa-
base: (1) We can find 50% sparse SRNets from BERT-large using the original mask training. (2)
Gradual sparsity increase is also effective for BERT-large. Additionally, we find that the original
mask training exhibits high variance at 70% sparsity because the training fails for some random seeds.
In comparison, with gradual sparsity increase, the searched subnetworks have better performance and
low variance.

D Related Work on Model Compression and Robustness

Some prior attempts have also been made to obtain compact and robust deep neural networks. We
discuss the relationship and difference between these works and our paper from three perspectives:

Robustness Types There are various types of model robustness, including generalization to in-
distribution unseen examples, robustness towards dataset bias [1, 14, 31, 20] and adversarial attacks
[6], etc. Among the researches on model compression and robustness, adversarial robustness
[7, 28, 22, 5, 27] and dataset bias robustness [29, 4] are the most widely studied. In this paper, we
focus on the dataset bias problem, which is more common than the worst-case adversarial attack, in
terms of real-world application.

Compression Methods A major direction in robust model compression is about the design of
compression methods. [21] investigate the effect of magnitude-based pruning on adversarially trained
models. [7, 28] treat sparsity and adversarial robustness as a constrained optimization problem, and
solve it using the alternating direction method of multipliers (ADMM) framework [30]. [22, 29, 13]
combine learnable weight mask (i.e., mask training) and robust training objectives. Our study

7

investigates the use of magnitude-based pruning and mask training, which are also widely employed
in the literature of BERT compression.

Application Fields Despite the topic of model compression and robustness has been proposed for
years, it is mostly studied in the context of computer vision (CV) tasks and models, and few attention
has been paid to the NLP field. Considering the real-world application potential of PLMs, it is critical
to study the questions of PLM compression and robustness jointly. To this end, some recent studies
extend the evaluation of compressed PLMs to consider adversarial robustness [27] and dataset bias
robustness [4].

Although our work shares the same topic with [4], we differ in several aspects. First, the scope
and focus of our research questions are different. They aim at analyzing the impact of different
compression methods (pruning and knowledge distillation [9]) on the OOD robustness of standard
fine-tuned BERT. By contrast, we focus on subnetworks obtained from different pruning and fine-
tuning paradigms and consider both standard fine-tuning and debiasing fine-tuning. Second, our
conclusions are different. The results of [4] suggest that pruning generally has a negative impact on
the robustness of BERT. In comparison, we revel the consistent existence of sparse BERT subnetworks
that are more robust to dataset bias than the full model.

E More Discussions

E.1 How to Predict the Timing to Start Searching SRNets?

A feasible way of solution is to stop full BERT fine-tuning when there is no significant improvement
across several consecutive evaluation steps. The patience of early-stopping can be determined based
on the computational budget. If our resource is limited, we can at least directly training the mask on
θpt, which can still produce SRNets at 50% sparsity (as shown by Section 4.4.2).

E.2 How to Generalize to Other Scenarios?

In this work, we focus on NLU tasks and PLMs from the BERT family. However, the methodology
we utilize is agnostic to the type of bias, task and backbone model. Theoretically, it can be flexibly
adapted to other scenarios by simply change the spurious features to train the bias model (for the
three debiasing methods considered in this paper) or combine the pruning method with another kind
of debiasing method that also involves model training. In the future work, we would like to extend
our exploration to other types of PLMs (e.g., language generation models like GPT [16] and T5 [18])
and other types of NLP tasks (e.g., dialogue generation).

References
[1] S. Beery, G. V. Horn, and P. Perona. Recognition in terra incognita. In ECCV (16), volume

11220 of Lecture Notes in Computer Science, pages 472–489. Springer, 2018.

[2] T. Chen, J. Frankle, S. Chang, S. Liu, Y. Zhang, Z. Wang, and M. Carbin. The lottery ticket
hypothesis for pre-trained BERT networks. In NeurIPS, pages 15834–15846, 2020.

[3] C. Clark, M. Yatskar, and L. Zettlemoyer. Don’t take the easy way out: Ensemble based methods
for avoiding known dataset biases. In EMNLP/IJCNLP, pages 4069–4082. Association for
Computational Linguistics, 2019.

[4] M. Du, S. Mukherjee, Y. Cheng, M. Shokouhi, X. Hu, and A. H. Awadallah. What do
compressed large language models forget? robustness challenges in model compression. CoRR,
abs/2110.08419, 2021.

[5] Y. Fu, Q. Yu, Y. Zhang, S. Wu, X. Ouyang, D. D. Cox, and Y. Lin. Drawing robust scratch
tickets: Subnetworks with inborn robustness are found within randomly initialized networks. In
NeurIPS, pages 13059–13072, 2021.

[6] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. In
ICLR (Poster), 2015.

8

[7] S. Gui, H. Wang, H. Yang, C. Yu, Z. Wang, and J. Liu. Model compression with adversarial
robustness: A unified optimization framework. In NeurIPS, pages 1283–1294, 2019.

[8] D. Hendrycks, X. Liu, E. Wallace, A. Dziedzic, R. Krishnan, and D. Song. Pretrained trans-
formers improve out-of-distribution robustness. In ACL, pages 2744–2751. Association for
Computational Linguistics, 2020.

[9] G. E. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network. CoRR,
abs/1503.02531, 2015.

[10] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and
V. Stoyanov. Roberta: A robustly optimized BERT pretraining approach. CoRR, abs/1907.11692,
2019.

[11] Y. Liu, F. Meng, Z. Lin, P. Fu, Y. Cao, W. Wang, and J. Zhou. Learning to win lottery tickets in
BERT transfer via task-agnostic mask training. CoRR, abs/2204.11218, 2022.

[12] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. In ICLR (Poster). OpenRe-
view.net, 2019.

[13] D. Madaan, J. Shin, and S. J. Hwang. Adversarial neural pruning with latent vulnerability
suppression. In ICML, volume 119 of Proceedings of Machine Learning Research, pages
6575–6585. PMLR, 2020.

[14] T. McCoy, E. Pavlick, and T. Linzen. Right for the wrong reasons: Diagnosing syntactic heuris-
tics in natural language inference. In ACL, pages 3428–3448. Association for Computational
Linguistics, 2019.

[15] T. Mikolov, E. Grave, P. Bojanowski, C. Puhrsch, and A. Joulin. Advances in pre-training
distributed word representations. In LREC. European Language Resources Association (ELRA),
2018.

[16] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever. Improving language understanding
with unsupervised learning. In Technical report, OpenAI, 2018.

[17] E. Radiya-Dixit and X. Wang. How fine can fine-tuning be? learning efficient language models.
In AISTATS, volume 108 of Proceedings of Machine Learning Research, pages 2435–2443.
PMLR, 2020.

[18] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu.
Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn.
Res., 21:140:1–140:67, 2020.

[19] V. Sanh, T. Wolf, and A. M. Rush. Movement pruning: Adaptive sparsity by fine-tuning. In
NeurIPS, pages 20378–20389, 2020.

[20] T. Schuster, D. J. Shah, Y. J. S. Yeo, D. Filizzola, E. Santus, and R. Barzilay. Towards debiasing
fact verification models. In EMNLP/IJCNLP, pages 3417–3423. Association for Computational
Linguistics, 2019.

[21] V. Sehwag, S. Wang, P. Mittal, and S. Jana. Towards compact and robust deep neural networks.
CoRR, abs/1906.06110, 2019.

[22] V. Sehwag, S. Wang, P. Mittal, and S. Jana. HYDRA: pruning adversarially robust neural
networks. In NeurIPS, 2020.

[23] L. Tu, G. Lalwani, S. Gella, and H. He. An empirical study on robustness to spurious correlations
using pre-trained language models. Trans. Assoc. Comput. Linguistics, 8:621–633, 2020.

[24] P. A. Utama, N. S. Moosavi, and I. Gurevych. Mind the trade-off: Debiasing NLU models
without degrading the in-distribution performance. In ACL, pages 8717–8729. Association for
Computational Linguistics, 2020.

[25] P. A. Utama, N. S. Moosavi, and I. Gurevych. Towards debiasing NLU models from unknown
biases. In EMNLP, pages 7597–7610. Association for Computational Linguistics, 2020.

9

[26] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf,
M. Funtowicz, J. Davison, S. Shleifer, P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. L.
Scao, S. Gugger, M. Drame, Q. Lhoest, and A. M. Rush. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pages 38–45, Online, Oct. 2020.

[27] C. Xu, W. Zhou, T. Ge, K. Xu, J. J. McAuley, and F. Wei. Beyond preserved accuracy:
Evaluating loyalty and robustness of BERT compression. In EMNLP (1), pages 10653–10659.
Association for Computational Linguistics, 2021.

[28] S. Ye, X. Lin, K. Xu, S. Liu, H. Cheng, J. Lambrechts, H. Zhang, A. Zhou, K. Ma, and Y. Wang.
Adversarial robustness vs. model compression, or both? In ICCV, pages 111–120. IEEE, 2019.

[29] D. Zhang, K. Ahuja, Y. Xu, Y. Wang, and A. C. Courville. Can subnetwork structure be the
key to out-of-distribution generalization? In ICML, volume 139 of Proceedings of Machine
Learning Research, pages 12356–12367. PMLR, 2021.

[30] T. Zhang, S. Ye, K. Zhang, J. Tang, W. Wen, M. Fardad, and Y. Wang. A systematic DNN
weight pruning framework using alternating direction method of multipliers. In ECCV (8),
volume 11212 of Lecture Notes in Computer Science, pages 191–207. Springer, 2018.

[31] Y. Zhang, J. Baldridge, and L. He. PAWS: paraphrase adversaries from word scrambling. In
NAACL-HLT, pages 1298–1308. Association for Computational Linguistics, 2019.

10

	More Information of Pruning and Debiasing Methods
	Pruning Methods
	Iterative Magnitude Pruning
	Mask Training

	Debiasing Methods

	More Experimental Setups
	Datasets and Evaluations
	Software and Computational Resources
	Training Details
	Bias Model
	Full BERT
	Mask Training and IMP

	More Results and Analysis
	More Debiasing Methods
	Sparse and Unbiased Subnetworks
	The Timing to Start Searching SRNets
	Ablation Studies on Gradual Sparsity Increase
	Results on RoBERTa-base and BERT-large

	Related Work on Model Compression and Robustness
	More Discussions
	How to Predict the Timing to Start Searching SRNets?
	How to Generalize to Other Scenarios?

