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Abstract

Similarity metrics such as representational similarity analysis (RSA) and centered
kernel alignment (CKA) have been used to understand neural networks by compar-
ing their layer-wise representations. However, these metrics are confounded by the
population structure of data items in the input space, leading to inconsistent conclu-
sions about the functional similarity between neural networks, such as spuriously
high similarity of completely random neural networks and inconsistent domain
relations in transfer learning. We introduce a simple and generally applicable
fix to adjust for the confounder with covariate adjustment regression, which im-
proves the ability of CKA and RSA to reveal functional similarity and also retains
the intuitive invariance properties of the original similarity measures. We show
that deconfounding the similarity metrics increases the resolution of detecting
functionally similar neural networks across domains. Moreover, in real-world
applications, deconfounding improves the consistency between CKA and domain
similarity in transfer learning, and increases correlation between CKA and model
out-of-distribution accuracy similarity.

1 Introduction

Deep neural networks (NNs) have achieved state-of-the-art performance on a wide range of machine
learning tasks by automatically learning feature representations from data [1, 2, 3, 4, 5]. However,
these networks do not offer interpretable predictions on most applications and are seen as “black
boxes”. It is thus crucial to understand the intricacies of neural networks before they are deployed
on critical applications. Previous work has made progress in understanding how a single neural
network makes decisions with axiomatic attribution methods [6, 7] and understanding how multiple
neural networks relate to each other with representation similarity measures [8]. Several similarity
measures between representations have been proposed with different principles, including linear
regression [9], canonical correlation analysis (CCA; [10, 11]), statistical shape analysis [12], and
functional behaviors on down-stream tasks [13, 14, 15]. Another main-stream approach is based on
representational similarity analysis (RSA, [8, 16, 17, 18]) and centered kernel alignment (CKA, [19]),
which compute the similarity between (dis)similarity matrices of two neural network representations
on the same dataset.

RSA and CKA have been successfully applied to understand biological [20] and artificial NNs [21] by
studying the similarity of representations of different NNs in a single data domain. However, we find
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Figure 1: Demonstration of the confounder in CKA. CKA calculates the similarity between inter-
example similarities for two representations, which are confounded by the inter-example similarities in
the input space, such that input pairs with high (⋆) and low (⋆) input similarities also have high and
low representation similarities on both random NNs (Left) and trained NNs (Right) representations.
Moreover, the confounder leads to the counterintuitive conclusion that CKA on random NNs is
higher than pretrained and finetuned NNs on similar domains (0.99 vs. 0.95). This is resolved by
deconfounding (0.43 vs. 0.72).

that the inter-example (dis)similarity matrices in the representation space of different NNs are highly
correlated with a shared factor (i.e., a confounder): the (dis)similarity structure of the data items in
the input space, especially for shallow layers. This confounding issue limits the ability of CKA to
reveal similarity of models on the functional level [15], and can result in a spuriously high CKA even
between two random NNs. Moreover, this can lead to counter-intuitive conclusions when using CKA
to compare models trained in multiple domains and/or to deduce functional similarities of NNs, such
as in understanding transfer learning, multitask learning, and meta learning [22, 23, 24, 25, 26].

In this paper, we propose to adjust the representation similarity to improve its consistency w.r.t. the
functional similarity by regressing out the confounder, the inter-example (dis)similarity matrix in
the input space, from the (dis)similarity matrices of two representations, inspired by the covariate
adjusted correlation analysis widely studied in biostatistics [27, 28]. This approach is simple and
widely applicable on any similarity measure built on the CKA and RSA framework. Moreover, we
study the invariance properties of the deconfounded representation similarity and demonstrate its
benefits on public image and natural language datasets with various NN architectures.

Overall, our contributions are:

• We study the confounding effect of the input inter-example similarity on the representation
similarity between two NNs, which limits CKA and RSA from revealing consistent func-
tional similarities. We propose a simple and generally applicable deconfounding fix and
discuss the invariance properties of the deconfounded similarities.

• We verify that deconfounded similarities can detect functionally similar NNs from random
NNs, and small NN changes across domains where previous similarity measures fail.

• We show that deconfounded similarities are more consistent with domain similarities in
transfer learning, on both image and language datasets, compared with existing methods.

• We demonstrate that deconfounded similarities on in-distribution datasets are more corre-
lated with out-of-distribution accuracy than the corresponding original similarities [15].

2 Preliminaries

2.1 Notation and prior work

Let X ∈ Rn×p denote the input dataset with n datapoints and p features, and Xm1

f1
∈ Rn×p1 and

Xm2

f2
∈ Rn×p2 denote the m1th and m2th layer representations of two NNs of interest, f1(X) and

f2(X), with p1 and p2 nodes respectively. We center and normalize the representation matrices by
first removing the mean of each feature (i.e., each column), and then dividing by the Frobenius norm.
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A standard approach for comparing representations of two NNs is to compare the similarity structures
in each network representation. This can be done by first computing the similarity between every pair
of examples in Xm1

f1
and Xm2

f2
with a similarity measure k(·, ·):

Km1

f1
= k(Xm1

f1
, Xm1

f1
), Km2

f2
= k(Xm2

f2
, Xm2

f2
). (1)

Here Km1

f1
,Km2

f2
∈ Rn×n are called representational similarity matrices (RSMs)1. Second, another

similarity measure s(·, ·) is applied to compare these two similarity structures, Km1

f1
and Km2

f2
:

sm1,m2

f1,f2
= s(Km1

f1
,Km2

f2
). (2)

This gives the similarity between the two representations.

The existing approaches vary by using different similarity measures for both levels of comparison.
CKA [19] employs a kernel function for the first level similarity k(·, ·), and a Hilbert-Schmidt
Independence Criterion (HSIC) estimator for the second, s(·, ·). On the other hand, RSA-based
methods use Euclidean distance to measure the inter-example dissimilarity structure, and apply
Pearson’s correlation [8] or Spearman’s rank correlation [18] to quantify the similarity between two
dissimilarity structures. Although other approaches, e.g., linear regression [29] and CCA [10], have
been proposed to compare NN representations, we focus on CKA and RSA in this paper due to their
wide usage in understanding the properties of NNs, such as transfer learning [22, 23, 30].

2.2 Illustration of the confounding in representation similarity

Given a dataset X with an inter-example similarity matrix K0 = k(X,X) in the input space, making
predictions with NNs can be seen as modifying K0 layer-by-layer, such that similarities between data
items with different labels decrease and those with the same label increase. In CKA and RSA, the
similarity between two RSMs, Km1

f1
and Km2

f2
, defines the similarity between two NNs, as shown in

Eq.2. However, both Km1

f1
and Km2

f2
are affected by the same factor (i.e., a confounder): the similarity

structure of input dataset K0, which can cause spuriously high similarity. Intuitively, (dis)similar
data points (green stars and red stars in Figure 1) in the input space are likely to be (dis)similar in the
representation space of the first few layers, regardless of how the NN operates, and the representation
similarity structure of different NNs would be similar even for random NNs that have totally different
functional behaviors. Hence, CKA/RSA naturally depends on the specifics of the dataset, and for
different datasets (e.g., from different domains) with different K0, comparing CKA/RSA across the
datasets may lead to inconsistent comparison results. This is undesirable especially when the goal
of calculating the similarity measures for NNs is to quantify how similar the networks are in the
functional level, which should not be significantly affected by the specifics of the dataset at hand.

We fix this by regressing out the input similarity K0 from Km
f1

and Km
f2

, i.e., deconfounding. After
deconfounding, any similarity in the NN latent space between two data items would be induced by
the NN and not because they were similar in the first place. This way, the deconfounded metric
focuses more on comparing the functional form of the NNs and is less affected by the structure of the
given dataset in the input space.

Figure 1 illustrates the spurious similarity using the CKA similarity measure as an example, and
compares that with the deconfounded dCKA (defined in the next section) on the first-layer of ResNets
[31] with 20 random samples from CIFAR-10 [32] test set. We consider two pairs of ResNets: 1.
two random ResNets generated by adding different Gaussian noise, N (0, 1), to each parameter of
the pretrained ResNet-182 on ImageNet [33]; 2. the pretrained (PT) ResNet-18 and a finetuned (FT)
ResNet-18 on CIFAR-10. We notice that CKA on random NNs is almost 1, and counterintuitively
it is even higher than the CKA between PT and FT ResNets on a similar domain (0.99 vs. 0.95),
although we would expect the PT and FT networks to learn similar low-level features and hence be
more similar than random networks. This happens because the similarities between samples in the
input space confound their similarities in the representation space. After adjusting for the confounder
with dCKA, the similarity between the two random ResNets is much smaller than the similarity of
the PT and FT networks (0.43 vs. 0.72). A more detailed study is provided in Section 4.1.

1Note that k(·, ·) can also be dissimilarity measure, but we call Km
f a similarity matrix for simplicity.

2https://pytorch.org/vision/stable/models.html
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3 Methods

In this section, we first propose a general fix on the NNs similarities (defined in Eq.1-2) by regressing
out the confounder, i.e., the input similarity, in Section 3.1, and we give two examples of deconfounded
similarities: deconfounded CKA and deconfounded RSA in Section 3.2. We then study the invariance
properties of deconfounded similarities in Section 3.3.

3.1 Deconfounding representation similarity

We propose a simple approach to adjust the spurious similarity caused by the confounder by regressing
out the input similarity structure from the representation similarity structure [34]. That is:

dKm1

f1
= Km1

f1
− α̂m1

f1
K0, dKm2

f2
= Km2

f2
− α̂m2

f2
K0, (3)

where K0 is the input similarity structure, and α̂m1

f1
and α̂m2

f2
are the regression coefficients that

minimize the Frobenius norm of dKm1

f1
and dKm2

f2
respectively. Furthermore, the letter d in front of

a similarity matrix, e.g. as in dKm1

f1
, denotes the deconfounded version of Km1

f1
, and similarly the

letter d is applied throughout the text to denote all defounded quantities. To do the deconfounding,
we assume that the input similarity structure K0 has a linear and additive effect on Km

f , i.e.,

vec(Km
f ) = αm

f vec(K0) + ϵmf , (4)

where vec(·) flattens a matrix to a vector. Noise ϵmf is assumed to be independent from the confounder
with ϵ̂mf = vec(dKm

f ), and

α̂m
f = (vec(K0)T vec(K0))−1vec(K0)T vec(Km

f ). (5)

In Appendix A, we further verify that the linearity assumption in Eq.4 holds in general, i.e., adding
additional nonlinear terms of vec(K0) to Eq.4 does not improve the fit, and the noise term ϵmf is not
auto-correlated (solution Eq.5 is not misspecified) under the the Durbin-Watson test [35].

After the deconfounded similarity structures are obtained with Eq.3, we use the same similarity
measure to calculate the deconfounded representation similarity:

dsm1,m2

f1,f2
= s(dKm1

f1
, dKm2

f2
). (6)

Note that dKm
f is not always positive semi-definite, even when Km

f is positive semi-definite (PSD).
PSD is important for a similarity measure s(·, ·) that takes two kernel matrices as input, such as
the CKA. We transform dKm

f into a positive semi-definite matrix by removing all the negative
eigenvalues according to [36]. Specifically, we have the eigenvalue decomposition of dKm

f , such that

dKm
f = QΛQT = Q(Λ+ − Λ−)Q

T , Λ± = diag{max(0,±λ1), . . . ,max(0,±λn)}, (7)

where λi is the ith eigenvalue of dKm
f . We approximate dKm

f with a PSD matrix ˜dKm
f :

dKm
f ≈ ˜dKm

f = ρ2QΛ+Q
T ; ρ = |tr(Λ)/tr(Λ+)|. (8)

3.2 Examples of deconfounded similarity indices

Deconfounded CKA. In CKA [19], the similarity structure in the feature space is represented with a
valid kernel l(·, ·), i.e., Km1

f1
= l(Xm1

f1
, Xm1

f1
) and Km2

f2
= l(Xm2

f2
, Xm2

f2
), such as the linear or RBF

kernel. Then an empirical estimator of HSIC [37] is used to align two kernels:

HSICm1,m2

f1,f2
=

1

(n− 1)2
tr(Km1

f1
HKm2

f2
H), (9)

where H is the centering matrix. CKA is given by the normalized HSIC such that

CKA(Km1

f1
,Km2

f2
) = HSICm1,m2

f1,f2

/√
HSICm1,m1

f1,f1
HSICm2,m2

f2,f2
. (10)
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To deconfound the representation similarity matrices Km1

f1
and Km2

f2
, we apply the same kernel to

measure the inter-example similarity in the input space K0 = l(X,X), and adjust its confounding
effect with Eq.3. However, matrices dKm1

f1
and dKm2

f2
, obtained by regressing out one kernel

matrix from another kernel, are no longer kernels, and they are not applicable for computing HSIC.
Fortunately, with Eq.8, we can approximate the dKm1

f1
and dKm2

f2
with two valid kernels ˜dKm1

f1
and

˜dKm2

f2
, which are then used to construct the deconfounded CKA (dCKA):

dCKA(Km1

f1
,Km2

f2
) = CKA( ˜dKm1

f1
, ˜dKm2

f2
). (11)

We use linear kernels here because Kornblith et al. [19] report similar results with RBF kernels.

Deconfounded RSA. Different from CKA, the similarity structure in RSA [8] is measured by the
pairwise Euclidean distance between examples in the feature space. Specifically, each element of
Km1

f1
and Km2

f2
is obtained by Km1

f1,ij
= ∥xm1

f1,i
− xm1

f1,j
∥2 and Km2

f2,ij
= ∥xm2

f2,i
− xm2

f2,j
∥2, where

xm1

f1,i
is the m1-layer representation of the ith example in NN f1. Thus, the input similarity structure

K0 is measured with the pairwise Euclidean distance in the input space. After K0 is adjusted with
Eq.3, we apply Spearman’s ρ correlation to measure the similarity between the upper triangular part
of dKm1

f1
and dKm2

f2
, i.e., triu(dKm1

f1
) and triu(dKm2

f2
), that is

dRSA(Km1

f1
,Km2

f2
) = ρ(triu(dKm1

f1
), triu(dKm2

f2
)). (12)

Note that rank correlation does not require two similarity matrices to be positive semi-definite.
Therefore, we skip the steps of constructing the PSD approximation.

Additional computational complexity. The computational cost of the deconfounding (Eq.3) and
PSD approximation (Eq.8) steps are O(n2) and O(n3) respectively. Therefore, dCKA has the same
complexity as CKA: O(n3). For RSA, only the deconfounding step with O(n2) complexity is needed.
In experiments, computing dCKA between two XLM-RoBERTa models [38] takes 0.37 ± 0.11s
longer than CKA for each layer on 3000 random English sentences with a single 2080Ti GPU.

3.3 Theoretical properties

In this section, we study the invariance properties of the deconfounded representation similarity. For
similarity measures that we studied, i.e., CKA and RSA, the corresponding deconfounded similarity
indices have the same invariance properties, such as invariance to orthogonal transformation and
isotropic scaling, as the original similarity measures.
Proposition 3.1. Deconfounded CKA and deconfounded RSA are invariant to orthogonal transfor-
mation, if the (dis)similarity measure k(·, ·) that compare inter-examples are orthogonal invariant.
Proposition 3.2. Deconfounded CKA with a linear kernel and deconfounded RSA are invariant to
isotropic scaling.

Intuitively, as long as k(·, ·) is invariant to orthogonal transformation, e.g., linear kernels and Eu-
clidean distance, the deconfounded representation similarity matrix dKm

f in Eq.3 is also invariant
to orthogonal transformation, because it is defined in terms of the kernel k. Thus all operations on
dKm

f are invariant to orthogonal transformation. Moreover, if one representation is scaled by a scalar,
dKm

f and ˜dKm
f will be scaled by the same scalar, whose effects will be finally eliminated in the

normalization step in CKA (Eq.10) and the rank correlation step in RSA (Eq.12). We give proofs in
Appendix B. A good functional similarity metric should be independent of the inter-example similar-
ity in the input space (because that is dataset specific), but dependent on inter-example similarity in
the representation space (because that is affected by the functional form of the NN). Above invariance
properties ensure that the deconfounding does not sacrifice the desirable properties of CKA and RSA
regarding inter-example similarities in the representation space, which are essential to understanding
NNs in many cases [19].

4 Experiments

In this section, we design experiments to verify that deconfounding can improve the consistency
of CKA and RSA with the functional similarity of NNs from various perspectives. Specifically,
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Figure 2: Left: Proportion of ImageNet-CIFAR ResNets pairs identified from random ResNets
for each block. The proportions for the last four blocks are omitted as they are 0 for all metrics.
The average proportions across layers are shown next to the method’s name in the legend. We
observe that deconfounding improves the identification of functionally similar NNs from random
NNs. Right: Histograms of similarities in the first block. Compared with CKA and RSA, dCKA
and dRSA increase separation of ImageNet-CIFAR pairs from the random network pairs, even when
the proportion of identified network pairs with CKA and dCKA is the same.

we compare NNs layer-by-layer and then average the evaluation metrics about the consistency of
layer-wise similarities to compare different similarity metrics [15]. First, in Section 4.1, we check
if these representation similarity measures can separate functionally similar NN pairs from random
NN pairs. In Section 4.2 we study how consistent the similarity measures are with small changes of
NNs across different domains. We then extend a recent framework [15], which uses rank correlation
to compare the representation similarity and the functional similarity of NNs, to transfer learning
on multi-domain image and natural language datasets (Section 4.3), and to conduct challenging
out-of-distribution generalization tests [15] (Section 4.4).

4.1 Ability of detecting functionally similar NN pairs from random NN pairs

Setup: We check if similarity measures can identify functionally similar NN representations from
random NN representations. For each model block of ResNets (containing 2-3 convolutional layers),
we generate two distributions of similarities: the null distribution H0 and the alternative distribution
H1. The H0 contains similarities between 50 pairs of random ResNets on CIFAR-10 test set. We
generate random NNs by randomly initializing the weight of an untrained ResNet-18 from N (0, 10)
with different random seeds. We also consider permuting the weight matrix of the pretrained ResNet-
18 to generate random NNs, which preserves parameter distributions, in Appendix D.1. Distribution
H1 contains similarities between the pretrained ImageNet NN and each of the 50 ResNets trained on
CIFAR-10 from scratch with different random initializations, on the same CIFAR-10 test as H0.

Results: We expect the similarities in H1 to be significantly larger than those in H0. Intuitively,
models trained on ImageNet and CIFAR-10 are functionally similar in shallow blocks because
their domains are similar; hence similar low-level features are expected [39], while sufficiently
randomized untrained NNs are functionally different. We compute the proportion (shown in Figure 2
Left) of 50 ImageNet-CIFAR NN pairs in H1 whose similarity is significantly larger than H0, i.e.,
larger than the upper bound of its 95% CI. In Figure 2 Left, we observe that in shallow blocks the
deconfounded similarity can detect a larger proportion of ImageNet-CIFAR pairs from random NN
pairs than the original measures. For example, in the third and fourth block, dCKA can still detect
all functionally similar pairs whereas the original CKA fails to detect any from random pairs. By
averaging proportions of all blocks, deconfounding increases CKA from 0.24 to 0.5 and RSA from
0.02 to 0.25. In Figure 2 Right, we visualize the alternative distribution H1 and the null distributions
H0 of each similarity measure as histograms in the first block. We observe that although CKA and
dCKA can identify the same proportion of ImageNet-CIFAR pairs in block 1, the difference between
H1 and H0 is more significant with the deconfounded similarities. Moreover, in deep layers, e.g.,
after block 4, no method can identify ImageNet-CIFAR pairs. We hypothesise that ImageNet and
CIFAR-10 contain different classes of images, thus their high-level representations are significantly
different. We discuss this more in Appendix D.

4.2 Consistency of NN functional similarities across domains

Setup: Ideally, a functional similarity between NNs would not depend on the domain in which the
networks are applied. Here, we study this by constructing a set of 6 NNs, {fi|i ∈ {1, 2, 3, 4, 5, 6}},
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Figure 3: (A): Proportion of identified similar NNs across 19 domains summarized for different
noise levels (Left) and different NN blocks (Right). We observe that the deconfounded similarity can
identify more similar models compared with the corresponding original similarity. (B): histograms
and kernel density estimations (KDE) of CKA and dCKA across 19 domains on the first-block
representations. We observe that dCKA can separate s(f2, f∗) from s(f3, f

∗) better than CKA with
relative histogram overlap 13.5% and 28.9% respectively.

by adding independent Gaussian noise i×N (0, 0.1) to each parameter of the pretrained ResNet-18
on ImageNet, f∗. Hence, the similarity s(fi, f

∗) should be higher than s(fi+1, f
∗) regardless of the

input domain in which the the networks are applied to calculate representations. Thus, we calculate
the similarity s(fi, f

∗) for every fi on each domain of the corrupted CIFAR-10-C dataset [40] that
contains 19 domains with different types of corruptions to the original CIFAR-10. We compute the
average similarity µfi,f∗ across the 19 domains and its standard error σfi,f∗ . We say fi is significantly
more similar to f∗ than to fi+1 across domains, if

µfi,f∗ − 1.96σfi,f∗ > µfi+1,f∗ + 1.96σfi+1,f∗ . (13)

We repeat the above experiments 20 times with different random seeds, i.e., generate 20 different sets
of NNs, to measure the proportion of cases where fi is significantly more similar to f∗ than fi+1 for
each block, as well as the confidence interval of the proportion.

Results: In Figure 3(A) Left, we show the proportion of identified NNs averaged over all blocks
for each noise level. We observe that the deconfounded similarity improves the proportion of
identified NNs compared with the corresponding original similarity for all noise levels. The averaged
proportion increases 59.7% for CKA (from 0.18 to 0.29) and 43.1% for RSA (from 0.16 to 0.23)
after deconfounding. We also observe that deconfounding can improve CKA/RSA on different inputs
from the same domain, but the improvement is relatively smaller (23% for CKA, from 0.65 to 0.8,
and 7% for RSA, from 0.75 to 0.8), shown in Appendix E. Moreover, the proportion decreases as
the noise level increases for all similarity measures, because for large noise level (large i), both fi+1

and fi are far from f∗. In Figure 3(A) Right, we show the the proportion of consistently identified
similarities for each block where the results are averaged over different noise levels. In general, we
expect to identify fewer similar NNs with deeper layer representations, because the Gaussian noise
is added to each parameter and deeper representations consequently accumulate more noise than
shallow layers. We visualize the histogram of CKA and dCKA between f2 and f∗ and between f3
and f∗ on the first-block representations of inputs from 19 domains in Figure 3(B), where we can
clearly observe that f2 and f3 are more separable in terms of dCKA than CKA. Moreover, the relative
overlap areas between two histograms are 13.5% and 28.9% for dCKA and CKA respectively.

4.3 Transfer learning: domain similarity vs. the similarity of pretrained and finetuned NNs

Motivation: Ding et al. [15] argued that the similarity metric must be sensitive to changes that
affect the functionality of the networks we compare, and we extend this to transfer learning under
domain shift. Consider two models with the same initialization from a pretrained (PT) model
which are finetuned (FT) on data from different domains. We then expect the similarity of the layer
representations between the finetuned and pretrained models to be different for each target domain,
and ideally it should be correlated with the similarity between the source and target domains.

Setup: To study this in detail for dCKA and CKA, we choose datasets from two modalities – image
and text – that display such domain shift. For text, we use the Multi-lingual STS-B dataset [41] and
choose English, Spanish, Polish, and Russian languages as the target domains. For images, we use
the Real, Clipart, Sketch, and Quickdraw as target domains from the DomainNet dataset [42].

First, we finetune separate models for each domain from both modalities. For text, we initialize a PT
XLM-RoBERTa model trained on 100 languages where the largest size of data is in English [38] and
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Table 1: Rank correlation with standard error (in parentheses) between the domain similarity
and the CKA between pretrained and finetuned models. We see that compared to CKA, the dCKA
has higher correlation with domain similarity in terms of Spearman’s ρ and Kendall’s τ .

Modality CKA dCKA

ρ τ ρ τ

DomainNet 0.675 (0.020) 0.626 (0.018) 0.751 (0.020) 0.718 (0.018)

Multi STS-B -0.231 (0.018) -0.185 (0.016) 0.717 (0.014) 0.641 (0.013)

Figure 4: dCKA adjusts for transfer learning under domain shift. Left shows the ground truth
domain similarity (between English and other languages) as measured by test binary cross entropy
(BCE) loss of the cross-domain classifier. We plot the CKA (Center) and dCKA (Right) between the
pretrained XLM-RoBERTa model and models finetuned for different languages on the STS-B task.
The average similarities across layers are shown next to the languages in the legend. We observe that
dCKA is better correlated with the domain similarity than CKA.

for images, we pretrain a ResNet-50 model on ImageNet [33]. We compute the layer-wise CKA and
dCKA between each FT model and the corresponding PT model on the test set of the target domain
[22]. We repeat the above procedure 10 times to construct error bars. Then, we quantify the similarity
between two domains according to [43]. Specifically, we build a cross-domain classifier and create a
dataset using an equal number of samples from each domain. Next, we train a weak discriminator to
predict the appropriate true domain for each sample. For the discriminator, we use EfficientNet-B0
[44] for images and Distil-RoBERTa [45] for text. The discriminator is essentially a binary classifier
and thus the test binary cross entropy (BCE) loss would be an indicator of the similarity between the
two domains (higher meaning more similar). Finally, we measure the Spearman’s ρ and Kendall’s τ
correlation [15] between the domain similarity (measured by the BCE loss of cross-domain classifier)
and the layer-wise CKA and dCKA between PT and FT models of each domain. We average the rank
correlations over all layers.

Results: Table 1 summarizes the averaged rank correlations of CKA and dCKA for each modality.
We can see that the dCKA is more correlated with the domain similarity as compared to CKA on both
modalities. Figure 4 Left shows the results for the test BCE loss when the cross-domain classifier was
trained to discriminate between the domains on STS-B: English-English, English-Spanish, English-
Polish, and English-Russian, and we see that the similarity of two English domains is higher than the
similarity of English and Russian domains, as expected. The layer-wise CKA and dCKA between the
pretrained and finetuned XLM-RoBERTa model is shown Figure 4 (Center and Right), respectively.
The models finetuned on highly dissimilar domains (e.g., English-Russian) are expected to have lower
layer-wise similarity with the pretrained model. However, the CKA gives counter-intuitively high
similarities between PT and FT for English-Russian, and negative rank correlations in Table 1. This
is not because FT is close to PT, but because the Russian FT dataset is used to calculate the CKA,
which causes the representations of PT and FT to be similar on that dataset. As expected, dCKA
(Figure 4 Right) captures the domain similarity precisely by removing the input structure. We provide
results on DomainNet in Appendix F.

4.4 Model generalization: in-distribution similarity vs. out-of-distribution accuracy

Setup: Here we use a challenge task used in previous work [15], which evaluates the sensitiveness of
similarities to changes that affect the NNs generalizations on out-of-distribution (OOD) data, and
we would expect similar NNs to have similar OOD accuracy. We follow the same setup as [15]: 1.
We train 50 ResNet-18, fi, with different random initialization on CIFAR-10; 2. Evaluate the OOD
accuracy of each model on CIFAR-10-C [40], acc(fi), and select the most accurate ResNet as the
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Table 2: Rank correlation with standard error (in parentheses) between CKA and the prediction
accuracy similarity of models. We observe that dCKA improves correlations significantly on
average, in terms of Spearman’s ρ and Kendall’s τ , with prediction accuracy on OOD test sets.

Corruption level CKA dCKA
ρ τ ρ τ

1 0.147 (0.004) 0.103 (0.003) 0.151 (0.004) 0.105 (0.003)
2 0.150 (0.004) 0.106 (0.003) 0.157 (0.004) 0.110 (0.003)
3 0.132 (0.004) 0.094 (0.002) 0.140 (0.003) 0.099 (0.003)
4 0.130 (0.003) 0.091 (0.002) 0.138 (0.003) 0.096 (0.003)
5 0.135 (0.003) 0.094 (0.002) 0.140 (0.004) 0.098 (0.003)

Average 0.139 (0.002) 0.098 (0.001) 0.145 (0.002) 0.102 (0.001)
ID accuracy 0.163 (0.020) 0.116 (0.014) 0.167 (0.020) 0.118 (0.014)

Corruption types0.00

0.05

0.10

0.15

Percentage improvement: 

Corruption types0.00

0.05

0.10

0.15

Percentage improvement: 
contrast
zoom blur
other corruptions

(A)

CIFAR
MD=658.7

Contrast
MD=34.7

Zoom blur
MD=513.7

(B)

Figure 5: dCKA improves CKA on each corruption type. (A): percentage improvement of dCKA
over CKA and corresponding standard error on each type of corruptions. (B): visualization of
corruptions with largest improvement (‘contrast’, red) and smallest improvement (‘zoom blur’, green).
We observe that ‘contrast’ is more different from the uncorrupted dataset compared with ‘zoom blur’,
in terms of mean pair-wise distance (MD) of images.

reference model, f∗; 3. Compute the similarity between each fi and f∗, s(fi, f∗), of each block on
CIFAR-10 test set (in-distribution similarity), and compute the accuracy difference on CIFAR-10-C
test set |acc(fi)− acc(f∗)| (OOD accuracy similarity); 4. Measure the Kendall’s τ and Spearman’s ρ
between 1− s(fi, f

∗) and |acc(fi)− acc(f∗)| for each block. A good similarity should have a high
rank correlation, meaning that the similarity in the input space correlates with OOD accuracy.

Results: CIFAR-10-C dataset contains 19 different corruptions and 5 levels for each corruption. We
average rank correlations over all blocks of ResNet-18 as [15] because the ranking between similarity
measures were shown to be consistent across different layers/blocks. We report the averaged rank
correlation over all types of corruptions in Table 2. We observe that dCKA is more correlated
with OOD accuracy on all 5 levels of corruption, especially on levels 3-5, compared with CKA.
Moreover, we also notice marginal improvements of dCKA in terms of in distribution accuracy (ID
accuracy). Figure 5(A) shows the improvement of dCKA vs. CKA for each corruption averaged
over 5 corruption levels, and we see that deconfounded CKA improves the most in the ‘contrast’
corruption (15%) and the least in the ‘zoom blur’ corruption (1%). We visualize examples of original
in-distribution images together with the above two corruptions in Figure 5(B), and we observe that
‘contrast’ is very different from the in-distribution ‘CIFAR’ images whereas ‘zoom blur’ is more
similar to the original images visually. Moreover, we compute the mean pairwise Euclidean distances
(MD) between images for each type. We find the MD of the original CIFAR test set (MD= 658.7)
is close to the ‘zoom blur’ (MD=513.7), and very far from the ‘contrast’ corruption (MD= 34.7).
Hence, the benefit of dCKA vs. CKA appear greatest when the OOD domain is least similar to the
original domain, which aligns with the expectation that dCKA is less domain specific due to the
correction for the input domain population structure.

5 Discussion

We investigated the confounding effect of the input similarity structure on commonly used similarity
measures between NNs representations. The confounder can lead to a high similarity even for
completely random NNs and counter-intuitive conclusions when NNs trained in multiple domains are
considered. We proposed a simple deconfounding algorithm by regressing out the input similarity
from the representation similarity. The deconfounded similarity measures studied in this paper retain
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the invariance properties of the original measures. Moreover, deconfounding significantly improves
the consistency of similarities w.r.t. functional similarities of NNs, which is especially beneficial in
understanding NNs when multiple domains are involved, such as studying the closeness between the
finetuned and pretrained models in transfer learning (Figure 4). Although the deconfounded similarity
does not improve models’ performance directly, some insights can potentially inspire the future
development of better machine learning models. For instance, in (low-resource) transfer learning,
we could encourage the dCKA between the finetuned and pretrained models to be correlated with
the known domain similarity during training, as we observed a high correlation between domain
similarity and PT-FT similarity in Section 4.3.

We further clarify that the original CKA can provide a meaningful representation similarity in
applications with a single domain, such as in understanding NN trained with different initializations
[19] or with different architectures [21] on the same dataset, and in these cases dCKA is expected to
yield similar conclusions with CKA (Appendix G). Moreover, in specific neuroscience applications
[46], the input similarity structure can be a feature that should not be removed, and dCKA is
not expected to be effective. However, in applications involving multiple domains, such as transfer
learning, we showed that deconfounding yields more intuitive results, and we expect other applications
with multiple domains or data sets, such as meta learning, to benefit from the insights in this paper.

There are still a few limitations and open questions. We assumed that the confounder is linearly
separable from the representation similarity in Eq.4, and showed that adding higher-order polynomial
terms cannot improve the model evidence in Appendix A. However, it is still possible that the input
similarity structure is not entirely additively separable from representation similarity structures,
especially for deeper layers, and this may explain the fact that deconfounding similarities are
more beneficial for shallow layers (e.g., Figure 2 Left and Figure 3). One possible solution is
regressing out the similarity structure in the previous layer instead of the input layer, which improves
detecting similar networks from random networks for deep blocks (Appendix D.2). However, this
discards information from all previous layers and eventually loses the ability of representing the
similarity between functional behaviors. We consider this as an open question to motivate progress
on developing more functionally consistent similarity measures.
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