A Proof of Proposition 3.1

Proof. Let consider the subgraph $\mathcal{G}^{(i)}$ containing all the nodes that have been assigned to V_{1} or V_{2} at the end of iteration i of Algorithm 2. Let us denote $m^{(i)}$ the number of edges in the graph $\mathcal{G}^{(i)}$.
At the first iteration, the algorithm chooses the node 1 , computes $n_{1}=0$ and $n_{2}=0$, and then assigns node 1 to V_{1}. With only one node in $\mathcal{G}^{(1)}$, we have $m^{(1)}=0$. By denoting $c^{(i)}$ the number of additional cut edges induces by the assignment of node i at iteration i, we have

$$
\begin{equation*}
\sum_{i=1}^{1} c^{(i)}=c^{(1)}=0 \geq \frac{m^{(1)}}{2} \tag{5}
\end{equation*}
$$

Indeed, at the end of iteration 1 , there is only one node assigned, hence the number of cut edges induced by this assignment is $c^{(1)}=0$.

Suppose that $\sum_{i=1}^{p} c^{(i)} \geq \frac{m^{(p)}}{2}$ for a certain $p \in\{1, \ldots, n-1\}$, let us prove that $\sum_{i=1}^{p+1} c^{(i)} \geq$ $m^{(p+1)} / 2$.

Indeed, at the iteration $p+1$, the algorithm chooses the node $(p+1)$ and computes n_{1} and n_{2}. Since n_{1} represents the number of neighbors of the node $(p+1)$ in V_{1}, if the node $p+1$ is added to V_{2}, then $2 \times n_{1}$ edges would be cut (the factor 2 comes from the fact that between two nodes i and j, there are the edges (i, j) and $(j, i))$. Similarly, since n_{2} represents the number of neighbors of the node $(p+1)$ in V_{2}, if the node $(p+1)$ is added to V_{1}, then $2 \times n_{2}$ edges would be cut. Notice also that there is a total of $2 \times n_{1}+2 \times n_{2}$ edges between the node $(p+1)$ and the nodes in $\mathcal{G}^{(p)}$. In the algorithm, the node $(p+1)$ is added to V_{1} or V_{2} such that we cut the most edges, indeed one has

$$
c^{(p+1)}=\max \left(2 n_{1}, 2 n_{2}\right) \geq \frac{2 n_{1}+2 n_{2}}{2}=n_{1}+n_{2}
$$

Hence,

$$
\begin{equation*}
\sum_{i=1}^{p+1} c^{(i)}=\sum_{i=1}^{p} c^{(i)}+c^{(p+1)} \geq \frac{m^{(p)}}{2}+c^{(p+1)} \geq \frac{m^{(p)}}{2}+n_{1}+n_{2} \tag{6}
\end{equation*}
$$

The number of edges that is added to the subgraph $\mathcal{G}^{(p)}$ when adding the node $(p+1)$ is equal to $2 n_{1}+2 n_{2}=m^{(p+1)}-m^{(p)}$, hence,

$$
\begin{equation*}
\frac{m^{(p)}}{2}+n_{1}+n_{2}=\frac{m^{(p)}}{2}+\frac{m^{(p+1)}-m^{(p)}}{2}=\frac{m^{(p+1)}}{2} \tag{7}
\end{equation*}
$$

We have shown that $\sum_{i=1}^{1} c^{(i)} \geq \frac{m^{(1)}}{2}$ and that if $\sum_{i=1}^{p} c^{(i)} \geq \frac{m^{(p)}}{2}$ for a certain $p \in\{1, \ldots, n-1\}$, then $\sum_{i=1}^{p+1} c^{(i)} \geq \frac{m^{(p+1)}}{2}$. Thus, $\sum_{i=1}^{p} c^{(i)} \geq \frac{m^{(p)}}{2}$ for any $p \in\{1, \ldots, n\}$, especially for $p=n$ where $\mathcal{G}^{(n)}=\mathcal{G}$. By definition $\sum_{i=1}^{n} c^{(i)}$ is the total number of edges that are cut which also means that

$$
\left.\sum_{i=1}^{n} c^{(i)}=\operatorname{Card}\left\{(i, j) \in E \mid\left(i \in V_{1} \wedge j \in V_{2}\right) \vee\left(i \in V_{2} \wedge j \in V_{1}\right)\right\}\right)
$$

B Proof of Theorem 3.2 and Theorem 4.1

To properly derive the regret bounds, we will have to make connections between our setting and a standard linear bandit that chooses sequentially $T m$ arms. For that matter, let us consider an arbitrary
order on the set of edges E and denote $E[i]$ the i-th edge according to this order with $i \in\{1, \ldots, m\}$. We define for all $t \in\{1, \ldots, T\}$ and $p \in\{1, \ldots, m\}$ the OLS estimator

$$
\hat{\theta}_{t, p}=\mathbf{A}_{t, p}^{-1} b_{t, p}
$$

where

$$
\mathbf{A}_{t, p}=\lambda \mathbf{I}_{d^{2}}+\sum_{s=1}^{t-1} \sum_{b=1}^{m} z_{s}^{E[b]} z_{s}^{E[b] \top}+\sum_{k=1}^{p} z_{t}^{E[k]} z_{t}^{E[k] \top}
$$

with λ a regularization parameter and

$$
\begin{equation*}
b_{t, p}=\sum_{s=1}^{t-1} \sum_{b=1}^{m} z_{s}^{E[b]} y_{s}^{E[b]}+\sum_{k=1}^{p} z_{t}^{E[k]} y_{t}^{E[k]} \tag{8}
\end{equation*}
$$

We define also the confidence set

$$
\begin{equation*}
C_{t, p}(\delta)=\left\{\theta:\left\|\theta-\hat{\theta}_{t, p}\right\|_{A_{t, p}^{-1}} \leq \sigma \sqrt{d^{2} \log \left(\frac{1+t m L^{2} / \lambda}{\delta}\right)}+\sqrt{\lambda} S\right\} \tag{9}
\end{equation*}
$$

where with probability $1-\delta$, we have that $\theta_{\star} \in C_{t, p}(\delta)$ for all $t \in\{1, \ldots, T\}, p \in\{1, \ldots, m\}$ and $\delta \in(0,1]$.
Notice that the confidence set $C_{t}(\delta)$ defined in Section 3 is exactly the confidence set $C_{t, m}(\delta)$ defined here. The definitions of the matrix $A_{t, m}$ and the vector $b_{t, m}$ follow the same reasoning.

B. 1 Proof of Theorem 3.2

Proof. Recall that $\left(x_{\star}^{(1)}, \ldots, x_{\star}^{(n)}\right)=\arg \max _{\left(x^{(1)}, \ldots, x^{(n)}\right)} \sum_{(i, j) \in E} x^{(i) \top} \mathbf{M}_{\star} x^{(j)}$ is the optimal joint arm, and we define for each edge $(i, j) \in E$ the optimal edge $\operatorname{arm} z_{\star}^{(i, j)}=\operatorname{vec}\left(x_{\star}^{(i)} x_{\star}^{(j) \top}\right)$.

We recall that the α-pseudo-regret is

$$
\begin{align*}
R_{\alpha}(T) & \triangleq \sum_{t=1}^{T} \sum_{(i, j) \in E} \alpha\left\langle z_{\star}^{(i, j)}, \theta_{\star}\right\rangle-\left\langle z_{t}^{(i, j)}, \theta_{\star}\right\rangle \tag{10}\\
& =R(T)-\sum_{t=1}^{T} \sum_{(i, j) \in E}(1-\alpha)\left\langle z_{\star}^{(i, j)}, \theta_{\star}\right\rangle \tag{11}
\end{align*}
$$

where the pseudo-regret $R(T)$ is defined by

$$
R(T)=\sum_{t=1}^{T} \sum_{(i, j) \in E}\left\langle z_{\star}^{(i, j)}, \theta_{\star}\right\rangle-\left\langle z_{t}^{(i, j)}, \theta_{\star}\right\rangle
$$

Let us borrow the notion of Critical Covariance Inequality introduced in [Chan et al., 2021], that is for a given round $t \in\{1, \ldots, T\}$ and $p \in\{1, \ldots, m\}$, the expected covariance matrix $\mathbf{A}_{t, p}$ satisfies the critical covariance inequality if

$$
\begin{equation*}
\mathbf{A}_{t-1, m} \preccurlyeq \mathbf{A}_{t, p} \preccurlyeq 2 \mathbf{A}_{t-1, m} . \tag{12}
\end{equation*}
$$

Let us now define the event D_{t} as the event where at a given round t, for all $p \in\{1, \ldots, m\}, \mathbf{A}_{t, p}$ satisfies the critical covariance inequality (CCI).
We can write the pseudo-regret as follows:

$$
\begin{aligned}
R(T) & =\sum_{t=1}^{T} \mathbb{1}\left[D_{t}\right] \sum_{(i, j) \in E}\left\langle z_{\star}^{(i, j)}, \theta_{\star}\right\rangle-\left\langle z_{t}^{(i, j)}, \theta_{\star}\right\rangle \\
& \leq{\mathbb{1}\left[D_{t}^{c}\right] \sum_{(i, j) \in E}\left\langle z_{\star}^{(i, j)}, \theta_{\star}\right\rangle-\left\langle z_{t}^{(i, j)}, \theta_{\star}\right\rangle}_{\sum_{t=1}^{T} \mathbb{1}\left[D_{t}\right] \sum_{(i, j) \in E}\left\langle z_{\star}^{(i, j)}, \theta_{\star}\right\rangle-\left\langle z_{t}^{(i, j)}, \theta_{\star}\right\rangle}+\underbrace{\operatorname{LSm} \sum_{t=1}^{T} \mathbb{1}\left[D_{t}^{c}\right]}_{(a)} .
\end{aligned}
$$

We know that the approximation Max-CUT algorithm returns two subsets of nodes V_{1} and V_{2} such that there are at least $m / 2$ edges between V_{1} and V_{2}, and to be more precise: at least $m / 4$ edges from V_{1} to V_{2} and at least $m / 4$ edges from V_{2} to V_{1}. Hence at each time t, if all the nodes of V_{1} pull the node-arm x_{t} and all the nodes of V_{2} pull the node-arm x_{t}^{\prime}, we can derive the term (a) as follows:

$$
\begin{aligned}
&(a)= \sum_{t=1}^{T} \mathbb{1}\left[D_{t}\right] \sum_{(i, j) \in E}\left\langle z_{\star}^{(i, j)}, \theta_{\star}\right\rangle-\left\langle z_{t}^{(i, j)}, \theta_{\star}\right\rangle \\
&=\sum_{t=1}^{T} \mathbb{1}\left[D_{t}\right] \sum_{(i, j) \in E}\left\langle z_{\star}^{(i, j)}, \theta_{\star}\right\rangle-\mathbb{1}\left[i \in V_{1} \wedge j \in V_{2}\right]\left\langle z_{t}^{(i, j)}, \theta_{\star}\right\rangle \\
&-\mathbb{1}\left[i \in V_{2} \wedge j \in V_{1}\right]\left\langle z_{t}^{(i, j)}, \theta_{\star}\right\rangle \\
&-\mathbb{1}\left[i \in V_{1} \wedge j \in V_{1}\right]\left\langle z_{t}^{(i, j)}, \theta_{\star}\right\rangle \\
&-\mathbb{1}\left[i \in V_{2} \wedge j \in V_{2}\right]\left\langle z_{t}^{(i, j)}, \theta_{\star}\right\rangle
\end{aligned}
$$

Notice that $\sum_{(i, j) \in E} z_{\star}^{(i, j)}=\sum_{(i, j) \in E} \frac{1}{m} \sum_{(k, l) \in E} z_{\star}^{(k, l)}$, so one has

$$
\begin{aligned}
(a)= & \underbrace{\sum_{t=1}^{T} \mathbb{1}\left[D_{t}\right] \sum_{(i, j) \in E} \mathbb{1}\left[i \in V_{1} \wedge j \in V_{2}\right]\left(\left\langle\frac{1}{m} \sum_{(k, l) \in E} z_{\star}^{(k, l)}, \theta_{\star}\right\rangle-\left\langle z_{t}^{(i, j)}, \theta_{\star}\right\rangle\right)}_{\left(a_{1}\right)} \\
& +\underbrace{\sum_{t=1}^{T} \mathbb{1}\left[D_{t}\right] \sum_{(i, j) \in E} \mathbb{1}\left[i \in V_{2} \wedge j \in V_{1}\right]\left(\left\langle\frac{1}{m} \sum_{(k, l) \in E} z_{\star}^{(k, l)}, \theta_{\star}\right\rangle-\left\langle z_{t}^{(i, j)}, \theta_{\star}\right\rangle\right)}_{\left(a_{2}\right)} \\
& +\underbrace{\sum_{t=1}^{T} \mathbb{1}\left[D_{t}\right] \sum_{(i, j) \in E} \mathbb{1}\left[i \in V_{1} \wedge j \in V_{1}\right]\left(\left\langle\frac{1}{m} \sum_{(k, l) \in E} z_{\star}^{(k, l)}, \theta_{\star}\right\rangle-\left\langle z_{t}^{(i, j)}, \theta_{\star}\right\rangle\right)}_{\left(a_{3}\right)} \\
& +\underbrace{\sum_{t=1}^{T} \mathbb{1}\left[D_{t}\right] \sum_{(i, j) \in E} \mathbb{1}\left[i \in V_{2} \wedge j \in V_{2}\right]\left(\left\langle\frac{1}{m} \sum_{(k, l) \in E} z_{\star}^{(k, l)}, \theta_{\star}\right\rangle-\left\langle z_{t}^{(i, j)}, \theta_{\star}\right\rangle\right)}_{\left(a_{4}\right)} .
\end{aligned}
$$

Let us analyse the first term:

$$
\begin{equation*}
\left(a_{1}\right)=\sum_{t=1}^{T} \mathbb{1}\left[D_{t}\right] \sum_{i=1}^{n} \sum_{\substack{j \in N_{i} \\ j>i}} \mathbb{1}\left[i \in V_{1} \wedge j \in V_{2}\right]\left\langle\frac{2}{m} \sum_{(k, l) \in E} z_{\star}^{(k, l)}-\left(z_{t}^{(i, j)}+z_{t}^{(j, i)}\right), \theta_{\star}\right\rangle \tag{13}
\end{equation*}
$$

By defining $\left(x_{\star}, x_{\star}^{\prime}\right)=\arg \max _{\left(x, x^{\prime}\right) \in \mathcal{X}^{2}}\left\langle z_{x x^{\prime}}+z_{x^{\prime} x}, \theta_{\star}\right\rangle$, and noticing that in the case where a node i is in V_{1} and a neighbouring node j in is V_{2}, then $z_{t}^{(i, j)}=z_{x_{t} x_{t}^{\prime}}$, we have,

$$
\begin{aligned}
\frac{2}{m} \sum_{(k, l) \in E}\left\langle z_{\star}^{(k, l)}, \theta_{\star}\right\rangle & =\frac{2}{m} \sum_{k=1}^{n} \sum_{\substack{\in \mathcal{N}_{k} \\
j>k}}\left\langle z_{\star}^{(k, l)}+z_{\star}^{(l, k)}, \theta_{\star}\right\rangle \\
& \leq \frac{2}{m} \sum_{k=1}^{n} \sum_{\substack{j \in \mathcal{N}_{k} \\
j>k}}\left\langle z_{x_{\star} x_{\star}^{\prime}}+z_{x_{\star}^{\prime} x_{\star}}, \theta_{\star}\right\rangle \\
& =\left\langle z_{x_{\star} x_{\star}^{\prime}}+z_{x_{\star}^{\prime} x_{\star}}, \theta_{\star}\right\rangle \\
& \leq\left\langle z_{x_{t} x_{t}^{\prime}}+z_{x_{t}^{\prime} x_{t}}, \tilde{\theta}_{t-1, m}\right\rangle \quad \text { w.p } \quad 1-\delta \\
& =\left\langle z_{t}^{(i, j)}+z_{t}^{(j, i)}, \tilde{\theta}_{t-1, m}\right\rangle .
\end{aligned}
$$

Plugging this last inequality in (13) yields, with probability $1-\delta$,

$$
\begin{aligned}
\left(a_{1}\right) & \leq \sum_{t=1}^{T} \mathbb{1}\left[D_{t}\right] \sum_{i=1}^{n} \sum_{\substack{j \in N_{i} \\
j>i}} \mathbb{1}\left[i \in V_{1} \wedge j \in V_{2}\right]\left\langle z_{t}^{(i, j)}+z_{t}^{(j, i)}, \tilde{\theta}_{t-1, m}-\theta_{\star}\right\rangle \\
& =\sum_{t=1}^{T} \mathbb{1}\left[D_{t}\right] \sum_{(i, j) \in E} \mathbb{1}\left[i \in V_{1} \wedge j \in V_{2}\right]\left\langle z_{t}^{(i, j)}, \tilde{\theta}_{t-1, m}-\theta_{\star}\right\rangle .
\end{aligned}
$$

We define, as in Algorithm $1, \mathbb{1}\left[z_{t}^{(i, j)}=z_{x_{t} x_{t}^{\prime}}\right] \triangleq \mathbb{1}\left[i \in V_{1} \wedge j \in V_{2}\right]$. Then, one has, with probability $1-\delta$,

$$
\begin{align*}
&\left(a_{1}\right) \leq \sum_{t=1}^{T} \mathbb{1}\left[D_{t}\right] \sum_{(i, j) \in E} \mathbb{1}\left[z_{t}^{(i, j)}=z_{x_{t} x_{t}^{\prime}}\right]\left\langle z_{t}^{(i, j)}, \tilde{\theta}_{t-1, m}-\theta_{\star}\right\rangle \\
&= \sum_{t=1}^{T} \mathbb{1}\left[D_{t}\right] \sum_{k=1}^{m} \mathbb{1}\left[z_{t}^{E[k]}=z_{x_{t} x_{t}^{\prime}}\right]\left\langle z_{t}^{E[k]}, \tilde{\theta}_{t-1, m}-\theta_{\star}\right\rangle \\
&= \sum_{t=1}^{T} \mathbb{1}\left[D_{t}\right] \sum_{k=1}^{m} \mathbb{1}\left[z_{t}^{E[k]}=z_{x_{t} x_{t}^{\prime}}\right]\left\langle z_{t}^{E[k]}, \tilde{\theta}_{t-1, m}-\hat{\theta}_{t-1, m}\right\rangle+\left\langle z_{t}^{E[k]}, \hat{\theta}_{t-1, m}-\theta_{\star}\right\rangle \\
& \leq \sum_{t=1}^{T} \mathbb{1}\left[D_{t}\right] \sum_{k=1}^{m} \mathbb{1}\left[z_{t}^{E[k]}=z_{x_{t} x_{t}^{\prime}}\right]\left\|z_{t}^{E[k]}\right\|_{\mathbf{A}_{t, k-1}^{-1}}\left\|\tilde{\theta}_{t-1, m}-\hat{\theta}_{t-1, m}\right\|_{\mathbf{A}_{t, k-1}} \\
& \quad+\mathbb{1}\left[z_{t}^{E[k]}=z_{x_{t} x_{t}^{\prime}}\right]\left\|z_{t}^{E[k]}\right\|_{\mathbf{A}_{t, k-1}^{-1}}\left\|\hat{\theta}_{t-1, m}-\theta_{\star}\right\|_{\mathbf{A}_{t, k-1}} \\
& \leq \sum_{t=1}^{T} \mathbb{1}\left[D_{t}\right] \sum_{k=1}^{m} \mathbb{1}\left[z_{t}^{E[k]}=z_{x_{t} x_{t}^{\prime}}\right]\left\|z_{t}^{E[k]}\right\|_{\mathbf{A}_{t, k-1}^{-1}} \sqrt{2}\left\|\tilde{\theta}_{t-1, m}-\hat{\theta}_{t-1, m}\right\|_{\mathbf{A}_{t-1, m}} \tag{14}\\
& \quad+\mathbb{1}\left[z_{t}^{E[k]}=z_{x_{t} x_{t}^{\prime}}\right]\left\|z_{t}^{E[k]}\right\|_{\mathbf{A}_{t, k-1}^{-1}} \sqrt{2}\left\|\hat{\theta}_{t-1, m}-\theta_{\star}\right\|_{\mathbf{A}_{t-1, m}} \\
& \leq \sum_{t=1}^{T} \sum_{k=1}^{m} \mathbb{1}\left[z_{t}^{E[k]}=z_{x_{t} x_{t}^{\prime}}\right] 2 \sqrt{2 \beta_{t}(\delta)}\left\|z_{t}^{E[k]}\right\|_{\mathbf{A}_{t, k-1}^{-1}} \tag{15}\\
& \leq \sum_{t=1}^{T} \sum_{k=1}^{m} 2 \sqrt{2 \beta_{t}(\delta)}\left\|z_{t}^{E[k]}\right\|_{\mathbf{A}_{t, k-1}^{-1}}, \tag{16}
\end{align*}
$$

with $\sqrt{\beta_{t}(\delta)} \leq \sigma \sqrt{d^{2} \log \left(\frac{1+t m L^{2} / \lambda}{\delta}\right)}+\sqrt{\lambda} S$ and where uses the critical covariance inequality (12), (15) comes from the definition of the confidence set $C_{t-1, m}(\delta)$ and (16) upper bounds the indicator functions by 1 .

Using a similar reasoning, we obtain the same bound for $\left(a_{2}\right)$:

$$
\begin{equation*}
\left(a_{2}\right) \leq \sum_{t=1}^{T} \sum_{k=1}^{m} 2 \sqrt{2 \beta_{t}(\delta)}\left\|z_{t}^{E[k]}\right\|_{\mathbf{A}_{t, k-1}^{-1}} \tag{17}
\end{equation*}
$$

Let us bound the terms $\left(a_{3}\right)$ and $\left(a_{4}\right)$.

$$
\begin{equation*}
\left(a_{3}\right)=\sum_{t=1}^{T} \mathbb{1}\left[D_{t}\right] \sum_{(i, j) \in E} \mathbb{1}\left[z_{t}^{(i, j)}=z_{x_{t} x_{t}}\right]\left(\left\langle\frac{1}{m} \sum_{(k, l) \in E} z_{\star}^{(k, l)}, \theta_{\star}\right\rangle-\left\langle z_{t}^{(i, j)}, \theta_{\star}\right\rangle\right) \tag{18}
\end{equation*}
$$

For all $x \in \mathcal{X}$, let γ_{x} be the following ratio

$$
\begin{equation*}
\gamma_{x}=\frac{\left\langle z_{x x}, \theta_{\star}\right\rangle}{\left\langle\frac{1}{m} \sum_{(k, l) \in E} z_{\star}^{(k, l)}, \theta_{\star}\right\rangle} \tag{19}
\end{equation*}
$$

and let γ be the worst ratio

$$
\begin{equation*}
\gamma=\min _{x \in \mathcal{X}} \frac{\left\langle z_{x x}, \theta_{\star}\right\rangle}{\left\langle\frac{1}{m} \sum_{(k, l) \in E} z_{\star}^{(k, l)}, \theta_{\star}\right\rangle} \tag{20}
\end{equation*}
$$

We have

$$
\begin{align*}
\left(a_{3}\right) & =\sum_{t=1}^{T} \mathbb{1}\left[D_{t}\right] \sum_{(i, j) \in E} \mathbb{1}\left[z_{t}^{(i, j)}=z_{x_{t} x_{t}}\right]\left(\left\langle\frac{1}{m} \sum_{(k, l) \in E} z_{\star}^{(k, l)}, \theta_{\star}\right\rangle-\gamma_{x_{t}}\left\langle\frac{1}{m} \sum_{(k, l) \in E} z_{\star}^{(k, l)}, \theta_{\star}\right\rangle\right) \\
& \leq \sum_{t=1}^{T} \mathbb{1}\left[D_{t}\right] \sum_{(i, j) \in E} \mathbb{1}\left[z_{t}^{(i, j)}=z_{x_{t} x_{t}}\right]\left(\left\langle\frac{1}{m} \sum_{(k, l) \in E} z_{\star}^{(k, l)}, \theta_{\star}\right\rangle-\gamma\left\langle\frac{1}{m} \sum_{(k, l) \in E} z_{\star}^{(k, l)}, \theta_{\star}\right\rangle\right) \\
& =\sum_{t=1}^{T} \mathbb{1}\left[D_{t}\right] \sum_{(i, j) \in E} \mathbb{1}\left[z_{t}^{(i, j)}=z_{x_{t} x_{t}}\right](1-\gamma)\left\langle\frac{1}{m} \sum_{(k, l) \in E} z_{\star}^{(k, l)}, \theta_{\star}\right\rangle \\
& \leq T \frac{m}{4}(1-\gamma)\left\langle\frac{1}{m} \sum_{(k, l) \in E} z_{\star}^{(k, l)}, \theta_{\star}\right\rangle \tag{21}\\
& =\sum_{t=1}^{T} \sum_{(i, j) \in E} \frac{1}{4}(1-\gamma)\left\langle z_{\star}^{(i, j)}, \theta_{\star}\right\rangle
\end{align*}
$$

where (21) comes from the fact that there is at most $m / 4$ edges that goes from node in V_{1} to other nodes in V_{1} and that $\mathbb{1}\left[D_{t}\right] \leq 1$ for all t.
The derivation of this bound for $\left(a_{3}\right)$ gives the same one for $\left(a_{4}\right)$

$$
\begin{equation*}
\left(a_{4}\right) \leq \sum_{t=1}^{T} \sum_{(i, j) \in E} \frac{1}{4}(1-\gamma)\left\langle z_{\star}^{(i, j)}, \theta_{\star}\right\rangle \tag{22}
\end{equation*}
$$

By rewriting (a), we have :

$$
(a) \leq \sum_{t=1}^{T} \sum_{k=1}^{m} 4 \sqrt{2 \beta_{t}(\delta)}\left\|z_{t}^{E[k]}\right\|_{\mathbf{A}_{t, k-1}^{-1}}+\frac{1}{2}(1-\gamma)\left\langle z_{\star}^{(i, j)}, \theta_{\star}\right\rangle
$$

In [Chan et al., 2021], they bounded the term (b) as follows

$$
\begin{equation*}
\operatorname{LSm} \sum_{t=1}^{T} \mathbb{1}\left[D_{t}^{c}\right] \leq L S m\left\lceil d^{2} \log _{2}\left(\frac{T m L^{2} / \lambda}{\delta}\right)\right\rceil \tag{23}
\end{equation*}
$$

We thus have the regret bounded by

$$
R(T) \leq \sum_{t=1}^{T} \sum_{k=1}^{m} 4 \sqrt{2 \beta_{t}(\delta)}\left\|z_{t}^{E[k]}\right\|_{\mathbf{A}_{t, k-1}^{-1}}+\frac{1}{2}(1-\gamma)\left\langle z_{\star}^{(i, j)}, \theta_{\star}\right\rangle+L S m\left\lceil d^{2} \log _{2}\left(\frac{T m L^{2} / \lambda}{\delta}\right)\right\rceil
$$

which gives us

$$
R_{\frac{1+\gamma}{2}}(T) \leq \sum_{t=1}^{T} \sum_{k=1}^{m} 4 \sqrt{2 \beta_{t}(\delta)}\left\|z_{t}^{E[k]}\right\|_{\mathbf{A}_{t, k-1}^{-1}}+L S m\left\lceil d^{2} \log _{2}\left(\frac{T m L^{2} / \lambda}{\delta}\right)\right\rceil
$$

Let us bound the first term with the double sum as it is done in Abbasi-Yadkori et al., 2011, Chan et al., 2021):

$$
\begin{align*}
& \sum_{t=1}^{T} \sum_{k=1}^{m} 4 \sqrt{2 \beta_{t}(\delta)}\left\|z_{t}^{E[k]}\right\|_{\mathbf{A}_{t, k-1}^{-1}} \\
& \leq \sum_{t=1}^{T} \sum_{k=1}^{m} \min \left(2 L S, 4 \sqrt{2 \beta_{t}(\delta)}\left\|z_{t}^{E[k]}\right\|_{\mathbf{A}_{t, k-1}^{-1}}\right) \\
& \leq \sum_{t=1}^{T} \sum_{k=1}^{m} 4 \sqrt{2 \beta_{t}(\delta)} \min \left(L S,\left\|z_{t}^{E[k]}\right\|_{\mathbf{A}_{t, k-1}^{-1}}\right) \\
& \leq \sqrt{T m \times 32 \beta_{T}(\delta) \sum_{t=1}^{T} \sum_{k=1}^{m} \min \left((L S)^{2},\left\|z_{t}^{E[k]}\right\|_{\mathbf{A}_{t, k-1}^{-1}}^{2}\right)} \\
& \leq \sqrt{32 T m \beta_{T}(\delta) \sum_{t=1}^{T} \sum_{k=1}^{m} \max \left(2,(L S)^{2}\right) \log \left(1+\left\|z_{t}^{E[k]}\right\|_{\mathbf{A}_{t, k-1}^{-1}}^{2}\right)} \tag{24}\\
& =\sqrt{32 T m \beta_{T}(\delta) \max \left(2,(L S)^{2}\right) \sum_{t=1}^{T} \sum_{k=1}^{m} \log \left(1+\left\|z_{t}^{E[k]}\right\|_{\mathbf{A}_{t, k-1}^{-1}}^{2}\right)} \\
& \leq \sqrt{32 T m \beta_{T}(\delta) \max \left(2,(L S)^{2}\right) d^{2} \log \left(1+\frac{T m L^{2} / \lambda}{d^{2}}\right)} \tag{25}\\
& \leq \sqrt{32 T m d^{2} \max \left(2,(L S)^{2}\right) \log \left(1+\frac{T m L^{2} / \lambda}{d^{2}}\right)\left(\sigma \sqrt{d^{2}}\right)}
\end{align*}
$$

where (24) uses the fact that for all $a, x \geq 0, \min (a, x) \leq \max (2, a) \log (1+x)$, 25) uses the fact that $\sum_{t=1}^{T} \sum_{k=1}^{m} \log \left(1+\left\|z_{t}^{E[k]}\right\|_{\mathbf{A}_{t, k-1}^{-1}}^{2}\right) \leq d^{2} \log \left(1+\frac{T m L^{2} / \lambda}{d^{2}}\right)$ from Lemma 19.4 in Lattimore and Szepesvári [2018].
The final bound for the $\frac{1+\gamma}{2}$-regret is

$$
\begin{aligned}
R_{\frac{1+\gamma}{2}}(T) \leq & \sqrt{32 T m d^{2} \max \left(2,(L S)^{2}\right) \log \left(1+\frac{T m L^{2} / \lambda}{d^{2}}\right)}\left(\sigma \sqrt{d^{2} \log \left(\frac{1+T m L^{2} / \lambda}{\delta}\right)}+\sqrt{\lambda} S\right) \\
& +L S m\left[d^{2} \log _{2}\left(\frac{T m L^{2} / \lambda}{\delta}\right)\right]
\end{aligned}
$$

B. 2 Proof of Theorem 4.1

Proof. For the sake of completeness in the proof we recall that we defined the couples $\left(x_{\star}, x_{\star}^{\prime}\right)$ and $\left(\tilde{x}_{\star}, \tilde{x}_{\star}^{\prime}\right)$ and the quantity Δ as follows:

$$
\begin{gathered}
\left(x_{\star}, x_{\star}^{\prime}\right)=\underset{\left(x, x^{\prime}\right) \in \mathcal{X}^{2}}{\arg \max }\left\langle z_{x x^{\prime}}+z_{x^{\prime} x}, \theta_{\star}\right\rangle \\
\left(\tilde{x}_{\star}, \tilde{x}_{\star}^{\prime}\right)=\underset{\left(x, x^{\prime}\right) \in \mathcal{X}}{\arg \max }\left\langle m_{1 \rightarrow 2} \cdot z_{x x^{\prime}}+m_{2 \rightarrow 1} \cdot z_{x^{\prime} x}+m_{1} \cdot z_{x x}+m_{2} \cdot z_{x^{\prime} x^{\prime}}, \theta_{\star}\right\rangle .
\end{gathered}
$$

and

$$
\begin{aligned}
\Delta= & \left\langle m_{1 \rightarrow 2}\left(z_{\tilde{x}_{\star} \tilde{x}_{\star}^{\prime}}-z_{x_{\star} x_{\star}^{\prime}}\right)+m_{2 \rightarrow 1}\left(z_{\tilde{x}_{\star}^{\prime} \tilde{x}_{\star}}-z_{x_{\star}^{\prime} x_{\star}}\right)\right. \\
& \left.+m_{1}\left(z_{\tilde{x}_{\star} \tilde{x}_{\star}}-z_{x_{\star} x_{\star}}\right)+m_{2}\left(z_{\tilde{x}_{\star}^{\prime} \tilde{x}_{\star}^{\prime}}-z_{x_{\star}^{\prime} x_{\star}^{\prime}}\right), \theta_{\star}\right\rangle .
\end{aligned}
$$

And we recall that in Algorithm 3 the tuple $\left(x_{t}, x_{t}^{\prime}, \tilde{\theta}_{t-1, m}\right)$ is obtained as follows:

$$
\left(x_{t}, x_{t}^{\prime}, \tilde{\theta}_{t-1, m}\right)=\underset{\left(x, x^{\prime}, \theta\right) \in \mathcal{X}^{2} \times C_{t-1}}{\arg \max }\left\langle m_{1 \rightarrow 2} \cdot z_{x x^{\prime}}+m_{2 \rightarrow 1} \cdot z_{x^{\prime} x}+m_{1} \cdot z_{x x}+m_{2} \cdot z_{x^{\prime} x^{\prime}}, \theta\right\rangle
$$

We can write the regret $R(T)$ as in the proof of Theorem 3.2 .

$$
\begin{aligned}
R(T) & =\sum_{t=1}^{T} \mathbb{1}\left[D_{t}\right] \sum_{(i, j) \in E}\left\langle z_{\star}^{(i, j)}, \theta_{\star}\right\rangle-\left\langle z_{t}^{(i, j)}, \theta_{\star}\right\rangle \\
& \leq{\mathbb{1}\left[D_{t}^{c}\right] \sum_{(i, j) \in E}\left\langle z_{\star}^{(i, j)}, \theta_{\star}\right\rangle-\left\langle z_{t}^{(i, j)}, \theta_{\star}\right\rangle}_{\sum_{t=1}^{T} \mathbb{1}\left[D_{t}\right] \sum_{(i, j) \in E}\left\langle z_{\star}^{(i, j)}, \theta_{\star}\right\rangle-\left\langle z_{t}^{(i, j)}, \theta_{\star}\right\rangle}+\underbrace{L S m \sum_{t=1}^{T} \mathbb{1}\left[D_{t}^{c}\right]}_{(a)}
\end{aligned}
$$

Here, (b) doesn't change, we thus only focus on deriving (a).

$$
\begin{aligned}
(a) & =\sum_{t=1}^{T} \mathbb{1}\left[D_{t}\right] \sum_{(i, j) \in E}\left\langle z_{\star}^{(i, j)}, \theta_{\star}\right\rangle-\left\langle z_{t}^{(i, j)}, \theta_{\star}\right\rangle \\
& \leq \sum_{t=1}^{T} \sum_{(i, j) \in E}\left\langle z_{\star}^{(i, j)}, \theta_{\star}\right\rangle-\left\langle z_{t}^{(i, j)}, \theta_{\star}\right\rangle \quad \quad \quad\left(\text { where } \mathbb{1}\left[D_{t}\right] \leq 1\right) \\
& =\underbrace{\sum_{t=1}^{T} \sum_{(i, j) \in E} \frac{m_{1 \rightarrow 2}+m_{2 \rightarrow 1}}{m}\left\langle z_{\star}^{(i, j)}, \theta_{\star}\right\rangle}_{\left(a_{1}\right)}+\sum_{t=1}^{T} \sum_{(i, j) \in E} \frac{m_{1}+m_{2}}{m}\left\langle z_{\star}^{(i, j)}, \theta_{\star}\right\rangle-\sum_{t=1}^{T} \sum_{(i, j) \in E}\left\langle z_{t}^{(i, j)}, \theta_{\star}\right\rangle
\end{aligned}
$$

We have

$$
\begin{aligned}
& \left(a_{1}\right)=\sum_{t=1}^{T} \sum_{(i, j) \in E} \frac{2 m_{1 \rightarrow 2}}{m}\left\langle z_{\star}^{(i, j)}, \theta_{\star}\right\rangle \\
& =\sum_{t=1}^{T} \sum_{i=1}^{n} \sum_{\substack{j \in \mathcal{N}_{i} \\
j>i}} \frac{2 m_{1 \rightarrow 2}}{m}\left\langle z_{\star}^{(i, j)}+z_{\star}^{(j, i)}, \theta_{\star}\right\rangle \\
& \leq \sum_{t=1}^{T} \sum_{i=1}^{n} \sum_{\substack{j \in \mathcal{N}_{i} \\
j>i}} \frac{2 m_{1 \rightarrow 2}}{m}\left\langle z_{x_{\star} x_{\star}^{\prime}}+z_{x_{\star}^{\prime} x_{\star}}, \theta_{\star}\right\rangle \\
& =\sum_{t=1}^{T} \sum_{i=1}^{n} \sum_{\substack{j \in \mathcal{N}_{i} \\
j>i}} \frac{2}{m}\left\langle m_{1 \rightarrow 2} \cdot z_{x_{\star} x_{\star}^{\prime}}+m_{2 \rightarrow 1} \cdot z_{x_{\star}^{\prime} x_{\star}}, \theta_{\star}\right\rangle \\
& =\sum_{t=1}^{T} \sum_{i=1}^{n} \sum_{\substack{j \in \mathcal{N}_{i} \\
j>i}} \frac{2}{m}\left\langle m_{1 \rightarrow 2} \cdot z_{x_{\star} x_{\star}^{\prime}}+m_{2 \rightarrow 1} \cdot z_{x_{\star}^{\prime} x_{\star}}+m_{1} \cdot z_{x_{\star} x_{\star}}+m_{2} \cdot z_{x_{\star}^{\prime} x_{\star}^{\prime}}, \theta_{\star}\right\rangle \\
& -\sum_{t=1}^{T} \sum_{i=1}^{n} \sum_{\substack{j \in \mathcal{N}_{i} \\
j>i}} \frac{2}{m}\left\langle m_{1} \cdot z_{x_{\star} x_{\star}}+m_{2} \cdot z_{x_{\star}^{\prime} x_{\star}^{\prime}}, \theta_{\star}\right\rangle \\
& =\sum_{t=1}^{T} \sum_{i=1}^{n} \sum_{\substack{j \in \mathcal{N}_{i} \\
j>i}} \frac{2}{m}\left\langle m_{1 \rightarrow 2} \cdot z_{\tilde{x}_{\star} \tilde{x}_{\star}^{\prime}}+m_{2 \rightarrow 1} \cdot z_{\tilde{x}_{\star}^{\prime} \tilde{x}_{\star}}+m_{1} \cdot z_{\tilde{x}_{\star} \tilde{x}_{\star}}+m_{2} \cdot z_{\tilde{x}_{\star}^{\prime} \tilde{x}_{\star}^{\prime}}, \theta_{\star}\right\rangle-\frac{2}{m} \Delta \\
& -\sum_{t=1}^{T} \sum_{i=1}^{n} \sum_{\substack{j \in \mathcal{N}_{i} \\
j>i}} \frac{2}{m}\left\langle m_{1} \cdot z_{x_{\star} x_{\star}}+m_{2} \cdot z_{x_{\star}^{\prime} x_{\star}^{\prime}}, \theta_{\star}\right\rangle \\
& =\sum_{t=1}^{T}\left\langle m_{1 \rightarrow 2} \cdot z_{\tilde{x}_{\star} \tilde{x}_{\star}^{\prime}}+m_{2 \rightarrow 1} \cdot z_{\tilde{x}_{\star}^{\prime} \tilde{x}_{\star}}+m_{1} \cdot z_{\tilde{x}_{\star} \tilde{x}_{\star}}+m_{2} \cdot z_{\tilde{x}_{\star}^{\prime} \tilde{x}_{\star}^{\prime}}, \theta_{\star}\right\rangle-\Delta \\
& -\sum_{t=1}^{T}\left\langle m_{1} \cdot z_{x_{\star} x_{\star}}+m_{2} \cdot z_{x_{\star}^{\prime} x_{\star}^{\prime}}, \theta_{\star}\right\rangle \\
& \leq \sum_{t=1}^{T}\left\langle m_{1 \rightarrow 2} \cdot z_{x_{t} x_{t}^{\prime}}+m_{2 \rightarrow 1} \cdot z_{x_{t}^{\prime} x_{t}}+m_{1} \cdot z_{x_{t} x_{t}}+m_{2} \cdot z_{x_{t}^{\prime} x_{t}^{\prime}}, \tilde{\theta}_{t-1, m}\right\rangle-\Delta \quad \text { w.p } \quad 1-\delta \\
& -\sum_{t=1}^{T}\left\langle m_{1} \cdot z_{x_{\star} x_{\star}}+m_{2} \cdot z_{x_{\star}^{\prime} x_{\star}^{\prime}}, \theta_{\star}\right\rangle \\
& =\sum_{t=1}^{T} \sum_{(i, j) \in E}\left\langle z_{t}^{(i, j)}, \tilde{\theta}_{t-1, m}\right\rangle-\sum_{t=1}^{T} \Delta-\sum_{t=1}^{T}\left\langle m_{1} \cdot z_{x_{\star} x_{\star}}+m_{2} \cdot z_{x_{\star}^{\prime} x_{\star}^{\prime}}, \theta_{\star}\right\rangle
\end{aligned}
$$

By plugging the last upper bound in (a) and with probability $1-\delta$, we have,

$$
\begin{aligned}
(a) \leq & \sum_{t=1}^{T} \sum_{(i, j) \in E}\left\langle z_{t}^{(i, j)}, \tilde{\theta}_{t-1, m}\right\rangle-\sum_{t=1}^{T} \Delta-\sum_{t=1}^{T}\left\langle m_{1} \cdot z_{x_{\star} x_{\star}}+m_{2} \cdot z_{x_{\star}^{\prime} x_{\star}^{\prime}}, \theta_{\star}\right\rangle \\
& +\sum_{t=1}^{T} \sum_{(i, j) \in E} \frac{m_{1}+m_{2}}{m}\left\langle z_{\star}^{(i, j)}, \theta_{\star}\right\rangle-\sum_{t=1}^{T} \sum_{(i, j) \in E}\left\langle z_{t}^{(i, j)}, \theta_{\star}\right\rangle \\
= & \sum_{t=1}^{T} \sum_{(i, j) \in E}\left\langle z_{t}^{(i, j)}, \tilde{\theta}_{t-1, m}-\theta_{\star}\right\rangle-\sum_{t=1}^{T} \Delta-\sum_{t=1}^{T}\left\langle m_{1} \cdot z_{x_{\star} x_{\star}}+m_{2} \cdot z_{x_{\star}^{\prime} x_{\star}^{\prime}}, \theta_{\star}\right\rangle \\
& +\sum_{t=1}^{T} \sum_{(i, j) \in E} \frac{m_{1}+m_{2}}{m}\left\langle z_{\star}^{(i, j)}, \theta_{\star}\right\rangle \\
= & \sum_{t=1}^{T} \sum_{(i, j) \in E}\left\langle z_{t}^{(i, j)}, \tilde{\theta}_{t-1, m}-\theta_{\star}\right\rangle-\sum_{t=1}^{T} \Delta-\sum_{t=1}^{T} \sum_{(i, j) \in E} \frac{m_{1}}{m} \gamma_{x_{\star}}\left\langle z_{\star}^{(i, j)}, \theta_{\star}\right\rangle+\frac{m_{2}}{m} \gamma_{x_{\star}}\left\langle z_{\star}^{(i, j)}, \theta_{\star}\right\rangle \\
& +\sum_{t=1}^{T} \sum_{(i, j) \in E} \frac{m_{1}+m_{2}}{m}\left\langle z_{\star}^{(i, j)}, \theta_{\star}\right\rangle \\
\leq & \sum_{t=1}^{T} \sum_{(i, j) \in E}\left\langle z_{t}^{(i, j)}, \tilde{\theta}_{t-1, m}-\theta_{\star}\right\rangle-\sum_{t=1}^{T} \Delta-\sum_{t=1}^{T} \sum_{(i, j) \in E} \frac{m_{1}+m_{2}}{m} \gamma\left\langle z_{\star}^{(i, j)}, \theta_{\star}\right\rangle+\sum_{t=1}^{T} \sum_{(i, j) \in E} \frac{m_{1}+m_{2}}{m}\left\langle z_{\star}^{(i, j)}, \theta_{\star}\right\rangle \\
= & \sum_{t=1}^{T} \sum_{(i, j) \in E}\left\langle z_{t}^{(i, j)}, \tilde{\theta}_{t-1, m}-\theta_{\star}\right\rangle-\sum_{t=1}^{T} \Delta+\sum_{t=1}^{T} \sum_{(i, j) \in E} \frac{m_{1}+m_{2}}{m}(1-\gamma)\left\langle z_{\star}^{(i, j)}, \theta_{\star}\right\rangle \\
= & \sum_{t=1}^{T} \sum_{(i, j) \in E}\left\langle z_{t}^{(i, j)}, \tilde{\theta}_{t-1, m}-\theta_{\star}\right\rangle-\sum_{t=1}^{T} \sum_{(i, j) \in E} \epsilon\left\langle z_{\star}^{(i, j)}, \theta_{\star}\right\rangle+\sum_{t=1}^{T} \sum_{(i, j) \in E} \frac{m_{1}+m_{2}}{m}(1-\gamma)\left\langle z_{\star}^{(i, j)}, \theta_{\star}\right\rangle \\
= & \sum_{t=1}^{T} \sum_{(i, j) \in E}\left\langle z_{t}^{(i, j)}, \tilde{\theta}_{t-1, m}-\theta_{\star}\right\rangle+\sum_{t=1}^{T} \sum_{(i, j) \in E}\left[\frac{m_{1}+m_{2}}{m}(1-\gamma)-\epsilon\right]\left\langle z_{\star}^{(i, j)}, \theta_{\star}\right\rangle
\end{aligned}
$$

By plugging (a) in the regret and with probability $1-\delta$, we have,

$$
R(T) \leq \sum_{t=1}^{T} \sum_{(i, j) \in E}\left\langle z_{t}^{(i, j)}, \tilde{\theta}_{t-1, m}-\theta_{\star}\right\rangle+\sum_{t=1}^{T} \sum_{(i, j) \in E}\left[\frac{m_{1}+m_{2}}{m}(1-\gamma)-\epsilon\right]\left\langle z_{\star}^{(i, j)}, \theta_{\star}\right\rangle+L S m \sum_{t=1}^{T} \mathbb{1}\left[D_{t}^{c}\right]
$$

which gives,

$$
\begin{array}{r}
R(T)-\sum_{t=1}^{T} \sum_{(i, j) \in E}\left[\frac{m_{1}+m_{2}}{m}(1-\gamma)-\epsilon\right]\left\langle z_{\star}^{(i, j)}, \theta_{\star}\right\rangle \leq \sum_{t=1}^{T} \sum_{(i, j) \in E}\left\langle z_{t}^{(i, j)}, \tilde{\theta}_{t-1, m}-\theta_{\star}\right\rangle+L S m \sum_{t=1}^{T} \mathbb{1}\left[D_{t}^{c}\right] \\
R_{1-\left[\frac{m_{1}+m_{2}}{m}(1-\gamma)-\epsilon\right]}(T) \leq \sum_{t=1}^{T} \sum_{(i, j) \in E}\left\langle z_{t}^{(i, j)}, \tilde{\theta}_{t-1, m}-\theta_{\star}\right\rangle+L S m \sum_{t=1}^{T} \mathbb{1}\left[D_{t}^{c}\right]
\end{array}
$$

The upper bound of the right hand term follows exactly what we have already done for Theorem 3.2 by applying the upper bounds (16) and (23)

C Additional information on the experiments

C. 1 Table 1

The number of nodes in each graph is equal to 100. The random graph corresponds to a graph where for two nodes i and j in V, the probability that (i, j) and (j, i) is in E is equal to 0.6 . The results for the random graph are averaged over 100 draws. The matching graph represents the graph where each node $i \in V$ has only one neighbour: $\operatorname{Card}\left(\mathcal{N}_{i}\right)=1$.

C. 2 Figure 1

The graph used in this experiment is a complete graph of 10 nodes. The arm set $\mathcal{X}=\left\{e_{1}, \ldots, e_{d}\right\}$ which gives $\mathcal{Z}=\left\{e_{1}, \ldots, e_{d^{2}}\right\}$. The matrix \mathbf{M}_{\star} is randomly initialized such that all elements of the matrix are drawn i.i.d. from a standard normal distribution, and then we take the absolute value of each of these elements to ensure that the matrix only contains positive numbers. We plotted the results by varying ζ from 0 to 1 with a step of 0.01 . We conducted the experiment on 100 different matrices \mathbf{M}_{\star} randomly initialized as explained above and plotted the average value of the obtained γ, ϵ, α_{1} and α_{2}.

C. 3 Figure 2

For the last experiment, we used a complete graph of 5 nodes. The arm set $\mathcal{X}=\left\{e_{1}, \ldots, e_{d}\right\}$ which gives $\mathcal{Z}=\left\{e_{1}, \ldots, e_{d^{2}}\right\}$. The matrix \mathbf{M}_{\star} is randomly initialized as explained in the previous experiment. We fixed $\zeta=0$ and the horizon $T=20000$. We ran the experiment 10 times and plotted the average values (shaded curve) and the moving average curve with a window of 100 steps for more clarity.
The Explore-Then-Commit algorithm has an exploration phase of $T / 3$ rounds and then exploits by pulling the couple $\left(x_{t}, x_{t}^{\prime}\right)=\arg \max _{\left(x, x^{\prime}\right)}\left\langle z_{x x^{\prime}}+z_{x^{\prime} x}, \hat{\theta}_{t}\right\rangle$. Note that we set the exploration phase to $T / 3$ because most of the time, it was sufficient for the learner to have the estimated optimal pair $\left(x_{t}, x_{t}^{\prime}\right)$ equal to the real optimal pair $\left(x_{\star}, x_{\star}^{\prime}\right)$.
Machine used for all the experiments : Macbook Pro, Apple M1 chip, 8-core CPU
The code is available here

