A Adversarial spatiotemporal attack under different settings

A.1 Adversarial spatiotemporal attack under the white-box setting

Since the adversaries can fully access the data and label under the white-box setting, we directly use the real ground truth traffic states to generate the adversarial traffic states, as detailed in algorithm 2.

Algorithm 2: Adversarial spatiotemporal attack under the white-box setting

Input: Previous traffic data, pre-trained spatiotemporal model $f_{\theta^*}(\cdot)$, pre-trained traffic state prediction model $q_{\varphi}(\cdot)$, maximum perturbation budget ε , victim node budget η , and iterations K. **Result:** Perturbed adversarial traffic states $\mathcal{H}'_{t-T+1:t}$. /* Step 1: Identify time-dependent victim nodes */ 1 Compute the time-dependent node saliency \mathcal{M}_t with $\mathcal{H}_{t-T+1:t}$ and $\mathbf{Y}_{t+1:t+\tau}$ by Equations 6-9; 2 Obtain the victim node set S_t by Equation 10; /* Step 2: Attack with adversarial traffic state */ 3 Initialize adversarial traffic state $\mathcal{H}'_{t-T+1:t}^{(0)} = \mathcal{H}_{t-T+1:t};$ 4 for i = 1 to K do Generate perturbed adversarial features $\mathbf{X}_{t-T+1:t}^{\prime(i)}$ by Equation 11; 5 $\triangle \mathcal{H}_{t-T+1:t}^{\prime(i)} = ((\mathbf{X}_{t-T+1:t}^{\prime(i)} - \mathbf{X}_{t-T+1:t}^{(i)}) \cdot S_t, 0);$ 6 7 end 8 Return $\mathcal{H}'_{t-T+1:t} = \mathcal{H}_{t-T+1:t} + \triangle \mathcal{H}'_{t-T+1:t}$.

A.2 Adversarial spatiotemporal attack under the black-box setting

The most restrictive black-box setting assumes limited accessibility to the target model and labels. Therefore, we first employ a surrogate model, which can be learned on the training data or query the traffic forecasting service [16, 17]. Then we generate adversarial traffic states based on the surrogate model to attack the target model. In details, we use a surrogate model to generate the adversarial traffic states based on algorithm 1, the generated adversarial traffic states can be used to attack the target model.

B Proof

In this section, we show the details of the proof. First, we recall the assumptions as follows: let the k-th layer embedding of spatiotemporal traffic models is

$$\mathbf{Z}_{i}^{(k+1)} = \sigma(\sum_{j \in \mathcal{N}_{i}} e_{ij} \mathbf{M}_{j}^{(k)}),$$
(13a)

where $\mathbf{Z}_{i}^{(k+1)}$ ($\mathbf{Z}^{(0)} = \mathcal{H}_{t-T+1:t}$) represents the embedding of node v_i in k + 1-th layer of the spatiotemporal forecasting model. $\mathbf{M}_{i}^{(k)} = \mathbf{Z}_{i}^{(k)}\mathbf{W}^{(k)}$, where $\mathbf{W}^{(k)}$ denotes the weight matrix for k-th layer of the forecasting model. σ is an activation function, such as the sigmoid function, relu function, *etc.* e_{ij} is the weight value used to aggregate node j's neighbors. \mathcal{N}_i represents the index used to keep track of node j's neighbors. Let λ denotes maximum weight bound in all layers of the forecasting model, where $\max_k \|\mathbf{W}^{(k)}\|_2 \leq \lambda, \forall k \in \{1, \dots, L\}$. We denote that the maximum degree in graph \mathcal{G} is C.

Assumption 1 The activation function σ used in spatiotemporal traffic forecasting model is locally Lipschitz continuous as,

$$\left\|\sigma\left(\sum_{j\in\mathcal{N}_{i}}e_{ij}\mathbf{M}_{j}^{(k)}\right)-\sigma\left(\sum_{j\in\mathcal{N}_{i}}e_{ij}\mathbf{M}_{j}^{\prime(k)}\right)\right\|_{2} \leq \beta \left\|\sum_{j\in\mathcal{N}_{i}}e_{ij}\mathbf{M}_{j}^{(k)}-\sum_{j\in\mathcal{N}_{i}}e_{ij}\mathbf{M}_{j}^{\prime(k)}\right\|_{p},\qquad(14)$$

where β denotes parameter of the activation function in $f_{\theta}(\cdot)$.

Proof 1

$$\begin{split} \left\| \mathbf{Z}^{(L)} - \mathbf{Z}'^{(L)} \right\|_{2}^{2} &= \sum_{i} \left\| \mathbf{Z}_{i}^{(L)} - \mathbf{Z}'_{i}^{(L)} \right\|_{2}^{2} \\ &\leq \beta^{2} \sum_{i} \left\| \sum_{j \in \mathcal{N}_{i}} e_{ij} \mathbf{M}_{j}^{(L-1)} - \sum_{j \in \mathcal{N}_{i}} e_{ij} \mathbf{M}'_{j}^{(L-1)} \right\|_{2}^{2} \\ &\leq \beta^{2} \sum_{i} \left| \mathcal{N}_{i} \right| \sum_{j \in \mathcal{N}_{i}} \left\| \mathbf{M}_{j}^{(L-1)} - \mathbf{M}'_{j}^{(L-1)} \right\|_{2}^{2} \\ &\leq \beta^{2} C \sum_{i} \sum_{j \in \mathcal{N}_{i}} \left\| \mathbf{M}_{j}^{(L-1)} - \mathbf{M}'_{j}^{(L-1)} \right\|_{2}^{2} \\ &= \beta^{2} C \sum_{j} \left\| \mathcal{N}_{j} \right\| \left\| \mathbf{M}_{j}^{(L-1)} - \mathbf{M}'_{j}^{(L-1)} \right\|_{2}^{2} \\ &\leq \beta^{2} C^{2} \sum_{j} \left\| \mathbf{M}_{j}^{(L-1)} - \mathbf{M}'_{j}^{(L-1)} \right\|_{2}^{2} \\ &\leq (\beta C \lambda)^{2} \sum_{j} \left\| \mathbf{Z}_{j}^{(L-1)} - \mathbf{Z}'_{j}^{(L-1)} \right\|_{2}^{2} \\ &\leq (\beta C \lambda)^{2L} \sum_{i} \left\| \mathbf{Z}_{i}^{(0)} - \mathbf{Z}'_{i}^{(0)} \right\|_{2}^{2} \\ &= (\beta C \lambda)^{2L} (\sum_{i \text{ is the victim node}} \left\| \mathcal{H}_{(i),(t-T+1:t)} - \mathcal{H}'_{(i),(t-T+1:t)} \right\|_{2}^{2} \\ &\leq (\beta C \lambda)^{2L} \varepsilon^{2} \eta \end{split}$$

Remarks. Assumption 1 provides a more general activation function assumption. This assumption is met by the ReLU, sigmoid, tanh function [10, 11, 2] *etc*. We also noticed that [31] also analyzes traffic forecasting loss under query-based attack. Our theorem is different in that we first give the worst performance bound of an adversarial traffic forecasting attack, but [31] does not provide the worst performance bound. Second, our theorem is more general because we do not specify a specific activation function.

C Data statistics

We conclude the data statistics for two-real world datasets in Table 5.

_

Table 5. Data statistics					
Data	Sample	Nodes	Traffic events		
PeMS-BAY	34,272	325	16,937,700		
METR-LA	52,116	207	7,094,304		

D Evaluation metric

The Global MAE (G-MAE), Local MAE (L-MAE), Global RMSE (G-RMSE), Local RMSE (L-RMSE) are defined in Equations 16a-17b.

$$G-MAE = \frac{1}{m \times n} \sum_{t} \|f_{\theta}(\mathcal{H}'_{t-T+1:t}) - \mathbf{Y}_{t+1:t+\tau}\|$$
(16a)

$$\text{L-MAE} = \frac{1}{m \times n} \sum_{t} \left\| f_{\theta}(\mathcal{H}'_{t-T+1:t}) - f_{\theta}(\mathcal{H}_{t-T+1:t}) \right\|,$$
(16b)

$$G-RMSE = \sqrt{\frac{1}{m \times n} \sum_{t} \left\| f_{\theta}(\mathcal{H}'_{t-T+1:t}) - \mathbf{Y}_{t+1:t+\tau} \right\|^2}$$
(17a)

$$\text{L-RMSE} = \sqrt{\frac{1}{m \times n} \sum_{t} \|f_{\theta}(\mathcal{H}'_{t-T+1:t}) - f_{\theta}(\mathcal{H}_{t-T+1:t})\|^{2}}, \quad (17b)$$

where m represents the number of samples in test sets, and n denotes the number of nodes.

E Defense adversarial traffic states

Given a spatiotemporal forecasting model $f_{\theta}(\cdot)$, the adversarial training in spatiotemporal traffic forecasting is defined as

$$\min_{\theta} \max_{\substack{\boldsymbol{\mathcal{H}}'_{t-T+1:t}\\t\in\mathcal{T}_{train}}} \sum_{t\in\mathcal{T}_{train}} \mathcal{L}(f_{\theta}(\boldsymbol{\mathcal{H}}'_{t-T+1:t}), \mathbf{Y}_{t+1:t+\tau}),$$
(18)

where $\mathcal{L}(\cdot)$ is the loss function measuring the distance between the predicted traffic states and ground truth, and θ is parameters learned during the training stage. \mathcal{T}_{train} denote the set of time steps of all training samples. We use strategies that include (1) adversarial training (AT) [8]. We use adversarial training with the PGD-Random adversarial attack method to generate the adversarial samples under white-box setting. (2) Mixup [24]. We randomly sample the clean and adversarial samples to train the forecasting model. The adversarial sample are also generated by PGD-Random method under white-box setting. (3). We use adversarial samples generated by our method STPGD-TDNS under white-box setting to train the model.

F Further experiments

F.1 Experiments on other models

The other spatiotemporal traffic forecasting models are summarized as follows. (1) STGCN [10] applies graph convolution and gated causal convolution to capture the spatiotemporal information in the traffic domain. (2) To overcome the spatiotemporal forecasting problem, ASTGCN [11] presented a spatial-temporal attention method for capturing dynamic spatiotemporal correlations. (3) MTGNN [33] created a self-learned node embedding for forecasting traffic conditions that is also not dependent on a pre-defined graph.

We report the evaluation results on other target models in Tables 6-8. By carefully selecting victim nodes, the attacker can achieve more effective attack performance with less attack budget. In particular, STPGD-TDNS achieves (62.23.80%, 55.86%) global performance improvement and (66.95.35%, 59.25%) local performance improvement on the PeMS-BAY dataset for MTGNN.

F.2 Ablation study under white-box setting

Since selecting a few set as the victim nodes is important to attack traffic forecasting model, we conduct further ablation study to evaluate the method TDNS under the white-box setting. Table 9 reports the overall results on Gwnet under white-box attack.

Methods	G-MAE	L-MAE	G-RMSE	L-RMSE
non-attack	2.8324	-	5.1708	-
PGD-Random	5.7924	4.0880	9.5659	8.0560
PGD-PR	9.6118	8.1697	15.4945	14.6314
PGD-Centrality	6.9712	5.1407	11.9507	10.7645
PGD-Degree	6.3903	4.3974	11.8196	10.6630
MIM-Random	6.0461	4.4043	9.8926	8.4604
MIM-PR	9.5573	8.1512	15.2504	14.3865
MIM-Centrality	6.9748	5.1906	11.6700	10.4777
MIM-Degree	6.5071	4.5425	11.8073	10.6640
STPGD-TDNS	9.3440	7.8039	5.1708	14.8150
STMIM-TDNS	10.2563	8.7318	5.1708	15.0358

Table 6: Grey-box attack on STGCN for *PeMS-BAY*

Table 7: Grey-box attack on ASTGCN for PeMS-BAY

Methods	G-MAE	L-MAE	G-RMSE	L-RMSE
non-attack	2.3581	-	4.9165	-
PGD-Random	5.2302	3.1082	11.5757	10.4736
PGD-PR	5.2565	3.1282	11.6177	10.5154
PGD-Centrality	5.2260	3.1101	11.5842	10.4797
PGD-Degree	5.2504	3.1377	11.6332	10.5305
MIM-Random	5.1907	3.0609	11.4680	10.3509
MIM-PR	5.2080	3.0787	11.5024	10.3861
MIM-Centrality	5.1733	3.0569	11.4584	10.3409
MIM-Degree	5.2042	3.0900	11.5236	10.4065
STPGD-TDNS	5.2635	3.1476	11.6880	10.5896
STMIM-TDNS	5.2929	3.1799	11.7534	10.6579

Table 8: Grey-box attack on MTGNN for PeMS-BAY

Methods	G-MAE	L-MAE	G-RMSE	L-RMSE
non-attack	2.1501	-	4.2637	-
PGD-Random	5.4748	4.6839	9.5824	8.7328
PGD-PR	4.7997	3.8990	8.7011	7.7349
PGD-Centrality	5.6504	4.8921	9.6820	8.8529
PGD-Degree	4.9282	4.0396	8.8791	7.9403
MIM-Random	5.7671	4.9483	9.9446	9.1007
MIM-PR	4.8927	3.9385	8.9900	8.0265
MIM-Centrality	5.6832	4.8927	9.8080	8.9533
MIM-Degree	4.9599	4.0260	9.0387	8.0839
STPGD-TDNS	14.9606	14.8017	21.9354	21.7272
STMIM-TDNS	16.0254	15.9020	23.3589	23.1604

Table 9: Ablation study under white-box attack on Gwnet for PeMS-BAY

Methods	G-MAE	L-MAE	G-RMSE	L-RMSE
non-attack	2.0288	-	4.2476	-
STPGD-Random	6.1477	5.0463	10.9217	9.5163
STPGD-PR	6.1586	5.0713	10.7584	9.3405
STPGD-Centrality	6.1723	5.0823	10.9468	9.5272
STPGD-Degree	6.1507	5.0495	10.9375	9.5282
STMIM-Random	5.9524	4.8091	10.6488	9.1917
STMIM-PR	5.9311	4.7954	10.4354	8.9565
STMIM-Centrality	5.9159	4.7786	10.5948	9.1180
STMIM-Degree	5.9570	4.8085	10.6692	9.2136
STPGD-TDNS	6.4709	5.4953	12.1764	10.7262
STMIM-TDNS	6.3018	5.2733	11.8618	10.3729

F.3 Experiments at different time intervals

We conduct further experiments at different time intervals, including 5 minutes, 10 minutes, 15 minutes, 30 minutes, and 45 minutes. We report the results at different time intervals compared with other baselines in Tables 11-15. Overall, as the time interval increases, the forecasting and adversarial attack performances decrease, as reported in Table 10.

For example, the G-MAE increases from 3.9458 to 6.1329 from a time interval of 5 minutes to a time interval of 60 minutes, with the attack performance degradation from 75.93% to 67.80%. One possible reason is that as the time interval increases, the forecasting error of the spatiotemporal model will increase. It is more challenging for the adversarial attack methods to estimate the target label to generate effective adversarial examples.

Table 10: Grey-box attack on Gwnet for PeMS-BAY at different minutes interval

	5 minutes	10 minutes	15 minutes	30 minutes	45 minutes	60 minutes
non-attack	0.9496	1.1367	1.2747	1.6154	1.8872	1.9750
STPGD-TDNS (ours)	3.9458	4.2924	3.6028	4.6629	5.2931	6.1329
performance degradation	75.93 %	73.46 %	64.62 %	65.36 %	64.34 %	67.80 %

Table 11: Grey-box attack on Gwnet for PeMS-BAY on 5 min	nutes interval

	G-MAE	L-MAE	G-RMSE	L-RMSE
non-attack	0.9496		1.7694	
PGD-Random	3.7926	3.0507	10.1258	9.9924
PGD-PR	3.8226	3.0885	10.1880	10.0526
PGD-Centrality	3.7901	3.0586	10.1208	9.9950
PGD-Degree	3.8302	3.0839	10.1733	10.0395
STPGD-TDNS	3.9458	3.2351	10.7429	10.6116

Table 12: Grey-box attack on Gwnet for <i>PeMS</i> -	<i>BAY</i> on 10 minutes interval
--	-----------------------------------

	G-MAE	L-MAE	G-RMSE	L-RMSE
non-attack	1.1367		2.2430	
PGD-Random	4.2301	3.3311	10.9604	10.7417
PGD-PR	4.2628	3.3769	11.0127	10.7993
PGD-Centrality	4.2234	3.3378	10.9677	10.7543
PGD-Degree	4.2779	3.3778	11.0364	10.8219
STPGD-TDNS	4.2924	3.4586	11.4178	11.2231

	G-MAE	L-MAE	G-RMSE	L-RMSE
non-attack	1.2747		2.5761	
PGD-Random	3.6073	2.7355	9.0194	8.6871
PGD-PR	3.6011	2.7540	8.9609	8.6240
PGD-Centrality	3.6004	2.7314	9.0132	8.6853
PGD-Degree	3.6206	2.7510	8.9892	8.6531
STPGD-TDNS	3.6028	2.7798	9.1164	8.7607

Table 13: Grey-box attack on Gwnet for PeMS-BAY on 15 minutes interval

Table 14: Grey-box attack on Gwnet for PeMS-BAY on 30 minutes interval

	G-MAE	L-MAE	G-RMSE	L-RMSE
non-attack	1.6154		3.2933	
PGD-Random	3.4294	2.3903	6.9265	6.0358
PGD-PR	3.4214	2.3999	6.8360	5.9331
PGD-Centrality	3.4666	2.4328	7.0459	6.1729
PGD-Degree	3.4190	2.3731	6.8721	5.9837
STPGD-TDNS	4.6629	3.7733	8.9025	8.1430

Table 15: Grey-box attack on Gwnet for PeMS-BAY on 45 minutes interval

	G-MAE	L-MAE	G-RMSE	L-RMSE
non-attack	1.8872		3.8593	
PGD-Random	3.6825	2.4705	7.3557	6.2334
PGD-PR	3.6789	2.4925	7.3180	6.1898
PGD-Centrality	3.6872	2.4897	7.4748	6.3791
PGD-Degree	3.7254	2.5300	7.4270	6.3325
STPGD-TDNS	5.2931	4.3660	9.7466	8.9135