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Abstract

Machine learning based traffic forecasting models leverage sophisticated spatiotem-
poral auto-correlations to provide accurate predictions of city-wide traffic states.
However, existing methods assume a reliable and unbiased forecasting environ-
ment, which is not always available in the wild. In this work, we investigate the
vulnerability of spatiotemporal traffic forecasting models and propose a practical
adversarial spatiotemporal attack framework. Specifically, instead of simultane-
ously attacking all geo-distributed data sources, an iterative gradient-guided node
saliency method is proposed to identify the time-dependent set of victim nodes.
Furthermore, we devise a spatiotemporal gradient descent based scheme to generate
real-valued adversarial traffic states under a perturbation constraint. Meanwhile,
we theoretically demonstrate the worst performance bound of adversarial traffic
forecasting attacks. Extensive experiments on two real-world datasets show that the
proposed two-step framework achieves up to 67.8% performance degradation on
various advanced spatiotemporal forecasting models. Remarkably, we also show
that adversarial training with our proposed attacks can significantly improve the
robustness of spatiotemporal traffic forecasting models. Our code is available in
https://github.com/usail-hkust/Adv-ST.

1 Introduction
Machine learned spatiotemporal forecasting models have been widely adopted in modern Intelligent
Transportation Systems (ITS) to provide accurate and timely prediction of traffic dynamics, e.g.,
traffic flow [1], traffic speed [2, 3], and the estimated time of arrival [4, 5]. Despite fruitful progress
in improving the forecasting accuracy and utility [6], little attention has been paid to the robustness
of spatiotemporal forecasting models. For example, Figure 1 demonstrates that injecting slight
adversarial perturbations on a few randomly selected nodes can significantly degrade the traffic
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Figure 1: An illustration of adversarial attack against spatiotemporal forecasting models on the Bay
Area traffic network in California, the data ranges from January 2017 to May 2017. (a) Adversarial
attack of geo-distributed data. The malicious attacker may inject adversarial examples into a few
randomly selected geo-distributed data sources. (e.g., roadway sensors) to mislead the prediction of
the whole traffic forecasting system. (b) Accuracy drop of victim nodes. By adding less than 50%
traffic speed perturbations to 10% victim nodes, we observe 60.4% accuracy drop of victim nodes in
morning peak hour. (c) Accuracy drop of neighbouring nodes. Due to the information diffusion of
spatiotemporal forecasting models, the adversarial attack also leads to up to about 47.23% accuracy
drop for neighboring nodes.

forecasting accuracy of the whole system. Therefore, this paper investigates the vulnerability of
traffic forecasting models against adversarial attacks.

In recent years, adversarial attacks have been extensively studied in various application domains,
such as computer vision and natural language processing [7]. However, two major challenges
prevent applying existing adversarial attack strategies to spatiotemporal traffic forecasting. First,
the traffic forecasting system makes predictions by exploiting signals from geo-distributed data
sources (e.g., hundreds of roadway sensors and thousands of in-vehicle GPS devices). It is expensive
and impractical to manipulate all data sources to inject adversarial perturbations simultaneously.
Furthermore, state-of-the-art traffic forecasting models propagate local traffic states through the
traffic network for more accurate prediction [5]. Attacking a few arbitrary data sources will result in
node-varying effects on the whole system. How to identify the subset of salient victim nodes with a
limited attack budget to maximize the attack effect is the first challenge. Second, unlike most existing
adversarial attack strategies that focus on time-invariant label classification [8, 9], the adversarial
attack against traffic forecasting aims to disrupt the target model to make biased predictions of
continuous traffic states. How to generate real-valued adversarial examples without access to the
ground truth of future traffic states is another challenge.

To this end, in this paper, we propose a practical adversarial spatiotemporal attack framework that
can disrupt the forecasting models to derive biased city-wide traffic predictions. Specifically, we
first devise an iterative gradient-guided method to estimate node saliency, which helps to identify a
small time-dependent set of victim nodes. Moreover, a spatiotemporal gradient descent scheme is
proposed to guide the attack direction and generate real-valued adversarial traffic states under a human
imperceptible perturbation constraint. The proposed attack framework is agnostic to forecasting
model architecture and is generalizable to various attack settings, i.e., white-box attack, grey-box
attack, and black-box attack. Meanwhile, we theoretically analyze the worst performance guarantees
of adversarial traffic forecasting attacks. We prove the adversarial robustness of spatiotemporal traffic
forecasting models is related to the number of victim nodes, the maximum perturbation bound, and
the maximum degree of the traffic network.

Extensive experimental studies on two real-world traffic datasets demonstrate the attack effectiveness
of the proposed framework on state-of-the-art spatiotemporal forecasting models. We show that
attacking 10% nodes in the traffic system can break down the global forecasting Mean Average
Error (MAE) from 1.975 to 6.1329. Moreover, the adversarial attack can induce 68.65%, and 56.67%
performance degradation under the extended white-box and black-box attack settings, respectively.
Finally, we also show that incorporating adversarial examples we generated with adversarial training
can significantly improve the robustness of spatiotemporal traffic forecasting models.
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2 Background and problem statement
In this section, we first introduce some basics of spatiotemporal traffic forecasting and adversarial
attack, then formally define the problem we aim to address.

2.1 Spatiotemporal traffic forecasting

Let Gt = (V, E) denote a traffic network at time step t, where V is a set of n nodes (e.g., regions,
road segments, roadway sensors, etc.) and E is a set of edges. The construction of Gt can be
categorized into two types, (1) prior-based, which pre-define Gt based on metrics such as geographical
proximity and similarity [10], and (2) learning-based, which automatically learns Gt in an end-to-
end way [2]. Note the Gt can be static or time-evolving depending on the forecasting model. We
denote Xt = (x1,t,x2,t, · · · ,xn,t) as the spatiotemporal features associated to Gt, where xi,t ∈ Rc

represents the c-dimensional time-varying traffic conditions (e.g., traffic volume, traffic speed) and
contextual features (e.g., weather, surrounding POIs) of node vi ∈ V at t. The spatiotemporal traffic
forecasting problem aims to predict traffic states for all vi ∈ V over the next τ time steps,

Ŷt+1:t+τ = fθ(Ht−T+1:t), (1)

where Ht−T+1:t = {(Xt−T+1,Gt−T+1), . . . , (Xt,Gt)} denotes the traffic states contains input
features and the traffic network in previous T time steps, fθ(·) is the spatiotemporal traffic forecasting
model parameterized by θ, and Ŷt+1:t+τ = {Ŷt+1, Ŷt+2, · · · , Ŷt+τ} is the estimated traffic condi-
tions of interest of V from time step t+1 to t+τ . We denote Yt+1:t+τ = {Yt+1,Yt+2, · · · ,Yt+τ}
as the ground truth of Ht−T+1:t.

Note the above formulation is consistent with the state-of-the-art Graph Neural Network (GNN)
based spatiotemporal traffic forecasting models [2, 10, 11, 12], and is also generalizable to other
variants such as Convolutional Neural Network (CNN) based approaches [13].

2.2 Adversarial attack

Given a machine learning model, adversarial attack aims to mislead the model to derive biased
predictions by generating the optimal adversarial example

x∗ ∈ argmax
x′

L(x′, y; θ) s.t. ∥x′ − x∥p ≤ ε, (2)

where x′ is the adversarial example with maximum bound ε under Lp norm to guarantee the perturba-
tion is imperceptible to human, and y is the ground truth of clean example x. Various gradient-based
methods have been proposed to generate adversarial examples, such as FGSM [14], PGD [8], MIM [9],
etc. For instance, the adversarial example x′ = x+ εsign(∇xLCE(x, y; θ)) in FGSM, where sign(·)
is the Signum function and LCE(·) is the cross entropy loss.

Note the adversarial attack happened in the testing stage, and the attackers cannot manipulate the
forecasting model or its output. On the benign testing set, the forecasting model can perform well.
Based on the amount of information the attacker can access in the testing stage, the adversarial attack
can be categorized into three classes. White-box attack. The attacker can fully access the target model,
including the model architecture, the model parameters, gradients, model outputs, the input traffic
states, and the corresponding labels. Grey-box attack. The attacker can partially access the system,
including the target model and the input traffic states, but without the labels. Black-box attack. The
attacker can only access the input traffic states, query the outputs of the target model or leverage a
surrogate model to craft the adversarial examples.

2.3 Adversarial attack against spatiotemporal traffic forecasting

This work aims to apply adversarial attacks to spatiotemporal traffic forecasting models. We first
define the adversarial traffic state as follow,

H′
t =

{
(X′

t,Gt) : ∥St∥0 ≤ η, ∥(X′
t −Xt) · St∥p ≤ ε

}
, (3)

where St ∈ {0, 1}n×n is a diagonal matrix with ith diagonal element indicating whether node i is a
victim node, and X′

t is the perturbed spatiotemporal feature named adversarial spatiotemporal feature.
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We restrict the adversarial traffic state by the victim node budget η and the perturbation budget ε.
Note that following the definition of adversarial attack, we leave the topology of Gt immutable as we
regard the adjacency relationship as a part of the model parameter that may be automatically learned
in an end-to-end way.

Attack goal. The attacker aims to craft adversarial traffic states to fool the spatiotemporal forecasting
model to derive biased predictions. Formally, given a spatiotemporal forecasting model fθ(·), the
adversarial attack against spatiotemporal traffic forecasting is defined as

max
H′

t−T+1:t

t∈Ttest

∑
t∈Ttest

L(fθ∗(H′
t−T+1:t),Yt+1:t+τ ) (4a)

s.t., θ∗ = argmin
θ

∑
t∈Ttrain

L(fθ(Ht−T+1:t),Yt+1:t+τ ), (4b)

where Ttest and Ttrain denote the set of time steps of all testing and training samples, respectively.
L(·) is the loss function measuring the distance between the predicted traffic states and ground truth,
and θ∗ is optimal parameters learned during the training stage.

Since the ground truth (i.e., future traffic states) under the spatiotemporal traffic forecasting setting is
unavailable at run-time, the practical adversarial spatiotemporal attack primarily falls into the grey-
box attack setting. However, investigating white-box attacks is still beneficial to help us understand
how adversarial attack works and can help improve the robustness of spatiotemporal traffic forecasting
models (e.g., apply adversarial training). We discuss how to extend our proposed adversarial attack
framework to white-box and black-box settings in Section 3.2.

3 Methodology
In this section, we introduce the practical adversarial spatiotemporal attack framework in detail.
Specifically, our framework consists of two steps: (1) identify the time-dependent victim nodes, and
(2) attack with the adversarial traffic state.

3.1 Identify time-dependent victim nodes

One unique characteristic that distinguishes attacking spatiotemporal forecasting from conventional
classification tasks is the inaccessibility of ground truth at the test phase. Therefore, we first construct
future traffic states’ surrogate label to guide the attack direction,

Ỹt+1:t+τ = gϕ(Ht−T+1:t) + δt+1:t+τ , (5)

where gϕ(·) is a generalized function (e.g., tanh(·), sin (·), fθ(·)), δt+1:t+τ are random variables
sampled from a probability distribution π(δt+1:t+τ ) to increase the diversity of the attack direction.
In our implementation, we derive ϕ based on the pre-trained forecasting model parameter θ∗, and
δt+1:t+τ ∼ U(−ε/10, ε/10). In the real-world production [5], the forecasting models are usually
updated in an online fashion (e.g., per hours). Therefore, we estimate the missing latest traffic states
based on previous input data, H̃t = gφ(Ht−1), where gφ(·) is the estimation function parameterized
by φ. For simplicity, we directly obtain φ from the pre-trained traffic forecasting model fθ∗(·).

With the surrogate traffic state label Ỹt+1:t+τ , we derive the time-dependent node saliency (TDNS)
for each node as

Mt =

∥∥∥∥∥σ(∂L(fθ(H̃t−T+1:t), Ỹt+1:t+τ )

∂X̃t−T+1:t

)

∥∥∥∥∥
p

, (6)

where L(fθ(H̃t−T+1:t), Ỹt+1:t+τ ) is the loss function and σ is the activation function. Intuitively,
Mt reveals the node-wise loss impact with the same degree of perturbations. Note depending on the
time step t, Mt may vary. A similar idea also has been adopted to identify static pixel saliency for
image classification [15].

More in detail, the loss function L(fθ(H̃t−T+1:t), Ỹt+1:t+τ ) in Equation 6 is updated by the iterative
gradient-based adversarial method [8],

X′(i)
t−T+1:t = clipX′

t−T+1:t,ε
(X′(i−1)

t−T+1:t + αsign(∇L(fθ∗(H′(i−1)
t−T+1:t), Ỹt+1:t+τ ))), (7)

4



where H′(i)
t−T+1:t is adversarial traffic states at i-th iteration, α is the step size, and clipX′

t−T+1,ε
(·)

is the project operation which clips the spatiotemporal feature with maximum perturbation bound ε.
Note H′(0)

t−T+1:t = H̃t−T+1:t.

For each batch of data
{
(H̃t−T+1:t, Ỹt+1:t+τ )(j)

}γ

j=1
, the time-dependent node saliency gradient

is derived by

gt =
1

γ

∑
j

{∂L(fθ
∗(H̃t−T+1:t), Ỹt+1:t+τ )

∂X′
t−T+1:t

}j , (8)

where γ is the batch size. We use the RELU activation function to compute the non-negative saliency
score for each time step,

Mt = ∥Relu(gt)∥2 . (9)

Finally, we obtain the set of victim node St based on Mt,

s(i,i),t =

{
1 if vi ∈ Top(Mt, k)

0 otherwise ,
(10)

where s(i,i),t denotes the i-th diagonal element of St, and Top(·) is a 0-1 indicator function returning
if vi is the top-k salient node at time step t.

3.2 Attack with adversarial traffic state

Based on the time-dependent victim set, we conduct adversarial attacks to spatiotemporal traffic
forecasting models. Specifically, we first generate perturbed adversarial traffic features based on
gradient descent methods. Take the widely used Projected Gradient Descent (PGD) [8] for illustration,
we construct Spatiotemporal Projected Gradient Descent (STPGD) as below,

X′(i)
t−T+1:t = clipX′

t−T+1:t,ε
(X′(i−1)

t−T+1:t + αsign(∇L(fθ∗(H′(i−1)
t−T+1:t), Ỹt+1:t+τ ) · St)), (11)

where H′(i−1)
t−T+1:t is the adversarial traffic state at i− 1-th iteration in the iterative gradient descent,

α is the step size, and clipX′
t−T+1:t,ε

(·) is the operation to bound adversarial features in a ε ball.

Note X′(0)
t = X̃t. Instead of perturbing all nodes as in vanilla PGD, we only inject perturbations

on selected victim nodes in St. Similarly, we can generate perturbed adversarial traffic features by
extending other gradient based methods, such as MIM [9].

In the testing phase, we can inject the adversarial traffic states H′
t−T+1:t = Ht−T+1:t+△H′

t−T+1:t

to apply adversarial attack, where △H′
t + Ht = {(X′

t −Xt) · St +Xt,Gt} ∈ H′
t−T+1:t and

△H′
t =

{
((X′

t −Xt) · St, 0) : ∥St∥0 ≤ η, ∥(X′
t −Xt) · St∥p ≤ ε

}
∈ △H′

t−T+1:t. The de-
tails of the adversarial spatiotemporal attack framework under the grey-box setting is in algorithm 1.

The overall adversarial spatiotemporal attack can be easily extended to the white-box and black-box
settings, which are detailed below.

White-box attack. Since the adversaries can fully access the data and labels under the white-box
setting, we directly use the real ground truth traffic states to guide the generation of adversarial traffic
states. The detailed algorithm is introduced in Appendix A.1.

Black-box attack. The most restrictive black-box setting assumes limited accessibility to the target
model and labels. Therefore, we first employ a surrogate model, which can be learned from the
training data or by querying the traffic forecasting service [16, 17]. Then we generate adversarial
traffic states based on the surrogate model to attack the targeted traffic forecasting model. Please refer
to Appendix A.2 for more details.

We conclude this section with the theoretical upper bound analysis of the proposed adversarial
attack strategy. In particular, we demonstrate the attack performance against the spatiotemporal
traffic forecasting model is related to the number of chosen victim nodes, the budget of adversarial
perturbations, as well as the traffic network topology.
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Theorem 1 Let Z(L) = fθ(Ht−T+1:t) and Z′(L) = fθ(H′
t−T+1:t) be the L-th layer embeddings

of the forecasting model, the upper bound of the adversarial loss satisfies∥∥∥Z(L) − Z′(L)
∥∥∥2
2
≤ (λβC)2Lε2η,

where λ denotes maximum weight bound in all layers of the forecasting model, β denotes parameter
of the activation function in fθ(·), C denotes the maximum degree of G. η and ε are the budget of
number of victim nodes and perturbations, respectively.

Proof. Please refer to Appendix B.

Algorithm 1: Adversarial spatiotemporal attack under the grey-box setting
Input: Previous traffic data, pre-trained spatiotemporal model fθ∗(·), pre-trained traffic state

prediction model gφ(·), maximum perturbation budget ε, victim node budget η, and
iterations K.

Result: Perturbed Adversarial traffic states H′
t−T+1:t.

/* Step 1: Identify time-dependent victim nodes */

1 Estimate current traffic state H̃t−N+1:t by function gφ(·);
2 Construct future traffic state’s surrogate labels Ỹt+1:t+τ by Equation 5 ;
3 Compute the time-dependent node saliency Mt with H̃t−T+1:t and Ỹt+1:t+τ by Equation 6-9;
4 Obtain the victim node set St by Equations 10 ;
/* Step 2: Attack with adversarial traffic state */

5 Initialize adversarial traffic state H′(0)
t−T+1:t = H̃t−T+1:t;

6 for i = 1 to K do
7 Generate perturbed adversarial features X′(i)

t−T+1:t by Equation 11;

8 △H′(i)
t−T+1:t = ((X

′(i)
t−T+1:t − X̃t−T+1:t) · St, 0);

9 end
10 Return H′

t−T+1:t = Ht−T+1:t +△H′
t−T+1:t.

4 Experiments

4.1 Experimental setup

Datasets. We use two popular real-world datasets to demonstrate the effectiveness of the proposed
adversarial attack framework. (1) PEMS-BAY [18] traffic dataset is derived from the California
Transportation Agencies (CalTrans) Performance Measurement System (PeMS) ranging from January
1, 2017 to May 31, 2017. 325 traffic sensors in the Bay Area collect traffic data every 5 minutes. (2)
METR-LA [19] is a traffic speed dataset collected from 207 Los Angeles County roadway sensors.
The traffic speed is recorded every 5 minutes and ranges from March 1, 2012 to June 30, 2012. For
evaluation, all datasets are chronologically ordered, we take the first 70% for training, the following
10% for validation, and the rest 20% for testing. The statistics of the two datasets are reported in
Appendix C.

Baselines. In the current literature, few studies can be directly applied to the real-valued traffic
forecasting attack setting. To guarantee the fairness of comparison, we construct two-step baselines
as below. For victim node identification, we adopt random selection and use the topology-based
methods (i.e., node degree and betweenness centrality [20]) to select victim nodes. We also employ
PageRank (PR) [21] as the baseline to decide the set of victim nodes. For adversarial traffic state
generation, we adopt two widely used iterative gradient-based methods, PGD [8] and MIM [9],
to generate adversarial perturbations. In summary, we construct eight two-step baselines, PGD-
Random, PGD-PR, PGD-Centrality, PGD-Degree, MIM-Random, MIM-PR, MIM-Centrality, and
MIM-Degree. For instance, PGD-PR indicates first identifying victim nodes with PageRank and
then applying adversarial noises with PGD. Depending on the adversarial perturbation method, we
compare two variants of our proposed framework, namely STPGD-TDNS and STMIM-TDNS.
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Table 1: Adversarial attack performance under the grey-box setting.

PeMS-BAY METR-LA

Attack methods
Metrics G-MAE L-MAE G-RMSE L-RMSE G-MAE L-MAE G-RMSE L-RMSE

non-attack 1.975 - 4.0220 - 6.3504 - 11.8424 -
PGD-Random 4.9876 3.7431 8.9343 7.8006 7.8947 2.7030 13.2749 5.9501

PGD-PR 4.8599 3.5819 8.8215 7.6727 7.9003 2.7070 13.2669 5.9132
PGD-Centrality 5.1640 3.9585 9.1369 8.0333 7.8554 2.7107 13.3100 5.9422

PGD-Degree 4.9121 3.6675 8.8486 7.7263 7.9011 2.7316 13.3738 6.0661
MIM-Random 5.3645 4.1739 9.7082 8.6825 7.7115 2.3793 13.1724 5.6882

MIM-PR 5.2405 4.0286 9.5902 8.5600 7.7206 2.3774 13.1294 5.6548
MIM-Centrality 5.5321 4.3820 9.9312 8.9331 7.7074 2.4255 13.2233 5.7498

MIM-Degree 5.3500 4.1745 9.5808 8.5573 7.7026 2.3877 13.2570 5.8229
STPGD-TDNS 6.1329 5.1647 10.6723 9.7003 7.7191 2.6534 13.6693 6.6794
STMIM-TDNS 5.6706 4.7010 10.1336 9.1813 7.9381 2.8848 13.8592 6.9885

Target model. To evaluate the generalization ability of the proposed adversarial attack framework,
we adopt the state-of-the-art spatiotemporal traffic forecasting model, GraphWaveNet (Gwnet) [2], as
the target model. Evaluation results on more target models are reported in Appendix F.

Evaluation metrics. Our evaluation focus on both the global and local effect of adversarial attacks
on spatiotemporal models,

Et∈Ttest
L(fθ(H′

t−T+1:t),Yt+1:t+τ ), (12a)

Et∈Ttest
L(fθ(H′

t−T+1:t), fθ(Ht−T+1:t)), (12b)

where L(·) is a user-defined loss function. Different from the majority target of adversarial attacks that
are classification models (e.g., adversarial accuracy), traffic forecasting is defined as a regression task.
Therefore, we adopt Mean Average Error (MAE) [22] and Root Mean Square Error (RMSE) [23]
for evaluation. More specifically, we define Global MAE (G-MAE), Local MAE (L-MAE), Global
RMSE (G-RMSE), Local RMSE (L-RMSE) to evaluate the effect of adversarial attacks on traffic
forecasting. Please refer to Appendix D for detailed definitions of four metrics.

Implementation details. All experiments are implemented with PyTorch and performed on a Linux
server with 4 RTX 3090 GPUs.The traffic speed is normalized to [0, 1]. The input length T and output
length τ are set to 12. We select 10% nodes from the whole nodes as the victim nodes, and ε is set to
0.5. The batch size γ is set to 64. The iteration K is set to 5, and the step size α is set to 0.1.

4.2 Overall attack performance

Table 1 reports the overall attack performance of our proposed approach against the original forecast-
ing model and eight baselines with respect to four metrics. Note larger value indicates better attack
performance and worse forecasting accuracy. Specifically, we can make the following observations.
First, the adversarial attack can significantly degrade the traffic forecasting performance. For example,
our approach achieves (67.79%, 62.31%) and (19.88%, 14.55%) global performance degradation
compared with the original forecasting results on PeMS-BAY and METR-LA dataset, respectively.
Second, our approach achieves the best attack performance against all baselines. In particular,
STPGD-TDNS achieves (15.80%, 15.39%) global performance improvement and (23.35%, 17.19%)
local performance improvement on the PeMS-BAY dataset. Similarly, STMIM-TDNS achieves
(2.44%, 2.00%) global performance improvement and (11.20%, 2.70%) local performance improve-
ment on the METR-LA dataset. Moreover, we observe STPGD-TDNS and STMIM-TDNS, two
variants of our framework, respectively achieve the best attack performance on PeMS-BAY and
METR-LA datasets, which further validate the superiority of our framework for flexibly integrate
different adversarial perturbation methods. Overall, our adversarial attack framework successfully
disrupts the traffic forecasting model to make biased predictions.

4.3 Ablation study

Then we conduct ablation study on our adversarial attack framework. Due to page limit, we report the
result of STPGD-TDNS on the PeMS-BAY dataset. We consider two variants of our approach: (1) w/o
TDNS that randomly choose victim nodes to attack, and (2) w/o STPGD that apply vanilla PGD noise
to selected victim nodes. As reported in Table 2, we observe (3.91%, 6.28%, 2.97%, 3.60%) and
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Table 2: Ablation study on PeMS-BAY.

G-MAE L-MAE G-RMSE L-RMSE
non-attack 1.975 - 4.0220 -
w/o TDNS 5.9024 4.8595 10.364 9.3635

w/o STPGD 4.5969 3.3876 8.4572 7.2949
STPGD-TDNS 6.1329 5.1647 10.6723 9.7003

  (c) Batch size  (a) Victim node budget   (b) Perturbation budget 

Figure 2: Parameter sensitivity on PeMS-BAY.

(33.41%, 52.45%, 26.19%, 32.97%) attack performance degradation on four metrics by removing our
proposed TDNS and STPGD module, respectively. The above results demonstrate the effectiveness
of the two-step framework. Moreover, we observe that the STPGD module plays a more important
role in the adversarial spatiotemporal attack.

4.4 Parameter sensitivity

We further study the parameter sensitivity of the proposed framework, including the number of victim
nodes η, the perturbation budget ε, and the batch size γ. Due to page limit, we report the result of
G-RMSE on the PeMS-BAY dataset. We observe similar results by using other metrics and on the
METR-LA dataset. Each time we vary a parameter, we set other parameters to their default values.

Effect of η. First, we vary the number of victim nodes from 0% to 40%. As reported in Figure 2 (a),
Our approach achieves the best attack performance with a limited victim node budget, and the
advantage decrease when the attack can be applied to more nodes.

Effect of ε. Second, we vary the perturbation budget from 0% to 90%. As shown in Figure 2 (b),
the G-RMSE first increase and then slightly decrease. This is perhaps because the clip function in
Equation 11 weakens the diversity of attack noises.

Effect of γ. Finally, we vary the batch size from 8 to 128, as illustrated in Figure 2 (c). We observe
the adversarial attack is relatively stable to the batch size. However, too large batch size reduces the
attack performance, which may induce over smooth of Equation 8.

4.5 Extended analysis under different attack settings

Table 3 reports the overall attack performance of our proposed approach against the original fore-
casting model and four PGD-based baselines under the white-box and black-box attack settings.
For the white-box attack, since the attacker can fully access the data and model, we re-train the
forecasting model without requiring estimating the latest traffic states. For the black-box attack,
we adopt STAWNET [12] as the surrogate model. The experimental results are summarized in
Table 3. First, we observe adversarial attacks significantly degrade the performance of the traf-
fic forecasting model under both white-box and black-box settings. For examples, our approach
achieves ((68.65%, 66.12%) and (56.67%, 50.78%) global performance degradation compared with
the vanilla forecasting model under white-box and black-box attack. Moreover, our approach con-
sistently achieves the best attack performance against baselines. To be more specific, our approach
yield (4.61%, 9.13%) and (1.70%, 3.28%) global performance improvement under the white-box
setting and black-box setting, respectively. In addition, we observe higher attack effectiveness under
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Table 3: Adversarial attack performance on PeMS-BAY under white-box and black-box settings.

White-box Black-box

Attack methods
Metrics G-MAE L-MAE G-RMSE L-RMSE G-MAE L-MAE G-RMSE L-RMSE

non-attack 2.0288 - 4.2476 - 1.9774 - 4.0219 -
PGD-Random 6.1477 5.0463 10.9217 9.5163 4.241 2.9738 7.3804 5.99

PGD-PR 6.1586 5.0713 10.7584 9.3405 4.4748 3.2605 7.9037 6.6306
PGD-Centrality 6.1723 5.0823 10.9468 9.5272 4.4859 3.3002 7.8795 6.6045

PGD-Degree 6.1507 5.0495 10.9375 9.5282 4.3577 3.1572 7.6159 6.2971
PGD-TDNS 6.4709 5.4953 12.1764 10.7262 4.5636 3.3543 8.1716 6.9388

Table 4: Performance of defense adversarial spatiotemporal attack on PeMS-BAY. ( Values in paren-
theses indicate std)

Defense strategies
Attack methods Non-attack PGD-Random PGD-PR PGD-Centrality PGD-Degree

Non-defense 2.0288 6.1477 6.1586 6.1723 6.1507
AT 2.1156 2.5436 (0.0249) 2.5539 (0.0375) 2.5660 (0.0281) 2.5394 (0.0279)

Mixup 2.3090 2.7482 (0.0126) 2.7573 (0.0241) 2.7501 (0.0088) 2.7788 (0.0234)
AT-TDNS 2.0935 2.4695 (0.0036) 2.4463 (0.0075) 2.4549 (0.0023) 2.4474 (0.0069)

the white-box setting and lower attack effectiveness under the black-box setting compared to the
grey-box setting. This makes sense as the white-box setting can fully access the data and label,
while the black-box has more restrictive data accessibility and relies on the surrogate model to apply
adversarial spatiotemporal attack.

4.6 Defense adversarial spatiotemporal attacks

Finally, we study the defense of adversarial spatiotemporal attacks. One primary goal of our study
is to help improve the robustness of spatiotemporal forecasting models. Therefore, we propose to
incorporate the adversarial training scheme for traffic forecasting models with our adversarial traffic
states, denoted by AT-TNDS. We compare it with (1) conventional adversarial training (AT) [8] and
(2) Mixup [24] with our adversarial traffic states. Note that we also tried other strategies, such as
adding L2 regularization, etc., which fail to defend the adversarial spatiotemporal attack. The other
state-of-the-art adversarial training methods, such as TRADE [25], cannot be directly applied in
regression tasks. Please refer to Appendix E for more training details.

The results in G-MAE on the PeMS-BAY are reported in Table 4. Overall, we observe AT or Mixup can
successfully resist the adversarial spatiotemporal attack, and AT-TDNS that combines the adversarial
training scheme with our adversarial traffic states achieves the best defensive performance. The
above results indicate the defensibility of adversarial spatiotemporal attacks, which should be further
investigated to deliver a more reliable spatiotemporal forecasting service in the future.

5 Related work
Spatiotemporal traffic forecasting. In recent years, the deep learning based traffic forecasting model
has been extensively studied due to its superiority in jointly modeling temporal and spatial dependen-
cies [10, 11, 6, 26, 2, 12, 27, 28]. To name a few, STGCN [10] applied graph convolution and gated
causal convolution to capture the spatiotemporal information in the traffic domain, ASTGCN [11]
proposed a spatial-temporal attention network for capturing dynamic spatiotemporal correlations. As
another example, GraphWaveNet [2] adaptively captures latent spatial dependency without requiring
prior knowledge of the graph structure. The key objective of the above mentioned models is more
accurate traffic forecasting. The vulnerability of spatiotemporal traffic forecasting models remains an
under explored problem.

Adversarial attack. Deep neural networks have been proven vulnerable to adversarial examples [8,
14]. As an emerging direction, various adversarial attack strategies on graph-structured data have
been proposed, including both target-attack and non-target attack [29, 30]. However, existing efforts
on adversarial attacks mainly focus on classification tasks with static label [9, 24]. Only a few
works study the vulnerability of GCN based spatiotemporal forecasting models under query-based
attack [31] and generate adversarial examples based on evolutionary algorithms [32]. In this paper,
we study the gradient based adversarial attack method against spatiotemporal traffic forecasting
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models, which is model-agnostic and generalizable to various attack settings, i.e., white-box attack,
grey-box attack, and black-box attack.

6 Conclusion
This paper showed the vulnerability of spatiotemporal traffic forecasting models under adversarial
attacks. We proposed a practical adversarial spatiotemporal attack framework, which is agnostic to
forecasting model architectures and is generalizable to various attack settings. To be specific, we first
constructed an iterative gradient guided node saliency method to identify a small time-dependent set
of victim nodes. Then, we proposed a spatiotemporal gradient descent based scheme to generate real-
valued adversarial traffic states by flexibly leveraging various adversarial perturbation methods. The
theoretical analysis demonstrated the upper bound of the proposed two-step framework under human
imperceptible victim node selection budget and perturbation budget constraints. Finally, extensive
experimental results on real-world datasets verify the effectiveness of the proposed framework. The
reported results will inspire further studies on the vulnerability of spatiotemporal forecasting models,
as well as practical defending strategies for resisting adversarial attacks that can be deployed in
real-world ITS systems.
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