Lottery Tickets on a Data Diet:
Finding Initializations with Sparse Trainable Networks

Mansheej Paul'* Brett W. Larsen'*
Surya Ganguli? Jonathan Frankle3*° Gintare Karolina Dziugaite® "’
!Stanford 2Meta AI 3MIT “*MosaicML ~ ®Harvard ®Google Brain "Mila; McGill

Abstract

A striking observation about iterative magnitude pruning (IMP; Frankle et al. |10)
is that—after just a few hundred steps of dense training—the method can find a
sparse sub-network that can be trained to the same accuracy as the dense network.
However, the same does not hold at step 0, i.e., random initialization. In this
work, we seek to understand how this early phase of pre-training leads to a good
initialization for IMP both through the lens of the data distribution and the loss
landscape geometry. Empirically we observe that, holding the number of pre-
training iterations constant, training on a small fraction of (randomly chosen) data
suffices to obtain an equally good initialization for IMP. We additionally observe
that by pre-training only on “easy” training data we can decrease the number of
steps necessary to find a good initialization for IMP compared to training on the
full dataset or a randomly chosen subset. Finally, we identify novel properties
of the loss landscape of dense networks that are predictive of IMP performance,
showing in particular that more examples being linearly mode connected in the
dense network correlates well with good initializations for IMP. Combined, these
results provide new insight into the role played by the early phase training in IMP.

1 Introduction

Modern deep neural networks are often trained in the massively over-parameterized regime. Though
these networks can eventually be pruned, quantized, or distilled into smaller networks, the resources
required for the initial over-parameterized training poses a challenge to the democratization and
sustainability of Al This raises a fundamental question: under what circumstances can we efficiently
train sparse networks? Recent work on the lottery ticket hypothesis [9}110] has shown that, after just a
few hundred steps of pre-training, a dense network contains a sparse sub-network that can be trained
without any loss in performance. Finding this sparse sub-network currently requires multiple rounds
of training to convergence, pruning, and rewinding to the pre-train point, a procedure termed iterative
magnitude pruning (IMP, Figure[T}, [9.[10]), Remarkably, even after all these rounds of training, we
do not find trainable sparse sub-networks if we rewind to the random initialization; the first few
hundred steps of dense network training is essential for finding sparse networks through IMP. In
this work, we seek to understand this very short but critical phase of pre-training. In particular, we
investigate the effect of training data and number of steps used during pre-training on the accuracy
achieved by IMP. We also explain how certain properties of the loss landscape allow us to predict
whether we will find a matching initialization (i.e., an initialization from which IMP “succeeds” in
finding a subnetwork that can match the accuracy of the unpruned network, to be formalized later).

IMP proceeds in three phases: an initial pre-training phase where (1) the dense weights are trained
for a few hundred steps, followed by (2) the resource-intensive mask search phase, during which we

*Equal contribution. Correspondence to: {mansheej,bwlarsen}@stanford.edu; gkdz@google.com

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Phase T: Pre-training

Pruning Round 1

yoJeas ysep iz aseyd

Final Mask

Train Loss

WT Barrier WT

Phase 3: Sparse Training

Figure 1: Left: Three phases of iterative magnitude pruning (IMP) with weight rewinding [10]]. A
dense network is trained in the pre-training phase for ¢, iterations, where ¢, is referred to as the
rewinding iteration, and w _ is the parameters of the network at the rewinding point. The mask search
phase produces a sparse subnetwork at a desired sparsity level by iteratively training, pruning the
smallest magnitude weights, and rewinding to w; . The sparse training phase trains the final sparse
subnetwork to convergence, starting with weights w;_. Right: Illustration of computing the train
loss barrier for initialization wy, . wp and w/. are trained with different data order.

iteratively find a sparse mask by training the network and rewinding the weights repeatedly, finally,
ending with (3) the sparse training phase, when the sparse masked network is trained. The weights
learned after the pre-training phase—which serve as the initialization for the mask search phase—are
referred to as the pre-trained initialization (see Figure|[l).

In this work, we focus on studying the pre-training phase. To probe sufficient information needed to
arrive at a matching initialization for IMP, we modify the pre-training phase by training with different
pruned datasets and varying the number of pre-training steps; we then compare the performance
of the resulting sub-networks across a range of sparsities. Following Paul et al. 23], we prune
the datasets both randomly and according to EL2N scores, which estimate example difficulty by
measuring early training performance in an ensemble of networks. We next turn to characterizing
the loss landscape properties of matching initialization for IMP. Frankle et al. [10] investigate the
relationship between successful initializations for IMP and linear mode connectivity on the sparse
initialization for the entire dataset; here, we investigate this relationship on the dense initialization on
a per-example basis. This enables us to identify signatures of the dense loss landscape correlated
with a matching initialization. Thinking more broadly, we explore the relationship between sparse
trainability and training stability. Gilmer et al. [[13] demonstrate that, in hyperparameter regimes in
which early training is unstable, learning rate warmup helps stabilize training. We build on this by
investigating if the same pruned datasets which decreased the amount of pre-training required to find
a matching initialization for IMP also decrease the required duration of learning rate warmup.

Overall, this empirical analysis provides new insight into the important and mysterious role that
pre-training the dense network plays in IMP. Intriguingly, finding a matching initialization for IMP
is an example of a problem in which the dominant paradigm of “more data, more training” is not
optimal. Indeed, by carefully choosing the training examples, we can not only use a very small
subset of the data but also reduce the training time required to solve this problem. From a scientific
perspective, this suggests that different phases of training play different roles in the optimization
process. Identifying and characterizing these phases will not only lead to a deeper understanding
of the optimization of deep neural networks but also allow us to design training strategies that are
optimal for each phase. From the practical standpoint, data loading is often an expensive part of the
training process and can be a bottleneck especially early in training. By identifying the essential
subset for this phase of training, our work may enable strategies to eliminate this bottleneck.

Contributions. We find empirical evidence for the following statements:

* In the pre-training phase, only a small fraction of the data is required to find a matching
initialization for IMP: On standard benchmarks, across all sparsity levels we evaluated, we find
that we can match accuracy by training on a small fraction of all of the available training data,
selected randomly. (As we vary the amount of training data in pre-training phase, the number

of training iterations is held fixed.) Note that this observation changes if random label noise is
introduced, in which case it becomes important to select easy (small EL2N score) examples.

* The length of the pre-training phase can be reduced if we train only on the easiest examples:
Informally, training on a small subset of “easy-to-learn” training examples produces a better
rewinding point than training on all data for the same number of iterations;

¢ The quality of a pre-trained initialization for IMP correlates with more examples being
linearly mode connected in the dense network: This result complements the empirical evidence
produced by Frankle et al. [10] connecting linear mode connectivity and the performance of IMP.

¢ Training on easy data, which reduces the amount of pre-training required to find a matching
initialization for IMP, does not reduce the amount of training required to stabilize the network
via learning rate warmup ([13]]): The role played by data during IMP pre-training is thus different
than that during learning rate warmup.

2 Background, Methods, and Related Work

We consider standard neural network training on image classification. Let S = {(x,,y,)}2;
denote training data, let w; € RP denote model parameters (weights) of the neural network, and
let wi, wao, ... be the iterates of (some variant) of SGD, minimizing the training /oss, i.e., average
cross-entropy loss over the training data. For a given training example x,,, let f(w,x) € R denote
the logit outputs of the network for weights w and p(w, x) = o(f(w, x)) be the probability vector
returned by passing the logits through the softmax operation o. By the loss (error) landscape, we
mean the training loss (error), viewed as a function of the parameters. By training and test error, we
mean the average 0-1 classification loss.

Lottery ticket subnetworks. The lottery ticket hypothesis 9] states that any standard neural network
“contains [at initialization] a subnetwork that is initialized such that—when trained in isolation—it
can match the test accuracy of the original network after training for at most the same number of
iterations.” Although such matching subnetworks (those that can train to completion on their own
and reach full accuracy by following the same procedure as the unpruned network) are not known to
exist in general at random initialization, they have been shown to exist after pre-training the dense
network for a short amount of time (Phase 1 in Figure[T)) before pruning [2} [10, 17, 23] 27].

Empirical evidence for this phenomenon comes via a procedure that finds such subnetworks retroac-
tively after training the entire network. This procedure, called Iterative Magnitude Pruning [IMP;
10] is based on standard iterative pruning procedures [[14]], and can be decomposed into three phases
(Figure[I), outlined in Algorithm|I]

Algorithm 1 IMP rewinding to step ¢,, and N iterations.

1: Create a network with randomly initialization wo € RrRY.
2: Initialize pruning mask to m = 1¢.
3: Train wg for ¢, steps to wy,. > Phase 1: Pre-Training
4: forn e {1,...,N} do > Phase 2: Mask Search
S: Train the pruned network m ® wy,. to completion. (® is the element-wise product)
6: Prune the lowest magnitude 20% of weights after training.
Let m[i] = 0 if the corresponding weight is pruned.
7: Train the final network m ® wy, . Measure its accuracy. > Phase 3: Sparse Training

This procedure reveals the accuracy of pre-training the dense network for ¢, iterations, pruning,
and training the pruned network thereafter. Phase 2 can be understood as an (expensive) oracle for
choosing weights to prune at ¢,.. Although IMP is too expensive to use as a practical way to speed
up training, it provides a window into a possible minimal number of parameters and operations
necessary to successfully train a network to completion in practice. In our work, we extend this line
of thinking, pursuing the minimal amount of data necessary to find and train these subnetworks. This
is especially tantalizing due to the potential positive interactions between sparsity and minimizing
the data necessary for training. The result is a deeper inquiry into the minimal recipe for successful
training and, thereby, into the fundamental nature of neural network learning in practice.

In this respect, the closest work to ours is an experiment in a larger compendium by Frankle et al. [[11]
showing that the standard pre-training phase could be replaced by a much longer self-supervised phase.

Like our experiments in Section[3] that work aims to study what makes a matching initialization. Our
approach and findings are substantially different, however: we reduce the number of examples rather
than changing the labels, and we show that, not only are a small set of examples (starting at ~ 2%)
sufficient for pre-training, but also that they make it possible to pre-train in fewer steps.

There are many other ways to obtain pruned neural networks [e.g.,[7 14} 16,20} 29]. The distinctive
aspect of work on the lottery ticket hypothesis (and the one that makes it the right starting point for
our inquiry) is that its goal is to uncover a minimal path from initialization to a trained network,
regardless of the cost of doing so. The aforementioned procedures target real-world efficiency for
training and/or inference.

Linear Mode Connectivity and the Loss Barrier. We investigate the error landscape using the
parent—child methodology and instability analysis of Frankle et al. [10]] and Fort et al. [8]. Writing
err(w) for the test error at the weights w, the (test) loss barrier between two networks w and w’
is sup, o 1yferr(aw + (1 — a)w') — (averr(w) + (1 — a)err(w’))]. This quantity measures the
maximum increase in loss above the average loss along the linear path connecting the two networks
on the loss landscape.

The loss barrier at iteration ¢ (with parent weights w;) is the loss barrier between the (children)
weights wp and w’., where wp and w/. are copies of w; trained to completion with the same
procedure but different random seeds (minibatch order, GPU noise, data augmentation, etc.). See
Figure Eright for a visualization. Empirically, the loss barrier is achieved near o = %, and so we
compute it this way. The onset of linear mode connectivity (LMC) is defined to be the iteration £ such
that, for all ¢ > ¢, the error barrier at ¢ is zero. We follow Draxler et al. [4]], Garipov et al. [12]], and
Frankle et al. [[10] in considering the 0-1 loss barrier to be zero if it is less than 2%. Similar to Paul
et al. [23], we also measure the error (0-1 loss) or cross-entropy loss barrier on individual training
examples to explore the loss landscape corresponding to different subpopulations.

Ranking training examples. We define “easy/hard data” as the data that is ranked low/high, respec-
tively, by the EL2N score introduced by Paul et al. [23]]. EL2N scores depend on the margin early in
training, and, loosely speaking, higher average margin early in training means lower importance for
generalization of the final trained model. This connection to margin suggests that easy data is learned
first (has higher margin early in training, maintained throughout the rest of training). EL2N scores
were derived from the size of the loss gradient, and are thus are highly correlated with the magnitude
of the gradient.

Definition 2.1 (EL2N Score) The EL2N score of a training sample (x,y) at iteration t is defined as
E||p(ws,x) — y||2, where the expectation is taken over w; conditioned on the training data.

To calculate EL2N scores for a dataset, we follow the process outlined in [23]. In particular, we do
the following:

1. Independently train K = 10 networks from different random initializations for ¢ iterations.

2. For each example and each network, we calculate the L2 norm of the error vector defined as
|lp(x) — y||2 where y is the one-hot encoding of the label, and p(x) are the softmax outputs of
the network evaluated on example x.

3. For each example, the EL2N score is the average of the error vector L2 norm across the K
networks.

In our experiments (Section [3), we vary the data that is accessible in the pre-training phase of IMP
defined above. We either choose the data that we feed to the algorithm at random while preserving
class balance, or based on the EL2N scores.

Stabilizing early training via learning rate warmup. Learning rate warmup period can be seen
as a form of pre-training, allowing one to eventually train at higher learning rates and larger batch
sizes. Training with large batches and high learning rates is desirable in practice, as it allows for more
efficient GPU utilization and may reduce the total number of updates needed to achieve the desired
accuracy. Gilmer et al. [[13] empirically observe that learning rate warmup essentially improves
the optimization by allowing the initial optimization trajectory to navigate to “flatter”” optimization
landscape, i.e., one with smaller highest loss Hessian eigenvalue.

3 The Role of Training Data Selection in Pre-Training

As can be seen in Figure[2, when training sparse networks using IMP with rewind step ¢, = 0, the
final test accuracy of the sparse networks falls off rapidly with increasing sparsity. However, as we
increase the rewind step t,., the network performance improves across all sparsity levels and at a
rewind step t*, the network performs as well as or better than the dense network at high sparsities.
Informally, training the dense network for ¢* steps creates a matching initialization for IMP. But what
does the network learn in these first t* steps? In this section, we take the first step towards answering
this question by investigating which subsets of the training data are sufficient for finding a matching
initialization. In order to compare networks trained on different subsets of data for different numbers
of iterations, we introduce the notion of a matching initialization with the following definitions.

Definition 3.1 Let w; be the dense network weights after training on a subset of the training data,
S until rewind step t. Then for two data subsets {S, S'}, rewind times {t,t'} and a given range of

sparsities, Wf,, is said to dominate (weakly dominate) wf if sparse networks obtained from IMP with

Wf;/ as the initialization achieve better (no-worse) accuracy than those obtained from IMP with w*?
as the initialization.

CIFAR-10 + ResNet-20 CIFAR-100 + ResNet-32 CINIC-10 + ResNet-56
Subset Size 3200 (6.4%), "= 400 Subset Size 2048 (4.1%), t"= 800 Subset Size 51.2k (28.4%), 1= 800

Sags Simceespanpedo.
001 = — e - .
Saa —

PESSTE NG

=

- =5 ==

Final Test Accuracy

W, \
X \
N 060 X \
0.85 Y B o \ :
\ 058 & \
0

262 1 107 69 28 1000 640 410 69 a4 28 100.0 64.0 107 69
% Weights Remaining

262 168 107 alo 262 16.8
% Weights Remaining % Weights Remaining

All Data All Data All Data @— Random Subset N Easiest Examples Hardest Examples

Full Model Accruacy (Rewind It. 0) (Rewind It. +*/2) (Rewind It. 1°) (Rewind It. +*/2) - (Rewind It. ¢*/2) (Rewind It. °/2)

Figure 2: For a given rewind step ¢,, = ¢* /2, training on a small fraction of random data during the
pre-training phase of IMP leads to matching initializations (compare the solid green with circles
and dashed orange curves) across dataset, network, and hyperparameter configurations. Using just
the easiest training examples during this phase produces a matching initialization for rewind point
t* in just t* /2 steps (compare the solid red with triangles and dashed blue curves). Pre-training on
the hardest examples is detrimental to the performance of the initialialization (solid pink curve with
crosses). IMP with rewinding to initialization (dashed yellow curve) and the dense model (dashed
grey curve) are used as baselines. For each dataset + network configuration, we present the best
performing easy data subset size. For a sweep across subset sizes, see Figure[3]and the Appendix [E.

For a network trained on the full dataset for ¢ steps, we write w;. In Figure |Z, we see that w-
dominates wy- /o which in turn dominates wo. We investigate which data subsets S and rewind

steps t lead to networks w? that dominate w~ and w- s2—such networks are called matching
initializations.

Definition 3.2 A dense network w7 is a matching initialization for rewind time t* if w; weakly
dominates Wx.

We empirically find that certain surprisingly small subsets .S and rewind step ¢,, < t* lead to matching
initializations for rewind time ¢*.

Experimental design. To evaluate the effect of the training subset size and composition on the
quality of the pre-trained initialization, we train ResNet-20/ResNet-32/ResNet-56 on subsets of
CIFAR-10/CIFAR-100/CINIC-10, respectively. The subset size M is varied and subsets are chosen
as follows: (i) M randomly selected examples, distributed equally among all classes; (ii) the easiest
M examples; (iii) the hardest M examples. The easiest examples are those with the smallest EL2N
scores and the hardest are the examples with the largest EL2N scores [23].

2Note that due to the stochasticity in training and risk measurements, we ignore small deviations in the final
test accuracy. Thus one rewinding point could weakly dominate another one even if at some sparsity levels their
mean performance “crosses” over while approximately remaining within the standard error of one another.

16.8% Weights Remaining 10.7% Weights Remaining 6.9% Weights Remaining
(8 Pruning Rounds) (10 Pruning Rounds) (12 Pruning Rounds)

°
°

°

o

CIFAR-10 + ResNet-20
t*= 400

°

o

Final Test Accuracy

s o
°

°

o.
256 512 1024 20483200 6400 12800 25600 256 512 1024 20483200 6400 12800 25600 256 512 1024 20483200 6400 12800 25600

°

CIFAR-100 + ResNet-32
t*= 800

°

o
°
.

Final Test Accuracy
o o
>
s o
AN

058 058 058

o. o
256 512 1024 2048 3200 6400 256 512 1024 2048 3200 6400 256 512 1024 2048 3200 6400

0.865 0.865

|
‘
°

0.860

0855 o T s 0855

0.850 0.850

CINIC-10 + ResNet-56
"= 800

0.845 0.845

Final Test Accuracy
+

0.840 0.840

0.835 0835

o o. o
12800 0 102400 12600 0 102400 12600 2 0 102400

25600 5120 25600 5120 5600 51201
Dataset Size Dataset Size Dataset Size

All Data All Data All Data @ Random Subset 4 Easiest Examples Hardest Examples
«

Rewind It. ¢*/2) - (Rewind It. 1°/2) (Rewind It ¢*/2)

Full Model Accruacy (Rewind It. 0) (Rewind It. /2) (Rewind It. 1)

Figure 3: A summary of the the dependence on subset size for the style of experiments described
in Figure 2| The first column represents the performance across subset size for the fixed sparsity
16.8% weights remaining or 8 rounds of pruning. The subsequent columns show the same for 10.7%
(10 pruning rounds) and 6.9% (12 pruning rounds) respectively. The horizontal lines correspond to
baseline runs at rewind steps 0, t* /2, and ¢t* using all the data. For CINIC-10 (bottom row), rewind
step 0 and the hardest data subsets are not visible in some cases because their accuracies fall below
the range displayed.

Due to the significant computational demands of performing IMP with multiple pre-training schemes
and replicates, we focus on a targeted set of pre-training iterations ¢,.. In particular, we study the
pre-training iteration ¢,, = t* where training on all examples leads IMP to find spare sub-networks
that perform as well as the dense network for a large range of sparsities (¢* = 400 for CIFAR-10 and
800 for CIFAR-100 and CINIC-10). We also study the more challenging pre-training iteration of
t, = %, where pre-training on all data does not yield a matching initialization. When M examples
are not enough to train for ¢, iterations without replacement, we make multiple passes over the M
examples as necessary. Figure 2 shows the best performing easy data subset for each dataset across
the full range of sparsities; Figure [3]shows the performance across subset size at three fixed sparsities.

Randomly chosen examples. Pre-training the dense networks on small, randomly chosen subsets S
can lead to initializations for IMP, wfp, that dominate initializations wy,_, trained on the entire training
set for the same number of steps. In Figure 2 we see that for all dataset + network combinations,
pre-training the dense network on a small random subset (solid green curve with circles; sizes ranging
from 4.1% for CIFAR-100 to 28.4% for CINIC-10) for ¢,, = ¢* /2 leads to initializations that (weakly)
dominate those that were obtained from training the network for the same number of steps on all
the data. This observation leads to a surprising suggestion: in these experiments, the subset size is
smaller than the total number of images seen during the pre-training phase; for the particular goal of
finding a matching initialization of IMP, multiple passes through the same small dataset can be more
beneficial than seeing more random data.

Easiest examples (lowest EL2N scores). By pre-training on just the easiest examples (identified by
lowest EL2N scores, solid red curve with triangles in Figure[2), we can obtain matching initializations
in fewer steps compared to training on the full dataset. In Figure[2, we see that for all three dataset
and network combinations and for the subset sizes shown, the initialization obtained from training on
the easiest examples for ¢, = ¢*/2 steps leads to matching initializations for ¢*.

CIFAR-10 + ResNet-20 CIFAR-10 + ResNet-20
10% Randomized Labels During Pre-Training 50% Randomized Labels During Pre-Training

Final Test Accuracy

IS4
@
o

0.85

0.84
100.0 64.0 41.0

26.2 16.8 10.7 6.9 4.4 2.8 100.0 64.0 41.0 26.2 16.8 10.7 6.9 4.4 2.8
% Weights Remaining % Weights Remaining
All Data All Data All Data P Random Subset Easiest Examples Hardest Exampﬁs

Full Model Accruacy (Rewind It. 0) (Rewind It. /2) ~7777 (Rewind It.) (Rewind It. 1*/2) (Rewind It. 1°/2) (Rewind It. *

Figure 4: Pre-training on a random subset or all data is not robust to label noise during this initial
phase of IMP. However, pre-training with the easiest data as scored by EL2N scores computed from
the corrupted dataset is robust. In both the left (10% randomized labels) and right (50% randomized
labels), pre-training on the easiest data for ¢* /2 iterations dominates all other pre-training schemes,
including training on all data for ¢* iterations. Results for additional subset sizes are included in
Appendix [E.

Hardest examples (highest EL2N scores). Conversely, pre-training on the hardest examples (solid
pink curve with crosses in Figure [2) yields worse accuracies than pre-training on all examples or
a random subset. In fact, on CIFAR-10 the hardest examples perform little better than using no
pre-training at all. Interestingly, when training a dense network, these hardest examples are crucial
for obtaining a network with good generalization properties [23]]. This suggests that while the hard
example may be key later in training, repeated passes through easier examples should be the focus
during the very early stages of training to quickly find a good initialization for IMP.

Randomized labels during pre-training. Pre-training on a all data or a random subset is not robust
to corruption with random label noise [28] during the pre-training phase. As seen in Figure |, the
higher the percentage of randomized labels, the lower the performance of these data subsets, and
in particular, the pre-trained rewinding point becomes no better than a random initialization when
50% of the labels are randomized. On the other hand, training on easiest data with EL2N scores
computed on the corrupted dataset is robust to this noise (solid red curve with triangles in Figure).
This is because examples with randomized labels are hard ([23]]) according to this metric, and thus
the easiest examples will select a subset of largely uncorrupted data.

Summary. Taken together, our results suggest that, finding a matching initialization for IMP at
rewinding step ¢* is an interesting problem in which “more data, more training” is not optimal; it is
neither necessary to train on all the data nor to train for the full t* steps. In fact, we can get away with
training on a surprisingly small dataset for as little as half the number of steps if we make multiple
passes through the right examples, here the easiest examples as defined by lowest EL2N scores.

4 Pre-training through the lens of Linear Mode Connectivity

Frankle et al. [10]] observed a strong indicator of whether a sparse sub-network generated by IMP
would be able to match the accuracy of the dense network is whether or not that sparse sub-network
train to the same linearly connected mode (i.e. the train loss barrier is close to 0, see Figure[T). Here
we ask what properties of the dense network at the rewind point might also be predictive of this
property. In the architectures + datasets we consider, the onset of linear mode connectivity (LMC)
occurs in the dense network later than the first rewind time which produces a good initialization
for IMP (i.e. t > t,), and thus, we consider two generalizations to the notion of LMC. First, we
look at the train loss barrier on a per-example basis meaning that instead of considering the full loss
landscape we separately look at the performance of the linear interpolation on each example (the
original notion of train loss barrier is obtained by averaging these values). Second, we then look at
the distribution of these per-example train loss barriers as a continuous measure of the state of the
network rather than simply considering whether their average is 0. We demonstrate in general that
these measures of the loss landscape of the dense network correlate well with the IMP performance
of the pre-trained initialization. We additionally show that pre-training on easy data results in a

All Data (400 Iterations) All Data (800 Iterations)

12000 12000 0.67
.
0.66 - T A' N
10000 10000 Mt~ Y
] ,.065 - g A
a 8
g 8000 8000 € o6a
] § « eew
5 6000 = 0.63
5 7 .
o 2 PN ¢
2 5 0.62 :
3]
§ 4000 uE. [y .
z 0.61 . + Al Examples.
o Random
2000 0.601 = 4 Smallest EL2N Score
. Lowest Train Loss Barrier
0.
2 %) 5 10 5 20 > 004 006 008 010 012 014 016 018
. Pretrain Test Accuracy
X 2048 Easiest Examples / Smallest EL2N Scores
3200 Random Examples (400 Iterations) (400 Iterations) 067
12000 12000
. + Al Examples
PYTS B i Random
10000 10000 AT e o 4 Smallest EL2N Score
” 0.65 ¢ Lowest Train Loss Barrier
8 - v
;Q 8000 8000]
s Soes s
& ¢ -
5 6000 6000 4063 o
g 2 0.62 .
s
£ 4000 4000 g ¢ .)| .
= 061 %
2000 2000
0.60 .
.
0 0 S 0.59 T T T T T J
=5 0 5 10 15 20 25 =5 0 5 10 15 20 25 4 6 8 10 12 14
Train Loss Barrier Train Loss Barrier Mean Train Loss Barrier

(a) CIFAR-100, ResNet-32, t* = 800 and ¢, = t* /2 = 400.

All Data (200 Iterations) All Data (400 Iterations) 0.864
600000 600000 alag
0.862 % *
1 500000 500000 > A A -
o 3 A .
a 2 0.860 +e
£ 400000-| 400000 2 ° 4 Refdy
& S 0858
w < * A
= 300000 300000 = A
° 8 0.856
I s ® .
-2 200000 200000
£ g 0.854 o © # Al Examples
® Random
Z 1000004 100000 0.852 A Easiest
® Lowest Train Loss Barrier
o-! 0 0.850 T T ; T : T
-50 -25 0.0 25 50 7.5 10.0 -50 -25 00 25 50 7.5 100 030 035 040 045 050 055
i Pretrain Test Accurac
25.6K Random Examples (200 Iterations) 25.6K Easiest Exé"gg'ﬁzr/a?{::y)e“ EL2N Scores ! uracy
600000 600000 0.864
A A A # Al Examples
500000 500000 0.862 % @ _Random
ki) . * 2 A Easiest
g 20860 '+ A Lowest Train Loss Barrier
5 400000 400000 g - $eo,
o
5 300000 300000 0858 RN
bl $0.856
8200000 200000 s I
5) Zoss4 e °
Z 100000 LT 100000 =
‘ 0.852 .
01 T y ¥ i — T 01 - - T T T T
=50 -25 00 25 50 75 100 -50 -25 00 25 50 7.5 100 0.850 T T T T T
Train Loss Barrier Train Loss Barrier 0.5 1.0 15 2.0 25

Mean Train Loss Barrier

(b) CINIC-10, ResNet-56, t* = 400 and ¢, = t*/2 = 200.

Figure 5: Left and center columns: Pre-training on all the data for ¢* (top right) vs. ¢*/2 (top left)
steps leads to a distribution shift to smaller per-examples train loss barriers between children runs of
the dense network. When pre-trained for just ¢* /2 iterations but with a random subset of data, the
distribution is similar to pre-training on all data for ¢* /2 steps. However, when pre-trained on a subset
of easy examples for t* /2 iterations, the distribution of train loss barriers displays a shift comparable
to pre-training on all the data for ¢* iterations. As seen in Figure[2 and the Appendix, pre-training
with this random subset matches pre-training with all data for ¢* /2 steps while pre-training with
the easiest data for ¢*/2 matches pre-training on all data for ¢* steps. This observation suggests
that the per-example distribution of train loss barriers may be a useful signature for predicting the
IMP performance of dense initializations. Right column: Scatter plots of final test accuracy vs.
pre-train accuracy of the dense initialization (top) and the mean train loss barrier (bottom) across a
variety of dataset pruning strategies for pre-training. Final test accuracy is at 8.6% weights remaining
(11 pruning rounds) for CIFAR-100 and 21% weights remaining (7 pruning rounds) for CINIC-10.
We observe that the mean train loss batrrier is better correlated with the final test accuracy than the
pre-train accuracy of the dense initialization.

distribution with a large fraction of examples linearly mode connected faster than pre-training on all
data. See Appendices [B]and [C|for additional experiments and an exploration of why this occurs.

The distribution of per-example loss barriers. In the left and center columns of Figure|5|we plot
histograms of per-example loss barriers for various rewinding points and data subsets for CIFAR-100
(panel a) and CINIC-10 (panel b). There is a clear shift in the empirical distribution of the per-example
loss barriers — not only the mean is shifting as previously observed, but also the mode. Pre-training

on all data for t* iterations has the same effect on the distribution of the loss barriers as pre-training
on the easy examples for ¢* /2 iterations, two procedures which produce matching IMP initializations.

Given the connection between the error barrier and IMP sub-network performance, it is natural to
ask whether examples which achieve low loss barrier early in training with the full dataset are more
important for producing a matching initialization than high loss barrier examples. We call this ranking
of the data by the per-example loss barrier at a given iteration the LMC score, and the blue squares
in the scatter plot are the result of training on a subset of the data determined by this score. Our
empirical findings suggest that using this score does not match the performance of using easy data
(see Appendix D).

The correlation between final test accuracy and mean train loss barrier. The right column of
Figure [5]shows a scatter plot of final test accuracy of the sparse trained network vs. two different
properties of the dense initialization: test accuracy of this pre-train point (top) and the average train
loss barrier from 3 pairs of children runs (bottom). Here we observe the same result across the
different training conditions: a correlation between the train loss barrier when spawning from wy, ,
and the final test accuracy of the sparse sub-networks. The correlation is weaker for the pre-train test
accuracy, suggesting that the loss landscape properties hold more import for determining the success
of IMP. Furthermore, we see that training on the easiest examples produces rewinding points with
smaller train loss barriers than training on random subsets.

5 The Role of Training Data in Learning Rate Warmup

To this point, we have studied the early phase of training through the lens of the lottery ticket
hypothesis. However, the dynamics of the early phase of training have important implications beyond
the sparse regime considered by lottery ticket research. For example, learning rate warmup is a nearly
ubiquitous part of training state-of-the-art models. Warmup can be viewed as an accommodation for
the idiosyncrasies of the earliest part of training and a pre-training strategy that prepares the network
to train at the full learning rate. In this section, we extend our previous experiments to dense training
with learning rate warmup by ablating the training data during this phase to assess whether easy data
alone suffices, similar to our observations in the pre-training phase for IMP (Section [3).

Easy data does not reduce the amount of training required to stabilize the network via learning
rate warmup. The effects of performing learning rate warmup with easy, random, and hardest
subsets of the data appear in Figure[6] Intriguingly, the most striking performance drop is observed
when doing learning rate warmup with easy data, especially at longer pre-training times. Pre-training
on the random and hardest data produces the same performance for sufficiently large subset sizes.
The role played by data during IMP pre-training is thus different than that during learning rate
warmup; the easy data does not add stability benefits during the later. We hypothesize that this is
because learning rate warmup happens over a much larger fraction of the total training time than IMP
pre-training.

Easiest Examples Random Examples Hardest Examples
0.924 0.920+ 0.920+
_
o, o, ——e—o. o
0,914 0.916- /; '§g>=/ \. 0.916- /574;<.\'7 \
o ., o s Ol O) o e .
® \ ' 37‘ ~.
50.904 . | .%.
o] 0.912 & 09129 §
<
43 0.89- Pretrain Num Easiest Pretrain Random Subset Size Pretrain Num Hardest
@ —e— 50000 —e— 50000 —e= 50000 .
5120 0.908+ 5120 0.908 5120
0.88+ —e— 10240 —e— 10240 —e— 10240
—e— 25600 —e— 25600 —e— 25600
T T T T T — 0.904-1— : : : r : 0.904 -— T T T T T
100 200 400 800 1600 3200 100 200 400 800 1600 3200 100 200 400 800 1600 3200
Batches Warmup Batches Warmup Batches Warmup

Figure 6: Training with different data subset sizes and pruning strategies for the learning rate warmup
period for ResNet-20 on CIFAR-10. In the large batch size and learning rate regime, learning rate
warmup is essential for stabilizing training; we sweep over different learning rate warmup periods
with a batch size of 1024. In contrast to pre-training for IMP, training on easiest examples in this
initial phase leads to worse performance than training with all data, random subsets, or the hardest
data. We note that the learning rate warmup period is a much longer fraction of training than IMP
pre-training which lasts for only a few hundred steps.

Discussion and algorithmic implications. The benefits of training on easy data—faster learning
and increased stability to SGD noise—are only present in the very early phase of learning. Paul
et al. [23]] have shown that, if we continue to train on easy data only, the network will converge to a
lower final test accuracy. So a natural question is what other scenarios do the benefits of training on
easy data extend to? We began to investigate this question here by studying training at high learning
rates where learning can become unstable early in training and is usually stabilized by learning rate
warmup [[13]]. Our results show that training only on easy examples does not help and in fact hurts
performance in this case. Two possible reasons for this behavior are (1) learning rate warmup is
often used for the first 10% of training, which may be too long for easy examples to be helpful (the
pre-training phase in iterative magnitude pruning where easy examples are clearly beneficial can be as
little as 2% of training) and (2) the instability in this case—loss diverging to infinity—is not reduced
by methods that improve stability to SGD noise. Despite the negative results of this experiment,
we think that, when combined with our previous results, the core scientific findings in our work
are interesting and broadly useful to the community. In particular, some algorithmic implications
are as follows: (1) While developing algorithms for training sparse networks or finding matching
networks at initialization, researchers might want to incorporate methods or search for initializations
that improve stability to SGD noise. (2) Recent work in curriculum learning found that curricula
provide marginal benefits unless there are additional constraints such as a training budget [26]]. Our
work helps narrow the time window in which training on easy examples is beneficial and provides
another example in which, for the constrained scenario of finding matching sparse networks, a simple
curriculum of training on easy data first is beneficial. Thus, these findings may help in the design
of better training curricula. (3) In the training of large language models, a common problem is that
loss spikes and training becomes unstable. A hypothesis for why this phenomenon occurs is that the
network is presented with a bad batch or a set of bad batches that destabilize training. Since this is
related to instability due to SGD noise (bad batches are randomly sampled) it may be possible to
improve training stability by injecting easy examples into the training process.

6 Discussion

Recent empirical evidence has shown that deep neural network optimization proceeds in several
distinct phases of training [, [L1]. Understanding the role that data plays in these different phases
can help us characterize what is being learned during them. Since data loading is often a bottleneck,
this understanding also has the potential enable more efficient training schemes. In this work, we
have considered two essential phases of early training: pre-training for IMP which enables sparse
optimization and learning rate warmup which stabilizes network training. Our experiments identify
what data is sufficient for each of these procedures, and as they both occur early in training, these
finding can be used to design more efficient data loaders for streaming datasets. Furthermore, as
IMP is a computationally expensive procedure, understanding how it works is essential for designing
better algorithms with the same performance. To this end, we identify loss landscape properties of
the dense network initialization for IMP that are predictive of successful spare training. Though this
work does not provide an improved algorithm for obtaining sparse networks, we believe our results
provide essential guidance for researchers pursuing algorithms that perform pruning early in training
(i.e. finding sparse masks without training to convergence).

Acknowledgements

The experiments for this paper were funded by Google Cloud research credits. S.G. thanks the James
S. McDonnell and Simons Foundations, NTT Research, and an NSF CAREER Award for support
while at Stanford. This work was done in part while G.K.D. was visiting the Simons Institute for
the Theory of Computing. The authors would like to thank Daniel M. Roy for feedback on multiple
drafts.

10

References

[1] R.Baldock, H. Maennel, and B. Neyshabur. Deep learning through the lens of example difficulty.
Advances in Neural Information Processing Systems, 34, 2021.

[2] T. Chen, J. Frankle, S. Chang, S. Liu, Y. Zhang, Z. Wang, and M. Carbin. The lottery ticket
hypothesis for pre-trained bert networks. Advances in Neural Information Processing Systems,
2020.

[3] L. N. Darlow, E. J. Crowley, A. Antoniou, and A. J. Storkey. Cinic-10 is not imagenet or
cifar-10. arXiv preprint arXiv:1810.03505, 2018.

[4] F. Draxler, K. Veschgini, M. Salmhofer, and F. Hamprecht. Essentially no barriers in neural
network energy landscape. In International Conference on Machine Learning, pages 1309-1318.
PMLR, 2018.

[5] F. Draxler, K. Veschgini, M. Salmhofer, and F. Hamprecht. Essentially no barriers in neural
network energy landscape. In J. Dy and A. Krause, editors, Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research,
pages 1309-1318. PMLR, 10-15 Jul 2018. URL https://proceedings.mlr.press/v80/
draxleri8a.html.

[6] R. Entezari, H. Sedghi, O. Saukh, and B. Neyshabur. The role of permutation invariance in
linear mode connectivity of neural networks. arXiv preprint arXiv:2110.06296, 2021.

[7] U. Evci, T. Gale, J. Menick, P. S. Castro, and E. Elsen. Rigging the lottery: Making all tickets
winners. In International Conference on Machine Learning, pages 2943-2952. PMLR, 2020.

[8] S. Fort, G. K. Dziugaite, M. Paul, S. Kharaghani, D. M. Roy, and S. Ganguli. Deep learning

versus kernel learning: an empirical study of loss landscape geometry and the time evolution of
the neural tangent kernel. arXiv preprint arXiv:2010.15110, 2020.

[9] J. Frankle and M. Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

[10] J. Frankle, G. K. Dziugaite, D. M. Roy, and M. Carbin. Linear mode connectivity and the lottery
ticket hypothesis. In Proc. Int. Conf. Machine Learning (ICML), 2020.

[11] J. Frankle, D. J. Schwab, and A. S. Morcos. The early phase of neural network training. In
International Conference on Learning Representations, 2020. URL https://openreview,
net/forum?id=Hk11iRNFwS.

[12] T. Garipov, P. Izmailov, D. Podoprikhin, D. P. Vetrov, and A. G. Wilson. Loss surfaces, mode
connectivity, and fast ensembling of dnns. Advances in Neural Information Processing Systems,
31, 2018.

[13] J. Gilmer, B. Ghorbani, A. Garg, S. Kudugunta, B. Neyshabur, D. Cardoze, G. E. Dahl, Z. Nado,
and O. Firat. A loss curvature perspective on training instabilities of deep learning models. In
International Conference on Learning Representations, 2021.

[14] S. Han, J. Pool, J. Tran, and W. J. Dally. Learning both weights and connections for efficient
neural network. In Advances in Neural Information Processing Systems, 2015.

[15] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770—
778, 2016.

[16] S. A. Janowsky. Pruning versus clipping in neural networks. Physical Review A, 39(12):6600,
1989.

[17] N. M. Kalibhat, Y. Balaji, and S. Feizi. Winning lottery tickets in deep generative models. arXiv
preprint arXiv:2010.02350, 2020.

[18] A. Krizhevsky, V. Nair, and G. Hinton. The cifar-10 dataset. online: http://www. cs. toronto.
edu/kriz/cifar. html, 55:5, 2014.

[19] R. Kuditipudi, X. Wang, H. Lee, Y. Zhang, Z. Li, W. Hu, R. Ge, and S. Arora. Explaining
landscape connectivity of low-cost solutions for multilayer nets. Advances in Neural Information
Processing Systems, 32, 2019.

[20] Y. LeCun, J. S. Denker, and S. A. Solla. Optimal brain damage. In Advances in Neural
Information Processing Systems, pages 598—605, 1990.

11

https://proceedings.mlr.press/v80/draxler18a.html
https://proceedings.mlr.press/v80/draxler18a.html
https://openreview.net/forum?id=Hkl1iRNFwS
https://openreview.net/forum?id=Hkl1iRNFwS

[21] K. Mangalam and V. U. Prabhu. Do deep neural networks learn shallow learnable examples
first? In ICML 2019 Workshop on Identifying and Understanding Deep Learning Phenomena,
2019. URL https://openreview.net/forum?id=HkxHv4rn24,

[22] V. Nagarajan and J. Z. Kolter. Uniform convergence may be unable to explain generalization in
deep learning. Advances in Neural Information Processing Systems, 32, 2019.

[23] M. Paul, S. Ganguli, and G. K. Dziugaite. Deep learning on a data diet: Finding important
examples early in training. arXiv preprint arXiv:2107.07075, 2021.

[24] M. Toneva, A. Sordoni, R. T. d. Combes, A. Trischler, Y. Bengio, and G. J. Gordon. An
empirical study of example forgetting during deep neural network learning. arXiv preprint
arXiv:1812.05159, 2018.

[25] M. A. Vischer, R. T. Lange, and H. Sprekeler. On lottery tickets and minimal task representations
in deep reinforcement learning. arXiv preprint arXiv:2105.01648, 2021.

[26] X. Wu, E. Dyer, and B. Neyshabur. When do curricula work? In International Conference on
Learning Representations, 2021. URL https://openreview.net/forum?id=tW4QEInpni.

[27] H. Yu, S. Edunov, Y. Tian, and A. S. Morcos. Playing the lottery with rewards and multiple
languages: lottery tickets in rl and nlp. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=S1xnXRVFwH,

[28] C.Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding deep learning requires
rethinking generalization. CoRR, abs/1611.03530, 2016.

[29] M. Zhu and S. Gupta. To prune, or not to prune: exploring the efficacy of pruning for model
compression. arXiv preprint arXiv:1710.01878, 2017.

12

https://openreview.net/forum?id=HkxHv4rn24
https://openreview.net/forum?id=tW4QEInpni
https://openreview.net/forum?id=S1xnXRVFwH

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] See Sectionﬂ]

(b) Did you describe the limitations of your work? [Yes] See Section[6] as well as Section|3]
(Experimental design).

(c) Did you discuss any potential negative societal impacts of your work? [Yes] We do not
see any negative societal impact, as our work provides better understanding of existing
algorithms.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [IN/A]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] See Appendix [A
for a link to the code.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Appendix E

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix[A.
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] See Appendix[A.

(b) Did you mention the license of the assets? [Yes]

(c) Did you include any new assets either in the supplemental material or as a URL?

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] It does not.

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13

	Introduction
	Background, Methods, and Related Work
	The Role of Training Data Selection in Pre-Training
	Pre-training through the lens of Linear Mode Connectivity
	The Role of Training Data in Learning Rate Warmup
	Discussion
	Experimental Details
	Explanation of the Role of Easy Data
	Other Hypotheses for the Role of Easy Data: Negative Results
	Changes in the gradient size.
	Change in distribution of per-example error

	Linear Mode Connetivity: Additional Experiments
	Background on (linear) mode connectivity.
	LMC Scores
	Pre-training on Low LMC Scores

	Full Results
	Comparison to Forgetting Scores
	Results Across Subset Size

