
Appendix

A Model and training procedure: details

All experiments used the same model and training procedure, unless stated otherwise. The transformer
consisted of 12 layers, with embedding dimension 64 and 8 heads. The images were embedded by a
ResNet with two blocks per group and channels per group (16, 32, 32, 64), and which was not pre-
trained. The integer labels were embedded using a standard embedding layer. The input embeddings
were augmented with a standard sinusoidal positional encoding. Experiments were run for 500k
training steps on 16 TPU v2 or v3 cores. They were trained using Adam and a learning rate schedule
with a linear warmup up to a maximum learning rate of 3e-4 at 4000 steps, followed by an inverse
square root decay. The experiments shown in Figs 5 and 6 were run with 3 seeds each (because of the
larger number of conditions in those experiments), and all other experiments were run with 5 runs
each. In all figures, (shaded) error bars indicate standard deviation around the mean.

B Possible extensions: Generating new image labels

An important constraint of the model implementation and evaluation procedure is that we do not
require the models to handle novel image labels, only novel image classes. Thus, in-context learning
is evaluated on labels that were previously seen in training, i.e. 0 and 1 (on the Zipfian-skewed
experiments, these corresponded to two most common labels). Note that, if anything, this causes
in-context learning to be more difficult for the model, since it must overcome existing image-label
associations that were learned in training.

However, as future extensions, it would be possible to extend the model to handle novel labels as well.
For example, we might tie the input and output embedding layers (sometimes done in large language
models, though mainly for computational efficiency), or to generate novel labels as combinations of
already-seen tokens (akin to language models that use the SentencePiece family of tokenization).

C Experiments comparing recurrent vs. transformer

C.1 Architectural details

Hyperparameter sweep:

• Max learning rate: 15 samples log-uniform distributed over the range [1e-5, 0.1]
• Num warmup steps: 15 samples log-uniform distribution over the range [1, 10000]

We performed 15 runs for each architecture (Transformer with 2 or 12 layers, LSTM with 2 or 12
layers, Vanilla RNN with 2 or 12 layers), i.e. 90 runs total.

Parameter counts:

• Transformer with 12 layers: 831,479
• LSTM with 12 layers: 627,959
• Transformer with 2 layers: 331,639
• LSTM with 2 layers: 297,719

C.2 In-weights learning

Transformers exhibited similar or slightly higher in-weights learning than the recurrent models (Fig
8), indicating that their superior in-context learning performance (as seen in Fig 7) cannot simply be
explained by a bias towards in-context learning and against in-weights learning.

C.3 In-context evaluation on trained classes

Fig 9 shows results of evaluating in-context learning on classes that were seen in training, rather than
on holdout classes (the standard evaluation setting for few-shot learning, as described in Sec 2.3. The

15



pattern of results is very similar between the two settings, with just slightly higher performance when
evaluating on training classes.

C.4 Multi-class in-context evaluation

For completeness, we also report the in-context evaluation results by computing accuracy fully multi-
class across all possible outputs of the model (Fig. 10). This is in contrast to the evaluations that
were reported in the main text (as described Sec 2.3), across just the two labels that appeared in
context; the two-choice evaluation provides a more sensitive measure of performance, ensuring that
all experimental conditions have the same levels of chance, and also ensuring that the model cannot
achieve above-chance performance simply by randomly selecting from the labels in context. Note
that, across training and both types of evaluation (in-context and in-weights), the model is the same –
it is trained to perform multi-class classification.

Multi-class evaluation shows the same patterns of results as the two-way evaluation from the main
text. Note that the multi-class evaluation results showing the effects of the number of training classes
(Fig 10b) and dynamic meanings (Fig 10d) need to be interpreted with caution, because the number
of model outputs changes in the different conditions, so that task difficulty and chance levels differ
for each.

The multi-class evaluation uncovers one additional interesting result, for the models trained on
Zipfian distributions (Fig 10e). As in the two-choice evaluation setting, a Zipfian distribution with an
exponent of 1 is the only one able to elicit significantly above chance accuracy on both in-context
evaluation and in-weights evaluation on common classes. However, Zipf 1 models have relatively
lower few-shot performance when evaluated in the fully multi-class setting. Further investigation
revealed that this was because those models have overall less tendency to output labels from context
(Fig 11). Nonetheless, the Zipf 1 models do perform significantly above chance in both settings, and
when forced to choose between the two labels that are shown in context, the model performs very
well on these sequences. This indicates that, interestingly, a model can attain both in-weights and
in-context learning abilities and process an input sequence in both ways, even if it is unsure which of
those two processes it should output the result for.

(a) Transformer. (b) Vanilla RNN. (c) LSTM.

Figure 8: In-weights learning in transformers vs. recurrent architectures. We compare architectures
while holding fixed the number of layers, hidden layer size, and number of parameters. One run was
performed for each set of hyperparameters in a hyperparameter sweep. Each color denotes one run,
but not any particular hyperparameter values.

16



(a) Burstiness. (b) Num training classes*

(c) Within-class variation.

(d) Dynamic meanings*

Figure 9: In-context learning accuracy, evaluated on classes that were observed in training, rather
than holdout classes. Patterns of results are very similar to those shown in the main text, with overall
slightly higher performance when evaluated on training classes.

17



(a) Burstiness. (b) Num training classes*

(c) Within-class variation.

(d) Dynamic meanings* (e) Zipfian distributions.

Figure 10: In-context learning accuracy, evaluated fully multi-class across all possible outputs of
the model, rather than considering outputs on just the two labels that appeared in context. Patterns
of results are qualitatively similar to those shown in the main text. *Figures (b) and (d) should be
interpreted with caution, because the total number of classes differ for each experimental condition,
and therefore chance levels. We include them for completeness.

Figure 11: Frequency of outputting any of the two labels that appear in context, for a model trained
on Zipfian distributions and evaluated on in-context evaluation sequences.

18


	Introduction
	Experimental Design
	The training data
	The model
	The evaluation data

	Results
	What kinds of training data promote in-context learning?
	What kinds of training data enable in-context learning and in-weights learning to co-exist in the same model?
	But architecture does matter too.

	Discussion
	Model and training procedure: details
	Possible extensions: Generating new image labels
	Experiments comparing recurrent vs. transformer
	Architectural details
	In-weights learning
	In-context evaluation on trained classes
	Multi-class in-context evaluation


