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A Medical Knowledge Graph

In our work, we construct an off-the-shelf medical knowledge graph G = (V,E) (V = {vi}i=1:NKG ∈
RNKG×d is a set of nodes and E = {ei,j}i,j=1:NKG is a set of edges), which models the domain-specific
knowledge structure, to explore the medical knowledge. In implementation, we consider all clinical
codes (including diagnose codes, medication codes, and procedure codes) during hospitalization as
nodes, i.e., each clinical code corresponds to a node in the graph. The edge weights are calculated by
the normalized co-occurrence of different nodes computed from training corpus. Figure 1 gives an
illustration of the constructed medical knowledge graph. It is worth noting that more complex graph
structures could be constructed by using more large-scale external medical textbooks. Therefore, our
approach is not limited to the currently constructed graph and could provide a good basis for the
future research of Patient Instruction generation.
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Figure 1: The constructed medical knowledge graph. Each clinical code corresponds to a node in the
graph. We present the most frequent 6 diagnose nodes (the first row), 5 medication nodes (the second
row), and 6 procedure nodes (the third row), and parts of their edge weights. Please refer to Table 1
for the exact meanings of these diagnose and procedure nodes.
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Table 1: The exact meanings of the most frequent diagnose and procedure nodes in Figure 1.

# Diagnose Nodes Procedure Nodes

1 D_401.9: Unspecified essential hypertension P_389.3: Venous catheterization, not elsewhere classified
2 D_428.0: Congestive heart failure, unspecified P_990.4: Transfusion of packed cells
3 D_427.31: Atrial fibrillation P_966: Enteral infusion of concentrated nutritional substances
4 D_414.01: Coronary atherosclerosis of native coronary artery P_396.1: Extracorporeal circulation auxiliary to open heart surgery
5 D_272.4: Other and unspecified hyperlipidemia P_967.1: Continuous invasive mechanical ventilation for less than

96 consecutive hours
6 D_250.00: Diabetes mellitus without mention of complication, type

II or unspecified type, not stated as uncontrolled
P_960.4: Insertion of endotracheal tube

Table 2: Effect of the number of retrieved instructions NP in our Retrieve module when retrieving the
working experience.

NP
Dataset: Patient Instruction (PI)

METEOR ROUGE-1 ROUGE-2 ROUGE-L BLEU-1 BLEU-2 BLEU-3 BLEU-4

Baseline 19.9 39.0 20.3 37.1 41.6 32.5 27.9 25.1

5 20.6 40.5 21.9 38.4 41.7 33.2 28.9 26.3
10 20.7 40.6 21.9 38.5 42.4 33.6 29.3 26.5
20 20.9 40.8 21.9 38.6 43.2 34.2 29.7 26.8
30 20.5 40.4 21.8 38.3 42.0 33.4 29.0 26.3
50 20.3 40.1 21.5 37.9 41.8 33.1 28.8 26.0

For the constructed knowledge graph, we use randomly initialized embeddings H(0) =
{v1, v2, . . . , vNKG} ∈ RNKG×d to represent all node features. To obtain the final medical knowl-
edge GPr = {v′1, v′2, . . . , v′NKG

} ∈ RNKG×d, we adopt graph convolution layers [5, 4, 3] to encode the
graph G = (V,E), which is defined as follows:

H(l+1) = ReLU(ÂD̂−1H(l)W (l) + b(l)), l ∈ [0, L− 1] (1)

where ReLU denotes the ReLU activation function, Â = A+I is the adjacency matrix A ∈ RNKG×NKG

of the graph G with added self-connections, I ∈ RNKG×NKG is the identity matrix, D̂ ∈ RNKG×NKG is
the out-degree matrix where Dii =

∑
j Aij , W (l) ∈ Rd×d and b(l) ∈ Rd are trainable parameters,

and L is the number of layers. We empirically set L = 1 and regard H(1) = {v′1, v′2, . . . , v′NKG
} ∈

RNKG×d as the medical knowledge GPr ∈ RNKG×d in our Re3Writer.

B Effect of the Number of Retrieved Instructions

Table 2 shows that all variants with different number of retrieved instructions NP can consistently
outperform the baseline model, which proves the effectiveness of our approach in retrieving the
working experience to boost the Patient Instruction generation. In particular, when the number of
retrieved instructions NP is 20, the model gets the highest performance, explaining the reason why
the value of NP is set to 20 in our Re3Writer. For other variants, we speculate that when NP is set
to small values, the model will suffer from the inadequacy of information. When NP is set to large
values, retrieving more patient instructions will bring more irrelevant noise to the model, impairing
the performance.

C Retrieve with Age and Gender Information

We further incorporate the demographic/personal information, e.g. age and gender, into our approach
to match patients in the Retrieve module. Specifically, to ensure an even distribution of the data, we
divide the ages into three age-groups: Age < 55 (29.9%), 55 <= Age < 70 (30.5%), and Age >= 70
(39.7%). As a result, given a new male/female patient at 61 years old, we will match male/female
patients in the age-group 55 <= Age < 70 in the training data to generate the PIs. The results are
reported in Table 3. The results show that the incorporation of demographic/personal information can
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Table 3: Performance of our approach incorporating Age and Gender information to match patients
in the Retrieve module.

Methods Age+Gender
Dataset: Patient Instruction (PI)

METEOR ROUGE-1 ROUGE-2 ROUGE-L BLEU-1 BLEU-2 BLEU-3 BLEU-4

Seq2Seq - 19.9 39.0 20.3 37.1 41.6 32.5 27.9 25.1

with Re3Writer - 20.9 40.8 21.9 38.6 43.2 34.2 29.7 26.8√
21.0 40.8 22.0 38.7 43.5 34.5 29.9 27.1

Transformer - 21.8 42.1 21.6 38.9 47.1 36.8 31.4 27.3

with Re3Writer - 23.7 45.8 24.4 42.2 52.4 41.2 35.0 30.5√
24.1 46.1 24.6 42.5 52.9 41.6 35.3 30.8

indeed further boost the performance, which further prove our arguments and the effectiveness of our
approach.

D Multi-Head Attention and Feed-Forward Network

Transformer [7] including a Multi-Head Attention (MHA) and a Feed-Forward Network (FFN) have
achieved several state-of-the-art results on natural language generation.

The MHA consists of n parallel heads and each head is defined as a scaled dot-product attention:

Atti(X,Y ) = softmax

(
XWQ

i (Y WK
i )

T

√
dn

)
Y WV

i

MHA(X,Y ) = [Att1(X,Y ); . . . ;Attn(X,Y )]WO (2)

where X ∈ Rlx×d and Y ∈ Rly×d represent the Query matrix and the Key/Value matrix, respectively;
WQ

i ,WK
i ,WV

i ∈ Rd×dn and WO ∈ Rd×d are training parameters, where dn = d/n; [·; ·] denotes
concatenation operation.

Following the MHA is the FFN, defined as follows:
FFN(x) = max(0, xWf + bf)Wff + bff (3)

where max(0, ∗) represents the ReLU activation function; Wf ∈ Rd×4d and Wff ∈ R4d×d stand for
learnable matrices; bf and bff denote the bias terms. It is worth noting that both MHA and FFN are
followed by an operation sequence of dropout [6], skip connection [2], and layer normalization [1].
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