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IPD Analysis for GLIE Learning

(b)
Figure 6: (a) A policy iteration analysis in IPD when agent j has a greedy learning algorithm.
Depending on θ9i

0 , i’s possible maximum average reward is affected. (b) A policy iteration analysis
in IPD when agent j has a GLIE learning algorithm. The possible maximum average reward for
agent i is independent to j’s initial policy θ9i

0 .

Consider playing the iterated prisoner’s dilemma (IPD) game (see Table 1), where agent i
plays against a q-learning agent j. We perform a policy iteration analysis [17] with respect to

C D

C (91, 91) (93, 0)
D (0, 93) (92, 92)

Table 1: Prisoner’s dilemma
game payoff matrix.

j’s varying initial q-values for each action θ9i
0 . Figure 6a and Fig-

ure 6b show agent i’s average reward after convergence with respect
to θ9i

0 when j trains with a greedy and GLIE algorithm, respectively.
Interestingly, the analysis with the greedy algorithm shows that i’s
average reward depends on θ9i

0 in IPD, where there is a set of j’s
initial policies that i can achieve the high average reward, but there
is the other set of initial policies that can result in the undesirable
average reward of 92. By contrast, Figure 6b shows that i’s average reward is independent of θ9i

0
when j’s learning satisfies GLIE, empirically supporting our discussion in Section 2.3.

B Uniqueness of Jointly-Stable Periodic Distribution

Proposition 1. (Uniqueness of Jointly-Stable Periodic Distribution). Given communicating state
transition T and perturbed joint update function with noise Uϵ, the jointly-stable periodic distribution
is unique as ϵ→0 over time.

Proof. A perturbed Markov process has a unique stochastically stable distribution as noise ϵ→0
over time if a perturbed Markov process is regular: the transition matrix corresponding to a stationary
policy contains a single recurrent class of states (i.e., states that are visited infinitely often) and a
possibly empty set of transient states (i.e., states that are visited only finitely often) [26] (Corollary
4.8, Section 5). As such, we prove that a Markov process of an active Markov game is regular by
contradiction and thus show that the jointly-stable periodic distribution is unique as ϵ→0. Suppose a
perturbed Markov process of an active Markov game is irregular (i.e., there is more than one recurrent
class), where the corresponding Markov matrix over the joint space of states and policies is defined
as p(s′,θ′|s, θ)=P

a
π(a|s;θ)T (s′|s,a)Uϵ(θ

′|θ, τ ) ∀s, s′ ∈S,θ,θ′ ∈Θ. Because the perturbed

joint update function has communicating strategies and thus contains a single recurrent class of
policies, the state transition T must have multiple recurrent classes to result in an irregular active
Markov game. However, T has a single recurrent class only due to the communicating assumption,
which is the contradiction. Therefore, we conclude that a perturbed Markov process of an active
game is regular, which has a unique stochastically stable distribution as ϵ→0 by [26]. □
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C Derivation of Active Differential Bellman Equation

Proposition 2. (Active Differential Bellman Equation). The differential value function viθi represents
the expected total difference between the accumulated rewards from s and θ9i and the average reward
ρiθi [18]. The differential value function inherently includes the recursive relationship with respect to
viθi at the next state s′ and the updated policies of other agents θ9i′:

viθi(s, θ9i) = lim
T→∞

E
h TP
t=0

�
Ri(st,at)− ρiθi

����
s0=s, θ9i

0 =θ9i,
ai
0:T∼π(·|s0:T ;θi),a9i

0:T ∼π(·|s0:T ;θ9i
0:T ),

st+1∼T (·|st,at),θ
9i
t+1∼U9i(·|θ9i

t ,τ 9i
t )

i

=
P
ai

π(ai|s; θi)P
a9i

π(a9i|s; θ9i)
P
s′

T (s′|s,a)P
θ9i′

U9i(θ9i′|θ9i, τ 9i)

h
Ri(s,a)− ρiθi + viθi(s′,θ9i′)

i
.

Proof. We seek to derive the recursive relationship between viθi(s, θ9i) and viθi(s′,θ9i′). We leverage
the general derivation outlined in [18] (page 59) and extend it to our active Markov game formulation:

viθi(s, θ9i)= lim
T→∞

E
h TP
t=0

�
Ri(st,at)− ρiθi

����
s0=s, θ9i

0 =θ9i,
ai
0:T∼π(·|s0:T ;θi),a9i

0:T ∼π(·|s0:T ;θ9i
0:T ),

st+1∼T (·|st,at),θ
9i
t+1∼U9i(·|θ9i

t ,τ 9i
t )

i

= lim
T→∞

E
h
Ri(s0,a0)−ρiθi +

TP
t=1

�
Ri(st,a

9i
t )− ρiθi

����
s0=s, θ9i

0 =θ9i,
ai
0:T∼π(·|s0:T ;θi),a9i

0:T ∼π(·|s0:T ;θ9i
0:T ),

st+1∼T (·|st,at),θ
9i
t+1∼U9i(·|θ9i

t ,τ 9i
t )

i

=
P
ai

π(ai|s; θi)P
a9i

π(a9i|s; θ9i)
P
s′

T (s′|s,a) P
θ9i′

U9i(θ9i′|θ9i, τ 9i)

h
Ri(s,a)−ρiθi+ lim

T→∞
E
h TP
t=0

�
Ri(st+1,at+1)−ρiθi

����
s1=s′, θ9i

1 =θ9i′,
ai
1:T∼π(·|s1:T ;θi),a9i

1:T ∼π(·|s1:T ;θ9i
1:T ),

st+1∼T (·|st,at),θ
9i
t+1∼U9i(·|θ9i

t ,τ 9i
t )

ii

=
P
ai

π(ai|s; θi)P
a9i

π(a9i|s; θ9i)
P
s′

T (s′|s,a) P
θ9i′

U9i(θ9i′|θ9i, τ 9i)

h
Ri(s,a)−ρiθi+viθi(s′,θ9i′)

i
. (15)

□

D Derivation of Active Average Reward Policy Gradient

Proposition 3. (Active Average Reward Policy Gradient Theorem). The gradient of active average
reward objective in Equation (7) with respect to agent i’s policy parameters θi is:

∇θiJ i
π(θ

i)=
1

k

kP
ℓ=1

P
sℓ,θ

9i
ℓ

µk,θi(sℓ,θℓ|ℓ)
P
ai
ℓ

∇θiπ(aiℓ|sℓ; θi)
P
a9i

ℓ

π(a9i
ℓ |sℓ;θ9i

ℓ )qiθi(sℓ,θ
9i
ℓ ,aℓ),

with qiθi(sℓ,θ
9i
ℓ ,aℓ)=

P
sℓ+1

T (sℓ+1|sℓ,aℓ)
P

θi
ℓ+1

U9i(θ9i
ℓ+1|θ9i

ℓ , τ 9i
ℓ )

h
Ri(sℓ,aℓ)−ρiθi+viθi(sℓ+1,θ

9i
ℓ+1)

i
.

Proof. We seek to derive an expression for optimizing the average reward objective in Equation (7)
with respect to agent i’s policy parameters θi. Our derivation leverages the general policy gradient
theorem proof for the continuing case in [18] (page 334). We begin by expressing the gradient of the
differential value function viθi(s, θ9i) for s∈S and θ9i∈Θ9i:

∇θiviθi(s, θ9i) = ∇θi

hP
ai

π(ai|s; θi)P
a9i

π(a9i|s; θ9i)qiθi(s, θ9i,a)
i

=
P
ai

∇θiπ(ai|s; θi)P
a9i

π(a9i|s; θ9i)qiθi(s, θ9i,a)+

P
ai

π(ai|s; θi)P
a9i

π(a9i|s; θ9i)∇θiqiθi(s, θ9i,a)| {z }
Term A

.

(16)
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We continue to derive the Term A in Equation (16):

∇θiqiθi(s, θ9i,a)=∇θi

hP
s′

T (s′|s,a) P
θ9i′

U9i(θ9i′|θ9i, τ 9i)
h
Ri(s,a)−ρiθi+viθi(s′,θ9i′)

ii

= −∇θiρiθi +
P
s′
T (s′|s,a)P

θ9i′
U9i(θ9i′|θ9i, τ 9i)∇θiviθi(s′,θ9i′). (17)

We summarize Equation (16) and Equation (17) together and re-arrange terms to obtain:

∇θiρiθi =
P
ai

∇θiπ(ai|s; θi)P
a9i

π(a9i|s; θ9i)qiθi(s, θ9i,a)+

P
ai

π(·|s; θi)P
a9i

π(a9i|s; θ9i)
P
s′

T (s′|s,a) P
θ9i′

U9i(θ9i′|θ9i, τ 9i)∇θiviθi(s′,θ9i′)−

∇θiviθi(s, θ9i). (18)

We define the jointly-stable periodic distribution with respect to the agent i’s fixed stationary policy:

1

k

kP
ℓ=1

µk,θi(sℓ+1,θℓ+1|ℓ+1)=
1

k

kP
ℓ=1

P
sℓ,θ

9i
ℓ

µk,θi(sℓ,θℓ|ℓ)
P
aℓ

π(aℓ|sℓ;θℓ)

T (sℓ+1|sℓ,aℓ) U9i(θ9i
ℓ+1|θ9i

ℓ , τ 9i
ℓ ) ∀sℓ+1∈S,θℓ+1∈Θ,

(19)

where θℓ={θi,θ9i
ℓ }. We now apply Equation (19) to Equation (18) and derive the final expression

for policy gradient by writing ∇θiρiθi as ∇θiJ i
π(θ

i):

1

k

kP
ℓ=1

P
sℓ,θ

9i
ℓ

µk,θi(sℓ,θℓ|ℓ)∇θiJ i
π(θ
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1

k
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h
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9i
ℓ )

i
. (20)

Note that the left-hand side ∇θiJ i
π(θ

i) does not depend on sℓ and θ9i
ℓ , so Equation (20) becomes:

∇θiJ i
π(θ

i)

=
1

k

kP
ℓ=1

P
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ℓ
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P
ai
ℓ
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1
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P
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ℓ

µk,θi(sℓ,θℓ|ℓ)
P
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ℓ
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ℓ
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ℓ )
P
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T (sℓ+1|sℓ,aℓ)

P
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U9i(θ9i
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ℓ , τ 9i
ℓ )∇θiviθi(sℓ+1,θ
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1
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P
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k
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P
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□
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E Additional Implementation Details

E.1 Network Structure

Our neural networks for the inference learning and reinforcement learning module consist of fully-
connected layers for vector observations (e.g., iterated matrix games, MuJoCo RoboSumo [19])
and additional convolution layers for image observations (e.g., MAgent Battle [32]). The encoder
outputs the mean and standard deviation for the Gaussian distribution of p(ẑ9i

t+1|ẑ9i
t , τ it ;ϕ

i
enc), where

we sample ẑ9i
t by applying the reparameterization trick [28]. From the sampled ẑ9i

t , the decoder
p(a9i

t |st, ẑ9i
t ;ϕi

dec) outputs a probability for the categorical distribution (discrete action space) or
a mean and variance for the Gaussian distribution (continuous action space). Similarly, the policy
π(ait|st, ẑ9i

t ; θi) outputs a probability for the categorical distribution (discrete action space) or a
mean and variance for the Gaussian distribution (continuous action space). Lastly, the critic outputs
q-values for all actions for discrete action space (i.e., qiθi(ait|st, ẑ9i

t ,a9i
t ;ψi

β)) by following [31] or
outputs a q-value given the joint action for continuous action space (i.e., qiθi(st, ẑ

9i
t ,at;ψ

i
β)).

E.2 Optimization

We detail additional notes about our implementation:

• For simplicity, we consider the period k=1 and develop corresponding soft reinforcement learning
optimizations in Section 3.2. The current FURTHER implementation can be extended to settings
with k>1 by sampling k states and policies that are consecutive within each batch.
• For continuous action space, we modify SAC for continuous action space [27] and replace the soft
value function viθi in Equation (13) with:

viθi(s, ẑ9i;ψi)=Eai∼π(·|s,ẑ9i;θi),a9i∼π(·|s;ẑ9i)
�
min
β=1,2

qiθi(s, ẑ9i,a;ψi
β)
�
+αH(π(·|s, ẑ9i; θi)). (22)

We also replace the policy optimization in Equation (14) with the following:

J i
π(θ

i)=E(s,ẑ9i,a9i)∼Di,ϵ∼N (0,I)

h

min
β=1,2

qiθi(s, ẑ9i, fθi(ϵ; s, ẑ9i),a9i;ψi
β)−α log π(fθi(ϵ; s, ẑ9i)|s, ẑ9i; θi)

i
,

(23)

where ai=fθi(ϵ; s, ẑ9i) denotes the output of the reparameterized i’s policy [27].
• In practice, we apply a weighting of 0.01 on the KL divergence term in Equation (11) for balanced
training of the inference learning module.
• Because it is impractical to consider the entire interactions from the beginning of the game in
computing Equation (11), we limit τ i0:t−1 to be recent interactions specified by a batch size.
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E.3 Pseudocode

Algorithm 1 FURTHER and FURTHER Mean-Field
Require: Learning rates αq,αρ,απ,αϕ, soft q-target update rate τq
1: # Agent initialization
2: for Each agent i do
3: Initialize RL module θi,ψi

1,ψ
i
2, ψ̄

i
1, ψ̄

i
2, ρ

i
θi ,Di

4: Initialize inference module ϕi
enc,ϕ

i
dec

5: Initialize other agents’ latent strategies ẑ9i
0

6: end for
7: for Each timestep t do
8: # Decentralized execution
9: for Each agent i do

10: Select action ai
t ∼ π(·|st, ẑ9i

t ; θi)
11: end for
12: Execute joint action at and receive next state st+1 and joint rewards rt

13: # Mean action computation and perform inference
14: for Each agent i do
15: if Apply mean-field then
16: Compute mean action of its neighborhood ā9i

t and set at={ai
t, ā

9i
t }

17: end if
18: Infer next updated policies of other agents ẑ9i

t+1 ∼ p(·|ẑ9i
t , τ i

t ;ϕ
i
enc)

19: Add a transition to its replay memory Di←Di∪{st, ẑ9i
t ,at, r

i
t, st+1, ẑ

9i
t+1}

20: end for
21: # Decentralized training
22: for Each agent i do
23: {ψi

β , ρ
i
θi} ← {ψi

β , ρ
i
θi}− {αq,αρ}J i

q(ψ
i
β , ρ

i
θi) for β = 1, 2

24: θi ← θi + απJ
i
π(θ

i)
25: {ϕi

enc,ϕ
i
dec} ← {ϕi

enc,ϕ
i
dec}− αϕJ

i
elbo(ϕ

i
enc,ϕ

i
dec)

26: ψ̄i
β ← τqψ

i
β + (1− τq)ψ̄

i
β for β = 1, 2

27: end for
28: end for

F ELBO Derivation

We derive our ELBO optimization in Equation (11) for the inference module. In particular, we follow
the ELBO derivation in [56] (Appendix A) and modify it for our multiagent setting:

Ep(τ i
0:t)

h
log p(τ i1:t;ϕ

i
dec)

i
= Ep(τ i

0:t)

h
log

Z
p(τ i1:t, ẑ

9i
1:t;ϕ

i
dec)dẑ

9i
1:t

i

= Ep(τ i
0:t)

h
log

Z
p(τ i1:t, ẑ

9i
1:t;ϕ

i
dec)

p(ẑ9i
1:t|τ i0:t−1;ϕi

enc)

p(ẑ9i
1:t|τ i0:t−1;ϕi

enc)
dẑ9i

1:t

i

= Ep(τ i
0:t)

h
logEp(ẑ9i

1:t|τ i
0:t−1;ϕ

i
enc)

� p(τ i1:t, ẑ
9i
1:t;ϕ

i
dec)

p(ẑ9i
1:t|τ i0:t−1;ϕi

enc)

�i

≥ Ep(τ i
0:t),p(ẑ

9i
1:t|τ i

0:t−1;ϕ
i
enc)

h
log

p(τ i1:t, ẑ
9i
1:t;ϕ

i
dec)

p(ẑ9i
1:t|τ i0:t−1;ϕi

enc)

i

= Ep(τ i
0:t),p(ẑ

9i
1:t|τ i

0:t−1;ϕ
i
enc)

h
log p(τ i1:t, ẑ

9i
1:t;ϕ

i
dec)− log p(ẑ9i

1:t|τ i0:t−1;ϕi
enc)

i

= Ep(τ i
0:t),p(ẑ

9i
1:t|τ i

0:t−1;ϕ
i
enc)

h tP
t′=1

log p(a9i
t′ |st′ , ẑ9i

t′ ;ϕ
i
dec) +

t−1P
t′=0

log p(ẑ9i
t′ )−

tP
t′=1

log p(ẑ9i
t′ |τ it′−1;ϕi

enc)
i
. (24)
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Finally, we summarize terms to obtain:

Ep(τ i
0:t),p(ẑ

9i
1:t|τ i

0:t−1;ϕ
i
enc)

h tP
t′=1

log p(a9i
t′ |st′ , ẑ9i

t′ ;ϕ
i
dec)| {z }

Reconstruction loss

−DKL
�
p(ẑ9i

t′ |τ it′−1;ϕi
enc)||p(ẑ9i

t′−1)
�

| {z }
KL divergence

i
.

G Experimental and Hyperparameter Details

G.1 Domain Details

Iterated matrix games. As in [6], we model the state space in all iterated matrix games as s0=∅
and st=at−1 for t≥1. For these simple domains, we empirically observe that training the policy
and critics based on the most recent transition improves training performance. Lastly, in Question 1,
we consider agent i playing against a q-learning agent j with a learning rate αq of 0.5, a discount
factor γ of 0.9, and a fixed ϵ-exploration of 0.05.

MuJoco RoboSumo. Each ant robot observes a vector with size 128, which consists of the position
of its own and the opponent’s body, its own joint angles and velocities, and forces exerted on each part
of its own body and the opponent’s torso [19]. We note that each agent has partial observations about
its opponent and cannot observe the opponent’s velocities and limb positions. Regarding the action
space, each agent has a continuous action space with a dimension of 8. Lastly, we use the reward
function that consists of a sparse reward of 5 for winning against the opponent and the following
shaped rewards:

• Reward for moving towards the opponent proportional to 9dopp, where dopp denotes the distance
between the agent and the opponent.

• Reward for pushing the opponent further from the center of the ring proportional to exp(9dcenter),
where dcenter denotes the distance of the opponent from the center of the ring.

We refer to [19] (Appendix D) for more RoboSumo details.

MAgent Battle. Each agent receives an observation of a 13×13×9 image with the following
channels: its and opponent’s team presence, its and opponent’s team HP, its and opponent’s team
minimap, and its position [32]. The discrete action space has a dimension of 21 for moving around
the gridworld and attacking the opponents. Lastly, reward is given as 5 for killing an opponent,
90.005 for every timestep cost, 0, 2 for attacking an opponent, and 90.1 reward for dying. We refer
to [32] for more MAgent details.

G.2 Baseline Details

• LILI [8] maximizes the discounted return viθi in the active Markov game:

max
θi

viθi(s, θ9i) :=max
θi

E
h ∞P
t=0

γtRi(st,at)
���

s0=s, θ9i
0 =θ9i,

ai
0:T∼π(·|s0:T ;θi),a9i

0:T ∼π(·|s0:T ;θ9i
0:T ),

st+1∼T (·|st,at),θ
9i
t+1∼U9i(·|θ9i

t ,τ 9i
t )

i
. (25)

We implement LILI by replacing the average reward target y in Equation (12) with the discounted
return target: y=ri + γviθi(s′, ẑ9i′; ψ̄i

β).

• MASAC [14] maximizes the discounted return viθi in the stationary Markov game:

max
θi

ρiθi(s, θ9i) :=max
θi

E
h ∞P
t=0

γtRi(st,at)
���

s0=s,

ai
0:T∼π(·|s0:T ;θi),a9i

0:T ∼π(·|s0:T ;θ9i),
st+1∼T (·|st,at)

i
. (26)

MASAC employs the framework of centralized training with decentralized execution [12] and has
access to other agents’ policies to perform optimization during training.

• DRON [57]: An approach that extends DQN [58] with opponent modeling by predicting both
Q-values and current strategies of other agents. This baseline fails to predict future policies of others.

• MOA [45]: An approach that additionally optimizes the influence reward to consider influential
actions to other agents. This baseline also has the discounted return objective.
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G.3 Hyperparameter Details

We use an internal cluster equipped with GPUs of RTX 3090 and CPUs of AMD Threadripper 3960X
for choosing hyperparameters. We report the important hyperparameter values that we used for each
of the methods in our experiments:

Hyperparameter Value
Critic learning rate αq 0.002
Gain learning rate αρ 0.02
Actor learning rate απ 0.0005
Inference learning rate αϕ 0.002
Entropy weight α 0.4
Dimension of latent space |z9i| 5
Discount factor γ 0.99
Batch size 256

Table 2: IBS Experiment

Hyperparameter Value
Critic learning rate αq 0.0005
Gain learning rate αρ 0.02
Actor learning rate απ 0.0001
Inference learning rate αϕ 0.0005
Entropy weight α 0.3
Dimension of latent space |z9i| 5
Discount factor γ 0.99
Batch size 64

Table 3: IC Experiment

Hyperparameter Value
Critic learning rate αq 0.01
Gain learning rate αρ 0.05
Actor learning rate απ 0.001
Inference learning rate αϕ 0.01
Entropy weight α 0.35
Dimension of latent space |z9i| 5
Discount factor γ 0.99
Batch size 64

Table 4: IMP Experiment

Hyperparameter Value
Critic learning rate αq 0.0002
Gain learning rate αρ 0.2
Actor learning rate απ 0.0001
Inference learning rate αϕ 0.0002
Entropy weight α 0.01
Dimension of latent space |z9i| 10
Discount factor γ 0.99
Batch size 256

Table 5: RoboSumo Experiment
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Hyperparameter Value
Critic learning rate αq 0.001
Gain learning rate αρ 0.2
Actor learning rate απ 0.0005
Inference learning rate αϕ 0.001
Entropy weight α 0.01
Dimension of latent space |z9i| 10
Discount factor γ 0.99
Batch size 256

Table 6: Battle Experiment
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Figure 7: (a) Convergence in IBS. The FURTHER agent achieves convergence to its optimal pure
strategy Nash equilibrium. (b) Convergence in IC with self-play. The FURTHER team shows better
converged performance than baselines. (c) A competitive play in IMP between FURTHER and
baseline methods. FURTHER receives higher rewards than baselines over time.

We show additional results about DRON and MOA in playing the iterated matrix games (see Figures 7a
to 7c). Because DRON and MOA also suffer from myopic evaluation, we generally observe the
sub-optimal performance of these baselines in our evaluations. In particular, DRON does not consider
the underlying learning of other agents, resulting in the FURTHER agent easily exploiting the DRON
opponent in Figure 7c. We also observe that, while MOA’s optimization of the influence reward can
effectively learn coordination in sequential social dilemma domains [49, 45], this influence reward
optimization may not be useful in the competitive setting.

I Limitation and Societal Impact

FURTHER has a limitation that the framework does not consider an agent i’s own non-stationary
policy. As discussed in Section 3, it is ideal to maximize the average reward over the space of joint
update functions, including i’s own update function. However, it is computationally intractable to
solve long horizon meta-learning by considering i’s own policy dynamics, and this remains an active
area of research [9, 29, 30]. Instead, we take a practical approach by assuming i’s fixed stationary
policy. Taking an agent’s own non-stationary policy into account is one of the future directions. We
also model the period as k = 1 for simplicity in our experiments, and studying how varying k has
a potential effect on performance is another future direction. Regarding the societal impact, while
FURTHER can achieve a better social outcome in cooperative and self-play settings, a FURTHER
agent aims to influence other agents to converge to desirable policies from its perspective. As such,
there can be applications, where the framework may lead to negative societal impacts by taking
advantage of other agents’ defective decision-making.
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