
A Appendix for SHINE: SubHypergraph Inductive Neural nEtwork

Datasets details. In this section, we give additional details on the datasets used in this paper. The
DisGeNet dataset is a collection of mutated genes involved in human diseases compiled from expert
curated repositories, GWAS catalogs, animal models and the scientific literature. Each disease is
labeled with one or more of 22 MeSH codes, and the task is a multi-class multi-label classification
problem. We used 6:2:2 train:validation:test partition, and the split distribution is shown in Table 1.
The DisGeNet dataset has 6226 pathways and 9133 genes involved in 8383 diseases in total. The
TCGA-MC3 dataset records somatic mutations for subjects in The Cancer Genome Atlas (TCGA).
The genetic variants are stored in a specially formatted file. A row in the file specifies a particular
variant (e.g., Single Nucleotide Polymorphism or insertion/deletion), its chromosomal location, and
what proportion of the sequencing reads covering that chromosomal location have that variant, among
other characteristics. Each subject is labeled with one or more of 25 cancer types, and the task is a
multi-class classification problem. We used 6:2:2 train:validation:test partition, stratified by cancer
types, and the split distribution is shown in Table 2. The TCGA-MC3 dataset has 6229 pathways and
18059 genes involved in 9012 subjects in total.

Genetic pathways. Genetic pathways are a valuable tool to assist in representing, understanding,
and analyzing the complex interactions between molecular functions. The pathways contain multiple
genes (can be modeled using hyperedges) and correspond to genetic functions, including regulations,
genetic signaling, and metabolic interactions. They have a wide range of applications, including
predicting cellular activity and inferring disease types and status [1]. For a simplified and illustrative
example, a signaling pathway p1 (having 20 genes) sensing the environment may govern (the
governing function embodied as a pathway p2 having 15 genes) the expression of transcription factors
in another signaling pathway p3 (having 23 genes), which then controls (the controlling function
embodied as a pathway p4 having 34 genes) the expression of proteins that play roles as enzymes in
a metabolic pathway p5 (having 57 genes). In general, there will be partial overlap between pathways
p1 and p2, p2 and p3, p3 and p4, p4 and p5, and other potential partial overlaps corresponding to
partial overlaps between their corresponding hyperedges.

Genetic variant calling and filtering for TCGA-MC3 dataset. The variants are usually of high
dimensionality. For example, in the TCGA-MC3 dataset, even after we retain only the variants that
received PASS identifiers, there are still around 3 million variants. Thus, we choose to aggregate their
counts according to the affected genes to avoid impractically large matrices. We aggregate genetic
variant count at gene level and sum up all the alternative allele counts and reference allele counts in a
gene. We calculate the mutation rate for a gene g as in equation 1,

µ(g) =

∑
v∈g CALT (v)∑

v∈g CALT (v) +
∑

v∈g CREF (v)
(1)

where variant v belongs to the gene g, CALT (v) is the read depth supporting the variant (alternative)
allele in tumor sequencing data and CREF (v) is the read depth supporting the reference allele
(non-mutated) in tumor sequencing data.

Parameter and hyperparameter tuning for models. For SHINE and other hypergraph methods,
the hyperparameter of hidden dimension d is tuned on the validation dataset with choices from
100 to 1000, at increments of 100. Deep neural network models are often randomly initialized,
thus we also run initialization 10 times and report the averages and standard deviations. For the
comparison hypergraph neural network models, we used the implementations by the original authors.
The hyperparameters were tuned on the validation set using choice grids according to respective
papers, or when unspecified, from default grids as with our proposed method (learning rate ∈
[0.001, 0.002, 0.005], weight decay ∈ [0.0001, 0.0005], dropout rate ∈ [0.4, 0.5, 0.6]). For PRS, the
regularization coefficient C is tuned on the validation dataset with choices from a geometric sequence
from 0.001 to 1000 at a multiplying ratio of 10. For NMF, the number of factors is tuned on the
validation dataset with choices from 100 to 1000, at increments of 100. For XGBoost, we tuned max
tree depth (3, 5, 10), the number of estimators (from 100 to 1000, at increments of 100), and min child
weight (0.01, 0.1, 1, 10, 100), using the validation set. For models requiring random initialization, we
run initializations 10 times with different seeds and report the averages and standard deviations. We
varied the number K of layers from 1 to 4, and found that 2 layers to give the best results for SHINE.
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Regarding sensitivity to the hidden dimension, in general, the performance is less sensitive to
the hidden dimensions when it is sufficiently big (≥300), with <0.05 change in micro-F1 score.
Smaller hidden dimensions (100-200) can lead to >0.05 micro-F1 drop, likely due to insufficient
representation power. The optimal hidden dimension is 300 for the TCGA-MC3 dataset and 600 for
the DisGeNet dataset. The performance also shows <0.05 change in micro-F1 score when varying
other hyperparameters including learning rate, weight decay, dropout rate in their respective grids as
specified above.

Computational complexity. The complexity of SHINE scales as the following factors grow: the
numbers of layers and nodes, the number and size of hyperedges, the size of hidden dimensions, and
finally the number and size of subhypergraphs. We implement SHINE on PyTorch, and run it on
NVIDIA V100 GPUs. We train SHINE for up to 6000 epochs using Adam [2] and stop training if
the validation loss does not decrease for 10 consecutive epochs. The TCGA-MC3 dataset’s training
times are: MLP ∼5 min, HyperGCN ∼7 min, AllSetTransformer ∼20 min, AllDeepSet ∼20 min,
SHINE ∼30 min, HGNN ∼30 min, HyperGAT ∼30 min, SubGNN >1 day (excluding prebuild time).
The DisGeNet dataset’s training times are: MLP ∼5 min, HyperGCN ∼6 min, AllDeepSet ∼13 min,
HGNN ∼15 min, HyperGAT ∼15 min, AllSetTransformer ∼16 min, SHINE ∼20 min, SubGNN >1
day (excluding prebuild time).

Ablation study. To investigate the contribution of key components (e.g., the strictly dual attention
massage passing, the usage of hypergraph regularization) in the proposed algorithm to the overall
method, we performed an ablation analysis. The previous state-of-the-art hypergraph neural network
models in fact serve as some of the steps in the ablation. For example, HyperGAT does not have
strict dual attention message passing and does not employ hypergraph regularization. HGNN
and HyperGCN apply hypergraph convolution instead of attention message passing. HyperGCN,
compared to HGNN, applies approximate hypergraph convolution by representing a hyperedge by a
selected pairwise simple edge connecting two most unlike nodes, and adding the remaining nodes

Table 1: Statistics of DisGeNet experiment data. The table includes the distribution of the 22 MeSH
categories with more than 100 diseases. The dataset is split into a training set, a validation set and a
test set according to a 6:2:2 ratio.

MeSH Description Total Train Val Test

C01 Infections 221 135 45 41
C04 Neoplasms 1010 626 190 194
C05 Musculoskeletal Diseases 1266 765 239 262
C06 Digestive System Diseases 430 238 91 101
C07 Stomatognathic Diseases 242 156 50 36
C08 Respiratory Tract Diseases 235 137 52 46
C09 Otorhinolaryngologic Diseases 299 188 55 56
C10 Nervous System Diseases 2960 1769 619 572
C11 Eye Diseases 756 470 150 136
C12 Male Urogenital Diseases 537 337 102 98
C13 Female Urogenital Diseases and 640 402 118 120

Pregnancy Complications
C14 Cardiovascular Diseases 746 441 147 158
C15 Hemic and Lymphatic Diseases 624 392 108 124
C16 Congenital, Hereditary, and Neonatal 3648 2168 725 755

Diseases and Abnormalities
C17 Skin and Connective Tissue Diseases 789 459 142 188
C18 Nutritional and Metabolic Diseases 1277 725 271 281
C19 Endocrine System Diseases 535 327 107 101
C20 Immune System Diseases 415 249 87 79
C23 Pathological Conditions, Signs and Symptoms 1795 1065 387 343
C25 Chemically-Induced Disorders 135 80 29 26
F01 Behavior and Behavior Mechanisms 267 164 62 41
F03 Mental Disorders 501 295 123 83

2



Table 2: Statistics of TCGA-MC3 experiment data. The table includes the distribution of the 25
cancer types with more than 100 subjects. The dataset is split into a training set, a validation set and
a test set according to a 6:2:2 ratio.

Cancer Description Total Train Val Test

BLCA Bladder Urothelial Carcinoma 411 247 82 82
BRCA Breast invasive carcinoma 791 475 158 158
CESC Cervical squamous cell carcinoma 289 173 58 58

and endocervical adenocarcinoma
COAD Colon adenocarcinoma 288 173 57 58
ESCA Esophageal carcinoma 184 110 37 37
GBM Glioblastoma multiforme 309 185 62 62
HNSC Head and Neck squamous cell carcinoma 507 304 102 101
KIRC Kidney renal clear cell carcinoma 368 220 74 74
KIRP Kidney renal papillary cell carcinoma 281 169 56 56
LAML Acute Myeloid Leukemia 137 83 27 27
LGG Brain Lower Grade Glioma 510 306 102 102
LIHC Liver hepatocellular carcinoma 363 217 73 73
LUAD Lung adenocarcinoma 512 307 103 102
LUSC Lung squamous cell carcinoma 480 288 96 96
OV Ovarian serous cystadenocarcinoma 409 245 82 82
PAAD Pancreatic adenocarcinoma 175 105 35 35
PCPG Pheochromocytoma and Paraganglioma 178 107 35 36
PRAD Prostate adenocarcinoma 493 295 99 99
SARC Sarcoma 236 142 47 47
SKCM Skin Cutaneous Melanoma 466 280 93 93
STAD Stomach adenocarcinoma 438 262 88 88
TGCT Testicular Germ Cell Tumors 128 77 25 26
THCA Thyroid carcinoma 490 294 98 98
THYM Thymoma 122 74 24 24
UCEC Uterine Corpus Endometrial Carcinoma 447 268 90 89

in the hyperedge as mediators. To evaluate the efficacy of the weighted subgraph attention (WSA),
we consider a subgraph simply the sum of the nodes (genes) that are of interest (with mutations) for
each patient (subgraph). Finally, we added SHINE with no hypergraph regularization to evaluate the
regularization effectiveness. The ablation analysis results are shown in Table 3. From the results, it is
clear that SHINE’s strictly dual attention message passing outperforms HyperGAT without strictly
dual attention message passing. We can see that adding hypergraph regularization further improves
performance, in fact, with improvement beyond standard deviation intervals of the regularization-
ablated model on both datasets. The weighted subgraph attention (WSA) ablation leads to a larger
performance drop than hypergraph regularization ablation, which corroborates the importance of the
WSA step. We also notice that the performance drop due to WSA ablation on the TCGA-MC3 dataset
is larger than that on the DisGeNet dataset. This is consistent with the fact that the TCGA-MC3
dataset has denser hypergraph and larger subgraphs than the DisGeNet dataset. This is also consistent
with the fact that differentiating among cancer subtypes is a more complex and nuanced task than
differentiating among disease categories. These observations collectively argue for the benefits of
weighted subgraph attention over direct aggregation such as sum, and more increasingly so for larger
datasets and more complex tasks.

Model interpretation. SHINE simultaneously learns the representations of nodes and hyperedges,
which are then used to learn and inductively infer subgraph representations. This brings model
interpretation advantages as it allows assessing pathways (hyperedges) correlations and reasoning
multiple molecular functions mutually interacting and collectively contributing to the disease onset.
We identify the top pathways that are enriched in different cancers using the attention weights learned
for SHINE, as shown in Table 4. From the table, we see that many of the listed pathways reflect innate
key events in the development of individual or multiple types of cancers, consistent with genetic and
medical knowledge from wet lab (e.g., TNF/Stress Related Signaling [3]).
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Table 3: Ablation Analysis: Held-out test set micro-F1 on real-world datasets. Standard deviations are
provided from runs with 10 random seeds. SHINE significantly outperforms all the state-of-the-art
comparison models. Best model in bold.

Model DisGeNet Dataset TCGA-MC3 Dataset
Metrics Test Micro F1 Test Micro F1

HyperGCN (approx. hypergraph convolution) 0.6638 ± 0.0028 0.4384 ± 0.0095
HGNN (hypergraph convolution) 0.6809 ± 0.0027 0.4504 ± 0.0042
HyperGAT (not strictly dual attention) 0.6495 ± 0.0050 0.4721 ± 0.0032
SHINE without weighted subgraph attention 0.6472 ± 0.0053 0.4388 ± 0.0091
SHINE without hypergraph regularization 0.6829 ± 0.0059 0.5247 ± 0.0048
SHINE 0.6955 ± 0.0034 0.5319 ± 0.0049

For breast cancer, TNFα is not only closely involved in its onset, progression and in metastasis
formation, but also linked to therapy resistance [3]. Regarding the 4-1BB pathway, studies have
suggested HER2/4-1BB bispecific molecule as a candidate of alternative therapeutic strategy to
patients in HER2-positive breast cancer [4]. VIP/PACAP and their receptors have prominent roles in
transactivation of the Epidermal growth factor (EGF) family and growth effects in breast cancer [5].
For lung cancer, the ErbB3 receptor recycling controlled by neuroregulin receptor degradation
protein-1 is linked to lung cancer and small inhibitory RNA (siRNA) to ErbB3 shows promise as a
therapeutic approach to treatment of lung adenocarcinoma [6]. Lung cancer is also modulated by
multiple miRNAs interacting with the TFAP2 family [7]. For lower-grade gliomas, recent studies have
reported the association between DNA demethylation and their malignant progressions [8]. Emerging
evidence has also linked the citric acid (TCA) cycle for energy production to fuel the development of
certain cancer types, especially those with deregulated oncogene and tumor suppressor expression [9].
For head and neck cancer, studies have reported a high percentage of cases with MECP2 copy-number
gain and in combination with RAS mutation or amplification [10]. The apoptotic signaling and
response pathways involving the mitochondrial pro-apoptotic protein SMAC/Diablo have also been
suggested to regulate lipid synthesis that is essential for cancer growth and development [11].

Of note, the pathways listed in Table 4 for each cancer type play roles in different phases of
cancer onset, growth or metastasis, and likely function together in tumorigenesis and progression,
as discovered by SHINE. These analyses suggest that besides providing useful and discriminative
features, SHINE integrates gene and pathway data to provide insights into functional and molecular
mechanisms by linking together multiple pathways that may function together and contribute to
cancer development and progression.

Relevance and impact. The techniques and results presented in the paper could apply to many
diseases through informing genetic medicine practice. In these real-world applications, a subject’s
genetic profile may contain individual characterizing information. Thus, this work, or derivatives of
it, should never be used in violation of an individual’s privacy. For using individual level dataset such
as the TCGA-MC3, the proper steps of IRB review of study and execution of data user agreement
need to be properly completed prior to the study, such as done by this study.

It is important for the machine learning (ML) community to continue being informed about the
problems arising in critical application domains such as healthcare and biomedicine that can guide
model design. More specifically, explicitly treating hyperedges as first class citizens in the GNN
modelling is important, since in this way hyperedges can be the subjects of notions of regularization
or attention. This article demonstrated the feasibility to address those needs with our practical
considerations of design and implementation choices by SHINE to advance modern genetic medicine
study. We have demonstrated successful applications of SHINE on large-scale genetic medicine
datasets, including the TCGA-MC3 dataset that is one of the largest NIH dbGaP datasets. Genetic
medicine revolutionizes the practice of medicine in preventing, modifying and treating many diseases
such as cardiovascular disease and cancer. In the future, as even larger genetic datasets will be
collected through NIH programs such as All of Us and TopMed, we expect SHINE to be a useful tool
in the quest of broadly advancing the knowledge on disease susceptibility.
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