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Abstract

This paper focus on few-shot object detection (FSOD) and instance segmenta-
tion (FSIS), which requires a model to quickly adapt to novel classes with a few
labeled instances. The existing methods severely suffer from bias classification
because of the missing label issue which naturally exists in an instance-level few-
shot scenario and is first formally proposed by us. Our analysis suggests that the
standard classification head of most FSOD or FSIS models needs to be decoupled
to mitigate the bias classification. Therefore, we propose an embarrassingly simple
but effective method that decouples the standard classifier into two heads. Then,
these two individual heads are capable of independently addressing clear positive
samples and noisy negative samples which are caused by the missing label. In this
way, the model can effectively learn novel classes while mitigating the effects of
noisy negative samples. Without bells and whistles, our model without any addi-
tional computation cost and parameters consistently outperforms its baseline and
state-of-the-art by a large margin on PASCAL VOC and MS-COCO benchmarks
for FSOD and FSIS tasks.1

1 Introduction

Fully supervised deep convolutional neural network have achieved remarkable progress on various
computer vision tasks, such as image classification [15], object detection [12, 3, 29], semantic seg-
mentation [22, 2] and instance segmentation [14] in recent years. However, the superior performance
heavily depends on a large amount of annotated images. In contrast, humans can quickly learn novel
concepts from a few training examples. To this end, a few-shot learning paradigm [8] is presented,
and its goal aims to adapt novel classes when only providing a few labeled examples (instances).
Unfortunately, existing few-shot models are still far behind humans, especially for few-shot object
detection (FSOD) and few-shot instance segmentation (FSIS).

Various methods have been proposed to tackle the problem of the FSOD and FSIS. The earlier
works [34, 39] mainly follow meta-learning paradigm [9] to acquire task-level knowledge on base
classes and generalize better to novel classes. However, these methods usually suffer from a com-
plicated training process (episodic training) and data organization (support query pair). The recent
transfer-learning (fine-tuning) methods [33, 35, 31, 1, 28] significantly outperforms the earlier
meta-learning ones. Furthermore, it is more simple and efficient. These transfer-learning meth-
ods mainly follow a fully supervised object detection or instance segmentation framework, e.g.,
Faster-RCNN [30] or Mask-RCNN [14]. Therefore, it may be suboptimal for few-shot scenario.

The PASCAL VOC [4] and MS-COCO [21] are widely used to evaluate the performance of object
detection or instance segmentation. Under a fully supervised setting, the model can be well-trained
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on these two datasets because all interest objects are almost completely labeled. Under an instance-
level few-shot scenario, however, we find that there is a large number of instances that are missing
annotations as shown in Fig. 1 (detailed discussion in Sec. 3.2). The reason is that the community
considers an instance as a shot for controlling the number of labeled instances when building instance-
level benchmarks. This is different from image-level few-shot image classification [32] because there
are generally multiple instances in an image for instance-level few-shot learning. In fact, missing
(partial or incomplete) label learning is more difficult and challenging, especially instance-level
few-shot scenarios. It requires that learning algorithms deal with training images each associated with
multiple instances, among which only partial instances are labeled; while the common supervised
learning typically assumes that all interest instances are fully labeled. In some real-world applications,
such as open-vocabulary object detection [40], it is almost impossible to label all instances, and thus
there still may exist some instances left to be missing labeled. In addition, it is more friendly and
convenient for users to label partial instances than all ones even in few-shot settings.

Most methods [42, 25] have been developed to address missing label (partial label or incomplete label)
learning but mainly focus on image-level multi-class or multi-label classification. To address the
instance-level missing label issue, some recent works have attempted to regard the missing (unlabeled)
instances as hard negative samples and re-weight [37] or re-calibrate [41] their losses. However,
these works still only focus on general object detection. For instance-level few-shot recognition, it
may result in biased classification and thus limit the generalization ability of novel classes using the
model trained on these mislabeled datasets if we don’t take any action.

Recently, one work closely related to ours is the state-of-the-art DeFRCN [28] which decouples
Faster-RCNN to alleviate the foreground-background confusion between base pre-training and novel
fine-tuning in FSOD. It also can be interpreted from a missing label perspective. Here, we could
view fine-tuning few-shot learning paradigm as a domain adaption procedure from base to novel.
In this procedure, a few-shot detector may suffer from foreground-background confusion because
one background proposal (negative class may be potential novel class) in the base learning stage
will become foreground (positive class) in the novel fine-tuning phase. To mitigate the label conflict
between the two domains, DeFRCN decouples RCNN and RPN by stopping gradient backpropagation
of RPN in Faster-RCNN. Different from the missing label of cross-domain in DeFRCN, we focus on
the missing label issue only in the novel (or balanced base-novel) fine-tuning stage. Another recent
work, Pseudo-Labelling [26, 18] mines the missing labeled instances for increasing the number of
positive training samples and reducing the biased classification. Unfortunately, this method may lead
to a chicken-and-egg problem–we need a good few-shot detector to generate good pseudo labels, but
we need good few-shot annotations to train a good few-shot detector. Unlike this work, our method
completely avoids using any pseudo-label information.

In this paper, we propose a simple decoupling method to mitigate the biased classification issue.
Specifically, we firstly decouple the standard classifier into two parallel heads, positive and negative
ones. Then, these two heads independently process clear positive and noisy negative samples with
different strategies. Our contributions are summarized as follows:

• We rethink FSOD and FSIS from the perspective of label completeness and discover that existing
transfer-learning few-shot methods severely suffer from bias classification because the missing
label issue naturally exists in instance-level few-shot scenarios. To be best of our knowledge, this
is the first to propose missing label issue in FSOD and FSIS.

• To mitigate the bias classification, we propose a simple but effective method that decouples the
standard classifier into two parallel heads to independently process clear positive samples and
noisy negative ones. Without bells and whistles, the proposed decoupling classifier can be taken
as an alternative to the standard classifier in state-of-the-art FSOD or FSIS models.

• Comprehensive experimental results on PASCAL VOC and MS-COCO show that our approach
without any additional parameters and computation cost outperforms state-of-the-art both on
FSOD and FSIS tasks.

2 Related Work

FSOD aims to recognize novel objects and localize them with bounding boxes when only providing
a few training instances on each novel class. Existing works can be roughly grouped into two
families, meta-learning and transfer-learning, according to training paradigm. The meta-learning

2



1-shot 2-shot 3-shot 5-shot 10-shot
10

20

30

40

50

60

70

80

M
iss

in
g 
Ra

te
 (%

)

69.1% 69.7% 69.7%
66.8%

62.8%

32.5% 33.8%
36.5%

31.6%
26.3%

gFSOD
FSOD

(a) PASCAL VOC

1-shot 2-shot 3-shot 5-shot 10-shot 30-shot
60

65

70

75

80

85

M
iss

in
g 
Ra

te
 (%

)

83.3% 82.9% 82.3%
80.3%

76.7%
74.5%

73.3%
74.3% 74.2%

72.7%

68.8%

64.8%

gFSOD
FSOD

(b) MS-COCO

two missing labeled
instances 

(c) a one-shot labeled image
Figure 1: The proportion of missing instances in the training set for FSOD and gFSOD on (a) PASCAL-VOC
and (b) MS-COCO datasets. It can be observed that there is a high missing rate in each shot, especially for the
gFSOD. In (c), two “person” instances present in the one-shot labeled image, but they are mislabeled.

methods [34, 17, 39, 5, 38, 19, 20, 43, 16, 13] use episodic training to acquire task-level knowledge
on base classes and generalize better to novel classes. The transfer-learning methods [33, 35, 31,
43, 1, 28] generally utilize two-stage training strategy first pre-training on base classes and then
fine-tuning on novel classes, which have significantly outperformed many earlier meta-learning
approaches. Recent FSCE [31] shows that the degradation of detection performance mainly comes
from misclassifying novel instances as confusable classes, and they propose a contrastive proposal
encoding loss to ease the issue. Similar to the FSCE, FADI [1] explicitly associates each novel class
with a semantically similar base class to learn a compact intra-class distribution. DeFRCN [28]
decouples Faster-RCNN [30] to alleviate the foreground-background confusion between pre-training
and fine-tuning stage.

FSIS needs to not only recognize novel objects and their location but also perform pixel-level
semantic segmentation for each detected instance. Many FSIS approaches typically use the FSOD
framework, e.g., Mask-RCNN [14], it is built on the Faster-RCNN by adding a mask segmentation
head. Therefore, most FSIS methods generally follow the FSOD learning paradigm, i.e., meta-
learning [23, 39, 7, 24] or transfer-learning [10]. Siamese Mask-RCNN [23] and Meta-RCNN [39]
commonly compute embeddings of support images and combine them with those features of query
images produced by a backbone network. Their difference is the combination strategy, e.g., subtraction
in [23] and concatenation in [39]. These works only focus on the performance of novel classes and
ignore that of base classes. In real-world applications, we expect that one few-shot model not
only recognizes novel classes but also remembers base classes. The recent iMTFA [10] introduces
incremental learning into FSIS and propose incremental FSIS task.

3 Methodology

3.1 Few-shot Object Detection and Instance Segmentation Setting

Given an image dataset D = {Xi, Yi}Ni=1, where Xi denotes the i-th image and Yi is its corre-
sponding annotation. For object detection, Yi={bk, ck}Mk=1, where bk and ck represent bounding
box coordinates and category of the k-th instance presented image Xi, respectively. For instance
segmentation, Yi includes pixel-level mask mk annotation beyond category and bounding box ones,
i.e., Yi={bk,mk, ck}Mk=1. Under few-shot learning setting, these annotations can be grouped into
two sets, base and novel classes, denoted as Cbase and Cnovel. Note that the base and novel classes
are non-overlapping (i.e., Cbase∩Cnovel=∅).
FSOD or FSIS aims to detect/segment novel class instances through training a model based on plenty
of labeled instances on a set of base classes and a few instances (e.g, 1, 2, 3 and 5) on each novel class.
Note, FSOD or FSIS only focuses on recognizing novel class instances but ignores base class ones. It
is impractical from the perspective of many real-world applications because people always expect
that a few-shot model is capable of not only recognizing novel classes but also remembering base
classes. To this end, generalized FSOD and FSIS (abbreviated as gFSOD and gFSIS) [11, 27, 6, 10]
stresses that a good few-shot learning system should adapt to new tasks (novel classes) rapidly while
maintaining the performance on previous knowledge (base classes) without forgetting.

As mentioned above, transfer-learning FSOD and FSIS methods mainly consist of two stages, i.e.,
pre-training on base classes and fine-tuning on novel classes. The former is trained on plenty of
labeled instances in Cbase while the latter only uses a few labeled instances in Cnovel. For generalized
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few-shot learning, the main difference is novel stage training which uses few labeled instances in
both Cbase and Cnovel. Note that the labeled instances are abundant at the base stage, but there are
only a few labeled instances at novel stage both FSOD/FSIS and gFSOD/gFSIS. Therefore, most
instances are unlabeled (missing labeled) as only K instances are provided at the fine-tuning stage.
This is, in fact, reasonable from the perspective of data privacy (incremental learning).

3.2 Revisiting Object Detection and Instance Segmentation

We focus on transfer-learning FSOD and FSIS methods because they are more simple and effective
compared to meta-learning ones. As we know, Faster-RCNN and Mask-RCNN are very popular
and powerful solutions as two-stage stacking architecture for fully supervised object detection and
instance segmentation. We firstly describe the two-stage detector and segmenter. In general, the first
stage is designed to generate class-agnostic region proposals which can be formulated as:

Fs1(θs1; ·) = FROI ◦ FRPN ◦ FEF(·), (1)

where the θs1 is all the parameters of the first stage. Specifically, an input image Xi is firstly fed into
a backbone network to Extract high-level Features (FEF). Then, a Region Proposal Network (RPN)
is adopted to generate candidate regions based on these extracted features (FRPN). Finally, all these
region proposals are pooled into fixed size feature maps using a Region of Interest (ROI) pooling
module (FROI) for the following stage. The structure of the second stage varies depending on the
specific task. For object detection, the ROI features of sampled region proposals will be parallelly
fed into two heads for performing box classification and regression, that is

LOD
s2 = LCLS(θcls; ·) + LREG(θreg; ·), (2)

where θcls and θreg are the parameters of classification and regression head, respectively. Instance
segmentation method (e.g., Mask-RCNN) follows the second stage structure of object detection and
applies it to three heads, i.e., box classification, box regression and mask segmentation, that is

LIS
s2(·) = LCLS(θcls; ·) + LREG(θreg; ·) + LSEG(θseg; ·), (3)

where θseg is parameters of the mask segmentation head. Given an input image Xi and its corre-
sponding annotation Yi={bk, ck}Mk=1 or Yi={bk,mk, ck}Mk=1, Eqs. 2 and 3 can be jointly optimized
end-to-end by minimizing LOD

s2 (·) and LIS
s2(·), which follows a multi-task learning paradigm. For

simplicity, we omit the RPN learning in Eqs. 2 and 3.

Missing Label Issue. We can obtain a powerful model by minimizing Eqs. 2 and 3 when all
interesting instances are completely labeled in a large-scale image dataset D. The completeness
of annotation at label space is, in fact, a general precondition for most fully supervised learning
algorithms. However, it is not satisfactory for a few-shot learning scenario. The reason is that only a
few instances are manually labeled in given training images, and a lot of potential instances may be
presented but unlabeled. From the perspective of practical application, it is natural and unavoidable
to miss annotations when facing a few-shot setting. As shown in Fig. 1 (c), we can see that there
are at least three instances including two “person” and one “dog” in this image, but only the “dog”
instance carrying annotation (box, mask, category), and other two “person” instances are unlabeled
(i.e., missing labels).

In order to quantitatively measure the proportion of missing labeled instances, we compute the
average missing rate for each shot on PASCAL VOC and MS-COCO benchmark datasets as shown
in Fig. 1. Firstly, it can be seen that there is a high missing rate on each shot. For example, 74.3%
novel class instances potentially present on 3-shot MS-COCO training images, but they are not given
any annotations. Secondly, the missing rate is further increased under a generalized few-shot setting.
For example, the missing rate increases nearly two times of few-shot setting on the PASCAL VOC.
Despite some efforts try mining these missing labeled instances in a semi-supervised manner for
boosting few-shot performance, the fully supervised loss with Eqs. 2 and 3 may result in a suboptimal
solution when some instances are unlabeled. To be best of our knowledge, this is the first to propose
the missing label issue in few-shot object detection and instance segmentation.

Biased Classification Issue. The Eqs. 2 and 3 can be optimized using sampled ROI features and their
labels as mentioned above. The sampling operation performs box matching between “ROI features”
and “annotation”, and assigns training labels (positive or negative) to the corresponding ROIs. Here,
the positive (foreground) ROIs are sampled from object proposals that have an IoU overlap with the
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ground-truth bounding box at a threshold (e.g., 0.5), while negative (background) ROIs are sampled
from the remaining proposals. The classification head is trained based on these sampled positive and
negative ROIs. Different from the classification head, the box regression, and mask segmentation
head learning are only associated with positive ROIs.

The annotations of positive ROIs are accurate, e.g., the annotations of the “dog” instances in Fig. 1
(c). However, the sampled negative ROIs may be noisy because of the missing label issue under the
few-shot setting. For example, those two “people” instances will be assigned to negative labels (i.e.,
background) if they are sampled in Fig. 1 (c), according to the above label assignment strategy. This
will make the standard classification head confused with positive and noisy negative samples. On
one hand, the model is correctly guided to recognize positive objects because all positive samples
are accurate. On the other hand, the model may be misguided by noisy negative samples and thus
incorrectly recognize positive objects as background. Therefore, the bias classification may happen
when meeting the missing label issue, especially in a few-shot scenario. Furthermore, it potentially
limits the generalization ability to adapt to the novel class quickly and efficiently.

3.3 Decoupling Classifier to Mitigate the Bias Classification

Standard Classifier. We assume that x ∈ RC+1 is the predicted logit of a sampled ROI feature
obtained from Eq. 1 and its corresponding class label vector is y ∈ RC+1, where there are C
foreground categories and one background class, and yi is 1 if the corresponding proposal belongs
to the i-th category, 0 otherwise. Then, we use a softmax function to transform it into a probability
distribution, that is

p̂i =
exp(xi)∑
t exp(xt)

. (4)

The cross-entropy loss is used as the measurement of the similarity between the ground-truth y and
predicted distribution p̂, that is

LCLS = −
C∑
i=0

yilog(p̂i). (5)

Note that the standard classifier (Eqs. 4 and 5) may confuse with clear positive and noisy negative
samples in few-shot scenario.

Decoupling Classifier. In order to process positive and negative samples differentially, we decouple
the standard classifier into two heads, i.e., positive (foreground) head and negative (background) head,
which are formulated as

LCLS = Lfg
CLS + Lbg

CLS. (6)
Here, the positive and negative heads are responsible for positive and negative samples, respectively.
Considering that the labels of positive samples (foreground) are accurate, we can use cross-entropy
loss (i.e., Eq. 5) for all positive instances. The labels of those negative examples may be noisy because
of the missing label issue. Therefore, it is not reasonable to employ normal cross-entropy loss for
training the negative head. Note that these negative examples are generally sampled from those
object proposals that have a maximum IoU overlap with the ground truth bounding box at an interval
[0, 0.5), and thus we can infer that they may not belong to the ground truth class, although we don’t
know their true category. We expect that the bias classification would be mitigated if the negative
head performs learning only between few-shot labeled categories and the background class. To this
end, we first obtain an image-level multi-label with instance-level few-shot annotation of a training
image, and denote it as m=[m0,m1, · · · ,mC−1,mC ]T , where mi is a binary indicator, and mi is 1
if the image is labeled with the i-th category, 0 otherwise. Note that mC=1 indicates that each image
at least contains a background class. Then, we can obtain a constrained logit x̄ conditioned on the m,
that is

x̄i = mixi. (7)
Substituting Eq. 7 into the softmax function Eq. 4 yields:

p̄i =
exp(mixi)∑
t exp(mtxt)

. (8)

We compute cross-entropy loss between p̄ and the corresponding ground truth ybg, that is

Lbg
CLS = −

C∑
i=0

ybgi log(p̄i), (9)
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where ybgC =1 and ybgi ̸=C=0.

Optimization with Decoupling Classifier. Considering the joint optimization goal (Eq. 2 and 3) of
object detection and instance segmentation, the optimal parameters Θ is determined by minimizing
Eq. 2 and 3, where Θ = {θs1, θcls, θreg} in object detection, and Θ = {θs1, θcls, θreg, θseg} in
instance segmentation. For simplicity, we only consider the optimization for the classification head
and omit the box regression and mask segmentation head in the following analysis. θcls is updated by
a gradient descent step, that is

θcls ← θcls − λ
∂LCLS

∂θcls
, (10)

where λ is the learning rate. Note that we have decoupled the standard classifier into positive and
negative learning in Eq. 6. We firstly analyze the θcls optimization for positive head. According to
the chain rule in Eq. 4 and 5, we have

∂Lfg
CLS

∂x
= p̂− yfg. (11)

Then, the derivative of Lfg
CLS with respect to θcls is

∂Lfg
CLS

∂θcls
= (p̂− yfg)

∂x

θcls
. (12)

Combining the negative head in Eq. 9 and Eqs. 8 and 7, we can similarly obtain derivative of Lbg
CLS

with respect to θcls is
∂Lbg

CLS

∂θcls
= m(p̄− ybg)

∂x

θcls
, (13)

where ybg is the ground truth label vector of a negative sample. Comparing Eqs. 12 with 13, we can
see that the parameters θcls of the classification head will be updated with different ways for positive
and negative examples. For the positive head, the gradient is updated in each dimension of the class
space. But for the negative head, the gradient is limited in some special dimensions because of the
introduced m and thus the bias classification may be alleviated.

(a) Positive head (b) Negative head

Figure 2: Illustration of the gradient of decoupling
classifier, where the blue arrow represents the gradient
direction. (a) illustrates the gradient propagation on the
positive head, and (b) reveals that the gradient propaga-
tion is constrained between few-shot labeled class (e.g.,
dog) and the background and thus the bias classification
is mitigated. Best viewed in color and zoom in.

In order to further understand Eqs. 12 and 13,
we give a visualization example for decoupling
classifier as illustrated in Fig. 2. Note that we
use Gaussian normal distribution for prediction
and ground truth distribution for intuition. Here,
we take the one-shot labeled image in Fig. 1 (c)
for example, where only the “dog” instance is
labeled. We assume that one “person” instance
is sampled as negative sample, and it will be mis-
taken as background class (ground truth). Due
to the proposed decoupling classifier, the opti-
mization of the “person” instance is constrained
between the “dog” and “background” as shown
in Fig. 2 (b) and doesn’t affect the predictions
of other categories such as the “person” class.

4 Experiments
In this section, we empirically evaluate the proposed method for FSOD/gFSOD and FSIS/gFSIS
tasks and demonstrate its effectiveness by comparison with state-of-the-art methods.

4.1 Experimental Setup

Datasets. We follow the previous works and evaluate our method on PASCAL VOC [4] and MS-
COCO [21] datasets. For a fair comparison, we use the same data splits given in [33, 28].

PASCAL VOC covers 20 categories, which are randomly split into 15 base classes and 5 novel
classes. There are three such splits in total. In each class, there are K (1, 2, 3, 5, 10) objects for
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Table 1: FSIS performance for Novel classes on MS-COCO. The superscript † indicates that the results are our
re-implementation. The results are averaged over all 10 seeds and the best ones are in bold, the same below.

Methods Tasks 1 2 3 5 10 30

AP AP50 AP AP50 AP AP50 AP AP50 AP AP50 AP AP50
Meta R-CNN [39] ICCV 19

Det

- - - - - - 3.5 9.9 5.6 14.2 - -
MTFA [10] CVPR 21 2.47 4.85 - - - - 6.61 12.32 8.52 15.53 - -
iMTFA [10] CVPR 21 3.28 6.01 - - - - 6.22 11.28 7.14 12.91 - -
Mask-DeFRCN† [28] ICCV 21

Det
7.54 14.46 11.01 20.20 13.07 23.28 15.39 27.29 18.72 32.80 22.63 38.95

Ours 8.09 15.85 11.90 22.39 14.04 25.74 16.39 29.96 19.33 34.78 22.73 40.24
Meta R-CNN [39] ICCV 19

Seg

- - - - - - 2.8 6.9 4.4 10.6 - -
MTFA [10] CVPR 21 2.66 4.56 - - - - 6.62 11.58 8.39 14.64 - -
iMTFA [10] CVPR 21 2.83 4.75 - - - - 5.24 8.73 5.94 9.96 - -
Mask-DeFRCN† [28] ICCV 21

Seg
6.69 13.24 9.51 18.58 11.01 21.27 12.66 24.58 15.39 29.71 18.28 35.20

Ours 7.18 14.33 10.31 20.43 11.85 23.24 13.48 26.67 15.85 31.33 18.34 35.99

few-shot training. And the PASCAL VOC 2007 testing set is used for evaluation. The dataset is only
used to evaluate FSOD task. We report the Average Precision (IoU=0.5) for novel classes (AP50).

MS-COCO contains 80 classes. The 20 categories presented in the PASCAL VOC are used as novel
classes and the remaining 60 categories are used as base classes. We train a few-shot model based on
K (1, 2, 3, 5, 10, 30) instances for each class and evaluate on the MS-COCO validation set. This
dataset has been widely used to evaluate the performance of FSOD and FSIS. We report Average
Precision (IoU=0.5:0.95), Average Precision (IoU=0.5) on novel classes for FSOD and FSIS settings.
In addition, we also report AP and AP50 for overall classes, base classes, and novel classes under
gFSOD and gFSIS settings, respectively.

Experimental Details. The experiments are conducted with Detectron2 [36] on NVIDIA GPU
V100 on CUDA 11.0. We use standard Faster-RCNN with ResNet-101 backbone extracted features
from the final convolutional layer of the 4-th stage for few-shot object detection, which is the same
as DeFRCN [28]. For instance segmentation, we add a mask prediction head at the ROI of the
Faster-RCNN. For model training, we employ a two-stage transfer-learning approach: first training
the network on the base classes with pre-trained by ImageNet and then fine-tuning on K-shots for
every class. The SGD is used to optimize our network end-to-end with a mini-batch size of 16,
momentum 0.9, and weight decay 5e−5 on 8 GPUs. The learning rate is set to 0.02 during base
training and 0.01 during few-shot fine-tuning. Following the previous work [33], all experimental
results are averaged over 10 seeds. For a fair comparison with DeFRCN [28], we also report the
average results over 10 times repeated runs on seed0.

Strong Baseline. For FSOD and gFSOD, we take the state-of-the-art DeFRCN [28] as a strong
baseline of our method. For FSIS and gFSIS, we extend DeFRCN similarly to how Mask-RCNN
extends Faster-RCNN, i.e., adding a mask prediction head at the ROI of the DeFRCN and keeping
others as same as DeFRCN, and thus we call it Mask-DeFRCN. Our method only replaces the standard
classifier in DeFRCN and Mask-DeFRCN with our decoupling classifier. Therefore, DeFRCN and
Mask-DeFRCN can be taken as our strong baseline for FSOD/gFSOD and FSIS/gFSIS tasks.

4.2 Comparison with the State-of-the-Art

Few-shot Instance Segmentation on the MS-COCO. Our method (simple decoupling classifier)
outperforms the state-of-the-art on the MS-COCO in both FSIS and gFSIS settings. The main results
on MS-COCO are reported in Table 1 and 2 for FSIS and gFSIS, respectively. Based on the experiment
results, we have the following observations: 1) The strong baseline (i.e., Mask-DeFRCN) outperforms
all the state-of-the-art methods for FSIS and gFSIS; 2) Our method consistently outperforms the
baseline Mask-DeFRCN for FSIS; Compared to FSIS, our method has significant improvements for
gFSIS. This is not surprised because the missing rate of gFSIS always is higher than that of FSIS as
shown in Fig. 1 (b). This indicates our method is capable of addressing the missing label issue under
few-shot setting; 3) Our method has a better advantage, especially in low-shot (1-, 2-, 3-shot), and
thus it is very suitable for a few-shot scenario.

On one hand, the missing rate of low-shot is generally higher than that of high-shot so that it leaves
more improvement space for our method. On the other hand, common few-shot models may be weak
against noisy negative samples when the number of positive training samples is very small under
few-shot conditions. In contrast, our method is designed to deal with noisy negative samples issue,
and thus it is more effective. In short, the proposed decoupling classifier is a promising approach to
cope with the missing labels issue for FSIS/gFSIS.
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Table 2: gFSIS performance for Overall, Base and Novel classes on MS-COCO.

Shots Methods

Object Detection Instance Segmentation
Overall Base Novel Overall Base Novel

AP AP50 AP AP50 AP AP50 AP AP50 AP AP50 AP AP50
Base-Only 39.86 59.25 32.58 55.12

1
iMTFA [10] 21.67 31.55 27.81 40.11 3.23 5.89 20.13 30.64 25.90 39.28 2.81 4.72

Mask-DeFRCN† [28] 23.82 35.70 30.11 44.42 4.95 9.55 19.58 33.38 24.63 41.57 4.45 8.81
Ours 27.35 42.55 34.35 52.46 6.34 12.79 22.45 39.33 28.03 48.60 5.72 11.53

2 Mask-DeFRCN† [28] 25.42 38.31 31.06 45.82 8.52 15.79 21.09 35.92 25.61 43.03 7.54 14.59
Ours 28.63 44.74 34.67 52.82 10.52 20.49 23.73 41.49 28.52 49.12 9.38 18.62

3 Mask-DeFRCN† [28] 26.54 40.01 31.77 46.83 10.87 19.55 22.04 37.48 26.22 43.95 9.48 18.06
Ours 29.59 46.21 35.07 53.30 13.15 24.95 24.55 42.81 28.91 49.61 11.46 22.43

5
iMTFA [10] 19.62 28.06 24.13 33.69 6.07 11.15 18.22 27.10 22.56 33.25 5.19 8.65

Mask-DeFRCN† [28] 27.82 42.12 32.54 48.03 13.69 24.41 23.03 39.37 26.84 45.04 11.60 22.36
Ours 30.48 47.75 35.30 53.65 16.02 30.05 25.20 44.12 29.10 49.87 13.50 26.86

10
iMTFA [10] 19.26 27.49 23.36 32.41 6.97 12.72 17.87 26.46 21.87 32.01 5.88 9.81

Mask-DeFRCN† [28] 29.88 45.25 34.17 50.48 17.02 29.58 24.75 42.32 28.23 47.33 14.32 27.29
Ours 31.77 49.77 36.14 54.85 18.67 34.55 26.36 46.13 29.91 51.11 15.71 31.19

30 Mask-DeFRCN† [28] 31.66 48.11 35.10 52.01 21.33 36.44 26.23 44.97 29.12 48.82 17.57 33.42
Ours 32.92 51.37 36.45 55.05 22.30 40.31 27.31 47.61 30.32 51.41 18.29 36.22

Table 3: FSOD and gFSOD performance (AP50) for Novel classes on PASCAL VOC. The term w/g
indicates whether we use the gFSOD setting [33]. The superscript ∗ indicates that the results are
averaged over 10 times repeated runs on seed0, the same below.

Novel Set 1 Novel Set 2 Novel Set 3Methods / Shots w/g 1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

FRCN-ft [39] ICCV 19 ✗ 13.8 19.6 32.8 41.5 45.6 7.9 15.3 26.2 31.6 39.1 9.8 11.3 19.1 35.0 45.1
FSRW [17] ICCV 19 ✗ 14.8 15.5 26.7 33.9 47.2 15.7 15.2 22.7 30.1 40.5 21.3 25.6 28.4 42.8 45.9
MetaDet [34] ICCV 19 ✗ 18.9 20.6 30.2 36.8 49.6 21.8 23.1 27.8 31.7 43.0 20.6 23.9 29.4 43.9 44.1
MetaRCNN [39] ICCV 19 ✗ 19.9 25.5 35.0 45.7 51.5 10.4 19.4 29.6 34.8 45.4 14.3 18.2 27.5 41.2 48.1
TFA [33] ICML 20 ✗ 39.8 36.1 44.7 55.7 56.0 23.5 26.9 34.1 35.1 39.1 30.8 34.8 42.8 49.5 49.8
MPSR [35] ECCV 20 ✗ 41.7 - 51.4 55.2 61.8 24.4 - 39.2 39.9 47.8 35.6 - 42.3 48.0 49.7
TIP [19] CVPR 21 ✗ 27.7 36.5 43.3 50.2 59.6 22.7 30.1 33.8 40.9 46.9 21.7 30.6 38.1 44.5 50.9
DCNet [16] CVPR 21 ✗ 33.9 37.4 43.7 51.1 59.6 23.2 24.8 30.6 36.7 46.6 32.3 34.9 39.7 42.6 50.7
CME [20] CVPR 21 ✗ 41.5 47.5 50.4 58.2 60.9 27.2 30.2 41.4 42.5 46.8 34.3 39.6 45.1 48.3 51.5
FSCE [31] CVPR 21 ✗ 44.2 43.8 51.4 61.9 63.4 27.3 29.5 43.5 44.2 50.2 37.2 41.9 47.5 54.6 58.5
SRR-FSD [43] CVPR 21 ✗ 47.8 50.5 51.3 55.2 56.8 32.5 35.3 39.1 40.8 43.8 40.1 41.5 44.3 46.9 46.4
FADI [1] NeurIPS 21 ✗ 50.3 54.8 54.2 59.3 63.2 30.6 35.0 40.3 42.8 48.0 45.7 49.7 49.1 55.0 59.6
FCT [13] CVPR 22 ✗ 38.5 49.6 53.5 59.8 64.3 25.9 34.2 40.1 44.9 47.4 34.7 43.9 49.3 53.1 56.3
DeFRCN† [28] ICCV 21 ✗ 46.2 56.4 59.3 62.4 63.7 32.6 39.9 44.5 48.3 51.8 39.8 49.9 52.6 56.1 59.7
Ours ✗ 46.2 57.4 59.9 62.9 64.5 32.6 39.9 43.4 47.9 51.3 40.3 50.5 53.8 56.9 60.7
DeFRCN * [28] ICCV 21 ✗ 53.6 57.5 61.5 64.1 60.8 30.1 38.1 47.0 53.3 47.9 48.4 50.9 52.3 54.9 57.4
Ours * ✗ 56.6 59.6 62.9 65.6 62.5 29.7 38.7 46.2 48.9 48.1 47.9 51.9 53.3 56.1 59.4

FRCN-ft [39] ICCV 19 ✓ 9.9 15.6 21.6 28.0 52.0 9.4 13.8 17.4 21.9 39.7 8.1 13.9 19.0 23.9 44.6
FSRW [17] ICCV 19 ✓ 14.2 23.6 29.8 36.5 35.6 12.3 19.6 25.1 31.4 29.8 12.5 21.3 26.8 33.8 31.0
TFA [33] ICML 20 ✓ 25.3 36.4 42.1 47.9 52.8 18.3 27.5 30.9 34.1 39.5 17.9 27.2 34.3 40.8 45.6
FSDetView [38] ECCV 20 ✓ 24.2 35.3 42.2 49.1 57.4 21.6 24.6 31.9 37.0 45.7 21.2 30.0 37.2 43.8 49.6
DeFRCN [28] ICCV 21 ✓ 40.2 53.6 58.2 63.6 66.5 29.5 39.7 43.4 48.1 52.8 35.0 38.3 52.9 57.7 60.8
Ours ✓ 45.8 59.1 62.1 66.8 68.0 31.8 41.7 46.6 50.3 53.7 39.6 52.1 56.3 60.3 63.3

Table 5: FSOD performance (AP) for Novel classes on
MS-COCO. The superscripts x indicate that the results
are reported in DeFRCN [28].

Methods / Shots 1 2 3 5 10 30

FRCN-ft [39] ICCV 19 1.0 1.8 2.8 4.0 6.5 11.1
FSRW [17] ICCV 19 - - - - 5.6 9.1
MetaDet [34] ICCV 19 - - - - 7.1 11.3
MetaRCNN [39] ICCV 19 - - - - 8.7 12.4
TFA [33] ICML 20 4.4 5.4 6.0 7.7 10.0 13.7
MPSR [35] ECCV 20 5.1 6.7 7.4 8.7 9.8 14.1
FSDetView [38] ICCV 20 4.5 6.6 7.2 10.7 12.5 14.7
TIP [19] CVPR 21 - - - - 16.3 18.3
DCNet [16] CVPR 21 - - - - 12.8 18.6
CME [20] CVPR 21 - - - - 15.1 16.9
FSCE [31] CVPR 21 - - - - 11.1 15.3
SRR-FSD [43] CVPR 21 - - - - 11.3 14.7
FADI [1] NeurIPS 21 5.7 7.0 8.6 10.1 12.2 16.1
FCT [13] CVPR 22 5.1 7.2 9.8 12.0 15.3 20.2
DeFRCN† [28] ICCV 21 7.7 11.4 13.3 15.5 18.5 22.5
Ours 8.1 12.1 14.4 16.6 19.5 22.7
DeFRCN * [28] ICCV 21 9.3 12.9 14.8 16.1 18.5 22.6
Ours * 10.0 13.6 14.7 15.7 18.0 22.2

Few-shot Object Detection on the PASCAL
VOC and MS-COCO. Our method significantly
outperforms the state-of-the-art few-shot object
detection methods by a large margin both on
the PASCAL VOC and MS-COCO datasets un-
der gFSOD setting again. For the FSOD set-
ting, our method is also better than the state-
of-the-art under most cases. The results on the
PASCAL VOC and MS-COCO are reported Ta-
bles 3, 5 and 4, respectively. Some interesting
observations are summarized as follows: 1) Our
method significantly and consistently exceeds
the current state-of-the-art DeFRCN under the
gFSOD setting both on the PASCAL VOC and
MS-COCO, which is similar to that of the gF-
SIS; 2) Our method is better than the strong
DeFRCN in all shots on the MS-COCO and in most cases on the PASCAL VOC under the FSOD
setting (averaging the results on 10 seeds). It is worth noting that our method’s performance on the
MS-COCO is close (maybe slightly worse, about 0.5%) to that of DeFRCN if we compare the results
based on 10 times repeated runs on the seed0. We recheck the missing rate of the seed0, and find
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Table 4: gFSOD performance (AP) for Overall, Base and Novel classes on MS-COCO.
Method / Shots 1 2 3 5 10 30

O B N O B N O B N O B N O B N O B N

FRCN-ft [39] 16.2 21.0 1.7 15.8 20.0 3.1 15.0 18.8 3.7 14.4 17.6 4.6 13.4 16.1 5.5 13.5 15.6 7.4
TFA [33] 24.4 31.9 1.9 24.9 31.9 3.9 25.3 32.0 5.1 25.9 41.2 7.0 26.6 32.4 9.1 28.7 34.2 12.1
FSDetView [38] 3.2 4.9 6.7 8.1 10.7 15.9
DeFRCN [28] 24.4 30.4 4.8 25.7 31.4 8.5 26.6 32.1 10.7 27.8 32.6 13.6 29.7 34.0 16.8 31.4 34.8 21.2
Ours 27.4 34.4 6.2 28.6 34.7 10.4 29.4 34.9 12.9 30.2 35.0 15.7 31.4 35.7 18.3 32.3 35.8 21.9

Table 6: The effects of DC and PCB for gFSIS performance on MS-COCO. GFLOPs are averaged over all
5000 MS-COCO validation images.

Shots M-Rate DC PCB

Complexity Detection Segmentation
#Params. GFLOPs Base Novel Base Novel

AP AP50 AP AP50 AP AP50 AP AP50

1 83.3%

✗ ✗ 54.9M 334.54 30.09 44.45 3.89 7.43 24.62 41.58 3.52 6.88
✓ ✗ 54.9M 334.54 34.35 52.46 5.04 10.03 28.03 48.60 4.59 9.12
✗ ✓ 99.4M 377.88 30.11 44.42 4.95 9.55 24.63 41.57 4.45 8.81
✓ ✓ 99.4M 377.88 34.35 52.46 6.34 12.79 28.03 48.60 5.72 11.53

5 80.3%

✗ ✗ 54.9M 334.54 32.54 48.03 11.94 21.16 26.84 45.04 10.10 19.37
✓ ✗ 54.9M 334.54 35.30 53.65 14.01 26.17 29.10 49.87 11.80 23.38
✗ ✓ 99.4M 377.88 32.54 48.03 13.69 24.41 26.84 45.04 11.60 22.36
✓ ✓ 99.4M 377.88 35.30 53.65 16.02 30.05 29.10 49.87 13.50 26.86

10 76.7%

✗ ✗ 54.9M 334.54 34.05 50.21 14.96 25.70 28.12 47.10 12.60 23.81
✓ ✗ 54.9M 334.54 36.13 54.81 16.66 30.79 29.90 51.07 13.98 27.72
✗ ✓ 99.4M 377.88 34.17 50.48 17.02 29.58 28.23 47.33 14.32 27.29
✓ ✓ 99.4M 377.88 36.14 54.85 18.67 34.55 29.91 51.11 15.71 31.19

that the corresponding missing rate is significantly lowered (even zero) than that of the other 9 seeds.
This also further indicates that our method is robust when the missing rate is small even zero.

4.3 Ablation Study and Analysis

We conduct the ablation study to analyze the component of our method. Models in this section
are based on the gFSIS setting (1-, 5-, 10-shot) using MS-COCO. Note that the DeFRCN uses a
Prototypical Calibration Block (PCB) to refine the classification score which is effective for improving
the FSOD performance, but this brings additional computation cost. Therefore, we consider these
two factors including decoupling classifier (DC) head and PCB in the following analysis.
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(b) gFSIS
Figure 3: Comparison on mRecall and Recall of the proposed decoupling classifier (DC) and standard
classification head (CE) under FSIS and gFSIS settings. The mean and standard deviation results are computed
on all 10 seeds for each shot. Best viewed in color and zoom in.

Effectiveness. We only simply replace the standard classifier with the proposed decoupling classifier
in DeFRCN, which results in significant improvements, especially for the higher missing rate (e.g.,
low shot on MS-COCO). What’s more, our decoupling classifier is effective not only on novel classes
but also on base classes, while the PCB seems only effective on novel classes. In addition, our
decoupling classifier without the PCB significantly outperforms the counterpart with the PCB on
base classes and is also comparable on novel classes.

Efficiency. Firstly, our decoupling classifier does not introduce any additional parameters or com-
putation cost. Secondly, our method obtains better detection and segmentation performance when
using the same complexity as Mask-DeFRCN whether the PCB is used or not. Last but not least,
we only need almost half of the parameters and fewer GFLOPs when removing the PCB block, and
still achieve significant improvements on base classes and comparable performance on novel classes
compared to Mask-DeFRCN using the PCB.
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Figure 4: Visualization results of our method and the strong baseline (Mask-DeFRCN) on MS-COCO validation
images. Best viewed in color and zoom in.

Why DC works? We have given some analysis from the perspective of gradient optimization in Sec. 3.
Here, we try to discuss from the generalization ability of decoupling classifier and compare with the
baseline. We want to explore whether the decoupling classifier mitigates the bias classification. To
this end, we employ Recall metric to evaluate the classification head for all ground-truth foreground
objects. Note that the classification head outputs a multi-class probability distribution p̂ ∈ RC+1. The
predicted class is determined by argmaxip̂i. We define that an object is recalled if its prediction is not
background, i.e., any foreground category. Considering that the number of each foreground category
varies considerably, we also compare mRecall (mean Recalls of all classes). The comparison results
are shown in Fig. 3. We can see that the mRecall and Recall of the decoupling classifier significantly
outperforms the standard one on each shot both FSIS and gFSIS. This indicates that our decoupling
classifier is helpful to mitigate the bias classification thus boosting the performance of FSIS and
gFSIS .

Qualitative Evaluation In Fig. 4, we visualize the results of our method and the strong baseline
(Mask-DeFRCN) on MS-COCO validation images with 10-shot setting for gFSIS task. In the top
rows, we show success cases with our method but partly failures with the baseline. These failures
are mainly caused by the missing detection because the baseline method may tend to incorrectly
recognize positive objects as background (i.e., bias classification). In addition, our method may also
produce some failure predictions as shown in the bottom row from left to right, including the missing
detection of small or occultation objects, coarse boundary segmentation, and the misclassification of
similar appearance objects.

5 Conclusion

In this paper, we firstly find that the missing label widely exists in few-shot scenario. Furthermore, we
analyze that the missing label issue may result in biased classification and thus limit the generalization
ability on novel classes. Therefore, we propose a simple but effective method that decouples the
standard classifier into two parallel heads to independently process positive and negative examples.
Comprehensive experiments on the few-shot object detection and instance segmentation benchmark
datasets show that our approach can effectively and efficiently boost FSOD/gFSOD and FSIS/gFSIS
performance without any additional parameters and computation cost. We hope this study attract
more interest in designing a simple method for FSOD or FSIS in the future. A limitation of our
method is that it may not be suitable when the missing label rate is small. However, our method is
still comparable to its counterpart even if the missing label rate is zero, which indicates its robustness.
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Appendix: Supplementary Material
In this supplementary material, we first give the training details about the base
pre-training and novel fine-tuning of our method in Sec. A. Then, we provide
the PyTorch-like style codes for our decoupling classifier in Sec. B. Next, we
provide complete results including average and standard deviation of multiple runs
on PASCAL VOC and MS-COCO for FSOD/FSIS and gFSOD/gFSIS in Sec. C.
Furthermore, more visualized results of our method and the strong baseline (Mask-
DeFRCN) on MS-COCO validation images are showed in Sec. D. Finally, we include
the missing rates on few-shot PASCAL VOC and MS-COCO in Sec. E.

A Training Details

Following the two-stage training procedure of TFA [33] and DeFRCN [28], we first
pre-train model with abundant labeled images for base classes and then fine-tune
the model with few-shot labeled images for novel classes or base-novel classes. For
the first stage training, we employ the standard classifier (i.e., cross entropy loss)
because all base class objects are completely labeled. In the second stage, we only
simply replace the standard classifier with the proposed decoupling classifier for
mitigating the bias classification under few-shot setting. For a fair comparison, we
use the same hyper-parameters in the DeFRCN [28], such as batch size, learning
rate, and training iterations.

B The Core Code for Decoupling Classifier

Algorithm 1 PyTorch-like Style Code for Decoupling Classifier.

def dc_loss(x, y, m):
"""
Compute loss for the decoupling classifier.
Return scalar Tensor for single image.

Args:
x: predicted class scores in [-inf , +inf], x’s size: N x (1+C), where N is the

number of region proposals of one image.
y: ground -truth classification labels in [0, C-1], y’s size: N x 1, where [0,C-1]

represent foreground classes and C-1 represents the background class.
m: image -level label vector and its element is 0 or 1, m’s size: 1 x (1+C)

Returns:
loss

"""

# background class index
N = x.shape [0]
bg_label = x.shape [1]-1

# positive head
pos_ind = y!= bg_label
pos_logit = x[pos_ind ,:]
pos_score = F.softmax(pos_logit , dim=1) # Eq. 4
pos_loss = F.nll_loss(pos_score.log(), y[pos_ind], reduction="sum") #Eq. 5

# negative head
neg_ind = y== bg_label
neg_logit = x[neg_ind ,:]
neg_score = F.softmax(m.expand_as(neg_logit)*neg_logit , dim=1) #Eq. 8
neg_loss = F.nll_loss(neg_score.log(), y[neg_ind], reduction="sum") #Eq. 9

# total loss
loss = (pos_loss + neg_loss)/N #Eq. 6

return loss
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Algorithm 1 provides the PyTorch-like style code for our decoupling classifier. It
can be seen that it is very simple (core implementation only uses one line of code,
the main change is to only introduce an image-level label vector, m in Eq. 8, into the
standard softmax function for the negative head and keep others unchanged like the
positive head) but really effective (e.g., 5.6 AP50 improvements for detection and
4.5 AP50 improvements for segmentation on challenging MS-COCO with 5-shot
setting in Table 8).

C Complete Results of FSOD/FSIS and gFSOD/gFSIS

In our main paper, we only report the average AP/AP50 metric for FSOD/FSIS and
gFSOD/gFSIS on MS-COCO and PASCAL VOC datasets. In this supplementary
material, we report the average AP/AP50 metric with 95% confidence interval over
10 seeds for FSOD/FSIS and gFSOD/gFSIS in Tables 7, 8, 9, 10 and 11, respectively.
K={1, 2, 3, 5, 10, 30} is the number of labeled instances of each class used in the
fine-tuning stage.

Table 7: FSIS performance (AP and AP50) for Novel classes on MS-COCO. Note that the superscript † indicates
that the results are our re-implementation, the red numers indicate the performance improvements of our method
compared to the baseline, and the best results are in bold, the same below.

Methods Tasks 1 2 3 5 10 30

AP AP50 AP AP50 AP AP50 AP AP50 AP AP50 AP AP50
Mask-DeFRCN† [28]

Det
7.54±0.5 14.46±0.9 11.01±0.5 20.20±0.7 13.07±0.6 23.28±1.0 15.39±0.7 27.29±1.0 18.72±0.3 32.80±0.6 22.63±0.3 38.95±0.5

Ours 8.09±0.4 15.85±0.8 11.90±0.4 22.39±0.7 14.04±0.6 25.74±0.9 16.39±0.6 29.96±0.9 19.33±0.4 34.78±0.8 22.73±0.4 40.24±0.6
+0.55 +1.39 +0.89 +2.19 +0.97 +2.46 +1.00 +2.67 +0.61 +1.98 +0.10 +1.29

Mask-DeFRCN† [28]
Seg

6.69±0.5 13.24±0.8 9.51±0.5 18.58±0.7 11.01±0.4 21.27±0.9 12.66±0.6 24.58±1.0 15.39±0.3 29.71±0.6 18.28±0.3 35.20±0.5

Ours 7.18±0.5 14.33±0.8 10.31±0.4 20.43±0.7 11.85±0.4 23.24±0.8 13.48±0.5 26.67±0.9 15.85±0.4 31.33±0.7 18.34±0.3 35.99±0.6
+0.49 +1.09 +0.80 +1.85 +0.84 +1.97 +0.82 +2.09 +0.46 +1.62 +0.06 +0.79

Table 8: gFSIS performance (AP and AP50) for Overall, Base and Novel classes on MS-COCO.

Shots Methods

Object Detection Instance Segmentation
Overall #80 Base #60 Novel #20 Overall #80 Base #60 Novel #20

AP AP50 AP AP50 AP AP50 AP AP50 AP AP50 AP AP50
Base-Only 39.86 59.25 32.58 55.12

1 Mask-DeFRCN† [28] 23.82±0.5 35.70±0.7 30.11±0.6 44.42±0.9 4.95±0.4 9.55±0.7 19.58±0.4 33.38±0.7 24.63±0.5 41.57±0.9 4.45±0.5 8.81±0.7

Ours 27.35±0.3 42.55±0.3 34.35±0.3 52.46±0.3 6.34±0.4 12.79±0.9 22.45±0.2 39.33±0.3 28.03±0.2 48.60±0.3 5.72±0.5 11.53±0.9
+3.53 +6.85 +4.24 +8.04 +1.39 +3.24 +2.87 +6.45 +3.40 +7.03 +1.27 +2.72

2 Mask-DeFRCN† [28] 25.42±0.5 38.31±0.8 31.06±0.5 45.82±0.7 8.52±0.8 15.79±1.1 21.09±0.4 35.92±0.8 25.61±0.3 43.03±0.7 7.54±0.8 14.59±1.1

Ours 28.63±0.3 44.74±0.5 34.67±0.3 52.82±0.4 10.52±0.7 20.49±1.1 23.73±0.3 41.49±0.4 28.52±0.2 49.12±0.3 9.38±0.7 18.62±1.1
+3.21 +6.43 +3.61 +7.00 +2.00 +4.70 +2.64 +5.57 +2.91 +6.09 +1.84 +4.03

3 Mask-DeFRCN† [28] 26.54±0.5 40.01±0.7 31.77±0.4 46.83±0.6 10.87±0.8 19.55±1.2 22.04±0.4 37.48±0.7 26.22±0.3 43.95±0.5 9.48±0.7 18.06±1.1

Ours 29.59±0.2 46.21±0.4 35.07±0.2 53.30±0.4 13.15±0.5 24.95±0.8 24.55±0.2 42.81±0.3 28.91±0.2 49.61±0.4 11.46±0.4 22.43±0.8
+3.05 +6.20 +3.30 +6.47 +2.28 +5.40 +2.51 +5.33 +2.69 +5.66 +1.98 +4.37

5 Mask-DeFRCN† [28] 27.82±0.4 42.12±0.6 32.54±0.4 48.03±0.5 13.69±0.7 24.41±1.3 23.03±0.3 39.37±0.6 26.84±0.3 45.04±0.5 11.60±0.7 22.36±1.2

Ours 30.48±0.2 47.75±0.3 35.30±0.2 53.65±0.3 16.02±0.5 30.05±0.8 25.20±0.2 44.12±0.3 29.10±0.2 49.87±0.3 13.50±0.5 26.86±0.9
+2.66 +5.63 +2.76 +5.62 +2.33 +5.64 +2.17 +4.75 +2.26 +4.83 +1.90 +4.50

10 Mask-DeFRCN† [28] 29.88±0.3 45.25±0.7 34.17±0.3 50.48±0.5 17.02±0.6 29.58±1.2 24.75±0.3 42.32±0.6 28.23±0.2 47.33±0.5 14.32±0.6 27.29±1.1

Ours 31.77±0.2 49.77±0.3 36.14±0.2 54.85±0.2 18.67±0.4 34.55±0.7 26.36±0.2 46.13±0.3 29.91±0.2 51.11±0.2 15.71±0.4 31.19±0.7
+1.89 +4.52 +1.97 +4.37 +1.65 +4.97 +1.61 +3.81 +1.68 +3.78 +1.39 +3.90

30 Mask-DeFRCN† [28] 31.66±0.1 48.11±0.2 35.10±0.1 52.01±0.2 21.33±0.4 36.44±0.7 26.23±0.1 44.97±0.2 29.12±0.1 48.82±0.1 17.57±0.4 33.42±0.7

Ours 32.92±0.2 51.37±0.4 36.45±0.3 55.05±0.4 22.30±0.4 40.31±0.6 27.31±0.2 47.61±0.4 30.32±0.2 51.41±0.4 18.29±0.3 36.22±0.6
+1.26 +3.26 +1.35 +3.04 +0.97 +3.87 +1.08 +2.64 +1.20 +2.59 +0.72 +2.80

Table 9: FSOD performance (AP and AP50) for Novel classes on MS-COCO.

Methods / Shots 1 2 3 5 10 30

AP AP50 AP AP50 AP AP50 AP AP50 AP AP50 AP AP50

DeFRCN† [28] ICCV 21 7.7±0.6 15.1±0.9 11.4±0.5 21.4±0.8 13.3±0.4 24.5±0.9 15.5±0.5 28.3±0.9 18.5±0.4 33.4±0.6 22.5±0.3 39.5±0.4

Ours 8.1±0.6 16.3±0.9 12.1±0.5 23.4±0.7 14.4±0.4 27.1±1.0 16.6±0.5 31.1±0.9 19.5±0.5 35.8±0.8 22.7±0.4 41.0±0.6
+0.4 +1.2 +0.7 +2.0 +1.1 +2.6 +1.1 +2.8 +1.0 +2.4 +0.2 +0.5

D Qualitative Evaluation

In Fig. 6, we visualize the results of our method and the strong baseline (Mask-
DeFRCN) on MS-COCO validation images using the gFSIS setting with K=10. The
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Table 10: gFSOD performance (AP and AP50) for Overall, Base and Novel classes on MS-COCO.

# shots Methods Overall #80 Base #60 Novel #20

AP AP50 AP75 AP AP AP50

1
FRCN+ft [39] ICCV 19 16.2±0.9 25.8±1.2 17.6±1.0 21.0±1.2 1.7±0.2 3.3

TFA [33] ICML 20 24.4±0.6 39.8±0.8 26.1±0.8 31.9±0.7 1.9±0.4 3.8
DeFRCN [28] ICCV 21 24.0±0.4 36.9±0.6 26.2±0.4 30.4±0.4 4.8±0.6 9.5±0.9

Ours 27.4±0.2 +3.4 43.4±0.4 +6.5 29.4±0.3 +3.2 34.4±0.3 +4.0 6.2±0.6 +1.4 12.7±0.9 +3.2

2
FRCN+ft [39] ICCV 19 15.8±0.7 25.0±1.1 17.3±0.7 20.0±0.9 3.1±0.3 6.1

TFA [33] ICML 20 24.9±0.6 40.1±0.9 27.0±0.7 31.9±0.7 3.9±0.4 7.8
DeFRCN [28] ICCV 21 25.7±0.5 39.6±0.8 28.0±0.5 31.4±0.4 8.5±0.8 16.3±1.4

Ours 28.6±0.3 +2.9 45.6±0.5 +6.0 30.7±0.4 +2.7 34.7±0.3 +3.3 10.4±0.8 +1.9 20.9±1.3 +4.6

3
FRCN+ft [39] ICCV 19 15.0±0.7 23.9±1.2 16.4±0.7 18.8±0.9 3.7±0.4 7.1

TFA [33] ICML 20 25.3±0.6 40.4±1.0 27.6±0.7 32.0±0.7 5.1±0.6 9.9
DeFRCN [28] ICCV 21 26.6±0.4 41.1±0.7 28.9±0.4 32.1±0.3 10.7±0.8 20.0±1.2

Ours 29.4±0.2 +2.8 46.8±0.3 +5.7 31.4±0.3 +2.5 34.9±0.2 +2.8 12.9±0.6 +2.2 25.1±1.0 +5.1

5
FRCN+ft [39] ICCV 19 14.4±0.8 23.0±1.3 15.6±0.8 17.6±0.9 4.6±0.5 8.7

TFA [33] ICML 20 25.9±0.6 41.2±0.9 28.4±0.6 32.3±0.6 7.0±0.7 13.3
DeFRCN [28] ICCV 21 27.8±0.3 43.0±0.6 30.2±0.3 32.6±0.3 13.6±0.7 24.7±1.1

Ours 30.2±0.2 +2.4 48.2±0.3 +5.2 32.2±0.2 +2.0 35.0±0.2 +3.6 15.7±0.5 +2.1 30.3±0.9 +5.6

10
FRCN+ft [39] ICCV 19 13.4±1.0 21.8±1.7 14.5±0.9 16.1±1.0 5.5±0.9 10.0

TFA [33] ICML 20 26.6±0.5 42.2±0.8 29.0±0.6 32.4±0.6 9.1±0.5 17.1
DeFRCN [28] ICCV 21 29.7±0.2 46.0±0.5 32.1±0.2 34.0±0.2 16.8±0.6 29.6±1.3

Ours 31.4±0.2 +1.7 49.9±0.3 +3.9 33.4±0.2 +1.3 35.7±0.2 +1.7 18.3±0.4 +1.5 34.5±0.6 +4.9

30
FRCN+ft [39] ICCV 19 13.5±1.0 21.8±1.9 14.5±1.0 15.6±1.0 7.4±1.1 13.1

TFA [33] ICML 20 28.7±0.4 44.7±0.7 31.5±0.4 34.2±0.4 12.1±0.4 22.0
DeFRCN [28] ICCV 21 31.4±0.1 48.8±0.2 33.9±0.1 34.8±0.1 21.2±0.4 36.7±0.8

Ours 32.3±0.2 +0.9 51.3±0.3 +2.5 34.5±0.2 +0.6 35.8±0.2 +1.0 21.9±0.3 +0.7 40.2±0.5 +3.5

top rows show success cases while the bottom row shows failure cases. In the middle
rows, we show success cases with our method but partly failures with the baseline.
These failures are mainly caused by the missing detection because the baseline
method may tend to incorrectly recognize positive objects as background (i.e., bias
classification). In addition, our method may also produce failure predictions as
shown in the bottom row from left to right, including the missing detection of small
or occultation objects, coarse boundary segmentation, and the misclassification of
similar appearance objects.

E The Proportion of Missing Labeled Instances

Here, we provide the detailed missing rates on each seed for MS-COCO in Fig. 5
and PASCAL VOC in Fig. 7.
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Figure 5: Comparisons of the proportion of missing labeled instances of FSOD/FSIS and gFSOD/gFSIS on the
MS-COCO dataset. We can see that there are high proportions almost on all shots using different seeds except
the seed0; and the gFSOD/gFSIS setting generally has higher missing rates than that of FSOD/FSIS.
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Table 11: gFSOD performance (AP and AP50) on PASCAL VOC dataset.

Set # shots Method Overall #20 Base #15 Novel #5

AP AP50 AP75 AP AP AP50

Set 1

1

FSRW [17] 27.6±0.5 50.8±0.9 26.5±0.6 34.1±0.5 8.0±1.0 14.2
FRCN+ft [39] 30.2±0.6 49.4±0.7 32.2±0.9 38.2±0.8 6.0±0.7 9.9

TFA [33] 40.6±0.5 64.5±0.6 44.7±0.6 49.4±0.4 14.2±1.4 25.3
DeFRCN [28] 42.0±0.6 66.7±0.8 45.5±0.7 48.4±0.4 22.5±1.7 40.2

Ours 43.5±0.9 +1.5 69.7±1.4 +3.0 47.2±1.1 +1.7 49.5±0.7 +1.1 25.6±2.6 +3.1 45.8±4.5 +5.6

2

FSRW [17] 28.7±0.4 52.2±0.6 27.7±0.5 33.9±0.4 13.2±1.0 23.6
FRCN+ft [39] 30.5±0.6 49.4±0.8 32.6±0.7 37.3±0.7 9.9±0.9 15.6

TFA [33] 42.6±0.3 67.1±0.4 47.0±0.4 49.6±0.3 21.7±1.0 36.4
DeFRCN [28] 44.3±0.4 70.2±0.5 48.0±0.6 49.1±0.3 30.6±1.2 53.6

Ours 45.6±0.5 +1.3 73.2±0.8 +3.0 49.2±0.8 +1.2 49.7±0.4 +0.6 33.4±1.6 +2.8 59.1±2.7 +5.5

3

FSRW [17] 29.5±0.3 53.3±0.6 28.6±0.4 33.8±0.3 16.8±0.9 29.8
FRCN+ft [39] 31.8±0.5 51.4±0.8 34.2±0.6 37.9±0.5 13.7±1.0 21.6

TFA [33] 43.7±0.3 68.5±0.4 48.3±0.4 49.8±0.3 25.4±0.9 42.1
DeFRCN [28] 45.3±0.3 71.5±0.4 49.0±0.5 49.3±0.3 33.7±0.8 58.2

Ours 46.4±0.6 +1.1 74.1±0.6 +2.6 50.1±0.8 +1.1 50.0±0.5 +0.7 35.5±1.6 +1.8 62.1±2.1 +3.9

5

FSRW [17] 30.4±0.3 54.6±0.5 29.6±0.4 33.7±0.3 20.6±0.8 36.5
FRCN+ft [39] 32.7±0.5 52.5±0.8 35.0±0.6 37.6±0.4 17.9±1.1 28.0

TFA [33] 44.8±0.3 70.1±0.4 49.4±0.4 50.1±0.2 28.9±0.8 47.9
DeFRCN [28] 46.4±0.3 73.1±0.3 50.4±0.4 49.6±0.3 37.3±0.8 63.6

Ours 47.5±0.5 +1.1 75.3±0.4 +2.2 51.4±0.6 +1.0 50.4±0.4 +0.8 38.6±0.8 +1.3 66.8±0.8 +3.2

10
FRCN+ft [33] 33.3±0.4 53.8±0.6 35.5±0.4 36.8±0.4 22.7±0.9 52.0

TFA [33] 45.8±0.2 71.3±0.3 50.4±0.3 50.4±0.2 32.0±0.6 52.8
DeFRCN [28] 47.2±0.2 74.0±0.3 51.3±0.3 49.9±0.2 39.8±0.7 66.5

Ours 47.7±0.3 +0.5 75.5±0.4 +1.5 51.8±0.6 +0.5 50.4±0.3+0.5 39.7±0.9 -0.1 68.0±1.3 +1.5

Set 2

1

FSRW [17] 28.4±0.5 51.7±0.9 27.3±0.6 35.7±0.5 6.3±0.9 12.3
FRCN+ft [39] 30.3±0.5 49.7±0.5 32.3±0.7 38.8±0.6 5.0±0.6 9.4

TFA [33] 36.7±0.6 59.9±0.8 39.3±0.8 45.9±0.7 9.0±1.2 18.3
DeFRCN [28] 40.7±0.5 64.8±0.7 43.8±0.6 49.6±0.4 14.6±1.5 29.5

Ours 41.7±0.9 +1.0 66.8±1.1 +2.0 44.5±1.1 +0.7 50.5±0.9 +0.9 15.1±2.3 +0.5 31.8±3.7 +2.3

2

FSRW [17] 29.4±0.3 53.1±0.6 28.5±0.4 35.8±0.4 9.9±0.7 19.6
FRCN+ft [39] 30.7±0.5 49.7±0.7 32.9±0.6 38.4±0.5 7.7±0.8 13.8

TFA [33] 39.0±0.4 63.0±0.5 42.1±0.6 47.3±0.4 14.1±0.9 27.5
DeFRCN [28] 42.7±0.3 67.7±0.5 45.7±0.5 50.3±0.2 20.5±1.0 39.7

Ours 43.6±0.7 +0.9 69.6±0.9 +1.9 46.6±1.0 +0.9 51.1±0.4 +0.8 21.2±1.9 +0.7 41.7±2.5 +2.0

3

FSRW [17] 29.9±0.3 53.9±0.4 29.0±0.4 35.7±0.3 12.5±0.7 25.1
FRCN+ft [39] 31.1±0.3 50.1±0.5 33.2±0.5 38.1±0.4 9.8±0.9 17.4

TFA [33] 40.1±0.3 64.5±0.5 43.3±0.4 48.1±0.3 16.0±0.8 30.9
DeFRCN [28] 43.5±0.3 68.9±0.4 46.6±0.4 50.6±0.3 22.9±1.0 43.4

Ours 44.6±0.6 +1.1 70.9±0.6 +2.0 47.7±0.7 +1.1 51.4±0.5 +0.8 24.4±1.2 +1.5 46.6±1.8 +3.2

5

FSRW [17] 30.4±0.4 54.6±0.5 29.5±0.5 35.3±0.3 15.7±0.8 31.4
FRCN+ft [39] 31.5±0.3 50.8±0.7 33.6±0.4 37.9±0.4 12.4±0.9 21.9

TFA [33] 40.9±0.4 65.7±0.5 44.1±0.5 48.6±0.4 17.8±0.8 34.1
DeFRCN [28] 44.6±0.3 70.2±0.5 47.8±0.4 51.0±0.2 25.8±0.9 48.1

Ours 45.2±0.4 +0.6 71.6±0.5 +1.4 48.3±0.6 +0.5 51.5±0.4 +0.5 26.4±0.8 +0.6 50.3±1.3 +2.2

10
FRCN+ft [33] 32.2±0.3 52.3±0.4 34.1±0.4 37.2±0.3 17.0±0.8 39.7

TFA [33] 42.3±0.3 67.6±0.4 45.7±0.3 49.4±0.2 20.8±0.6 39.5
DeFRCN [28] 45.6±0.2 71.5±0.3 49.0±0.3 51.3±0.2 29.3±0.7 52.8

Ours 45.9±0.3 +0.3 72.5±0.3 +1.0 49.1±0.5 +0.1 51.5±0.2 +0.2 29.1±0.8 -0.2 53.7±1.1 +0.9

Set 3

1

FSRW [17] 27.5±0.6 50.0±1.0 26.8±0.7 34.5±0.7 6.7±1.0 12.5
FRCN+ft [39] 30.8±0.6 49.8±0.8 32.9±0.8 39.6±0.8 4.5±0.7 8.1

TFA [33] 40.1±0.3 63.5±0.6 43.6±0.5 50.2±0.4 9.6±1.1 17.9
DeFRCN [28] 41.6±0.5 66.0±0.9 44.9±0.6 49.4±0.4 17.9±1.6 35.0

Ours 43.3±1.0 +1.7 69.1±1.7 +3.1 46.8±1.1 +1.9 50.9±0.6 +1.5 20.5±3.7 +2.6 39.6±6.2 +4.6

2

FSRW [17] 28.7±0.4 51.8±0.7 28.1±0.5 34.5±0.4 11.3±0.7 21.3
FRCN+ft [39] 31.3±0.5 50.2±0.9 33.5±0.6 39.1±0.5 8.0±0.8 13.9

TFA [33] 41.8±0.4 65.6±0.6 45.3±0.4 50.7±0.3 15.1±1.3 27.2
DeFRCN [28] 44.0±0.4 69.5±0.7 47.7±0.5 50.2±0.2 26.0±1.3 38.3

Ours 45.3±0.5 +1.3 72.3±0.6 +2.5 48.6±0.9 +0.9 51.3±0.4 +1.1 27.6±1.7 +1.6 52.1±2.4 +13.8

3

FSRW [17] 29.2±0.4 52.7±0.6 28.5±0.4 34.2±0.3 14.2±0.7 26.8
FRCN+ft [39] 32.1±0.5 51.3±0.8 34.3±0.6 39.1±0.5 11.1±0.9 19.0

TFA [33] 43.1±0.4 67.5±0.5 46.7±0.5 51.1±0.3 18.9±1.1 34.3
DeFRCN [28] 45.1±0.3 70.9±0.5 48.8±0.4 50.5±0.2 29.2±1.0 52.9

Ours 46.2±0.4 +1.1 73.4±0.5 +2.5 49.4±0.6 +0.6 51.5±0.3 +1.0 30.5±1.0 +1.3 56.3±1.9 +3.4

5

FSRW [17] 30.1±0.3 53.8±0.5 29.3±0.4 34.1±0.3 18.0±0.7 33.8
FRCN+ft [39] 32.4±0.5 51.7±0.8 34.4±0.6 38.5±0.5 14.0±0.9 23.9

TFA [33] 44.1±0.3 69.1±0.4 47.8±0.4 51.3±0.2 22.8±0.9 40.8
DeFRCN [28] 46.2±0.3 72.4±0.4 50.0±0.5 51.0±0.2 32.3±0.9 57.7

Ours 47.2±0.4 +1.0 74.5±0.5 +2.1 50.8±0.6 +0.8 51.8±0.3 +0.8 33.5±0.9 +1.2 60.3±1.2 +2.6

10
FRCN+ft [39] 33.1±0.5 53.1±0.7 35.2±0.5 38.0±0.5 18.4±0.8 44.6

TFA [33] 45.0±0.3 70.3±0.4 48.9±0.4 51.6±0.2 25.4±0.7 45.6
DeFRCN [28] 47.0±0.3 73.3±0.3 51.0±0.4 51.3±0.2 34.7±0.7 60.8

Ours 47.8±0.3 +0.8 75.1±0.3 +1.8 51.6±0.5 +0.6 51.9±0.2 +0.6 35.6±1.2 +0.9 63.3±1.2 +2.5
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Figure 6: Visualization results of our method and the strong baseline (Mask-DeFRCN) on MS-COCO validation
images under the gFSIS setting with K=10. These bounding boxes and segmentation masks are visualized using
classification scores larger than 0.6. The top two rows show success cases with our method and the baseline while
the middle two rows show success cases with our method but partly failure ones with the baseline. The baseline
may tend to incorrectly recognize positive object regions as background due to the biased classification. The
bottom row shows some failure cases from left to right, small objects (e.g., the small boats and the person), coarse
boundary segmentation (e.g., the surfer), occlusion (e.g., two bears are detected to one), and misclassification of
similar appearance objects (e.g., the shadow of wine glass is recognized to wine glass and the train is detected to
bus). Best viewed in color and zoom in. 18
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Figure 7: Comparisons of the proportion of missing labeled instances of FSOD and gFSOD on the PASCAL
VOC dataset. Although PASCAL VOC is simpler than MS-COCO, there are still similar observations (high
missing rates) on the PASCAL VOC dataset. Different from the MS-COCO, the missing rate is the same among
three sets on each shot for the gFSOD setting.
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