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This supplementary material contains four parts:

* Section [A] provides some additional experiment results.

* Section [B] provides some technical lemmas which are useful for proving main theorems in
this work.

* Section [C]provides the proof of Theorem 4.1.
* Section D] provides the proof of Theorem 4.2.

A Additional Experiments

A.1 Heisenberg model

In this section, we introduce additional experiment results toward finding the ground state energy of
the Heisenberg model with different circuit depths and optimizers. We follow simulation details in
the main text.

First, we consider the effect of different circuit depths and Gaussian initializations with different
variances. The loss function has the formulation Eq. (10) with the number of qubits N = 15. We
adopt the ansatz circuit 1 with L; € {8, 10, 12} layers of Ry Rx CZ blocks, which correspond with
L € {14,18,22} case of Theorem 4.1, respectively. In the experiment, we train VQAs using gradient
descent with the learning rate 0.01. Since the estimation of gradients on real quantum computers
could be perturbed by statistical measurement noise, we compare optimizations using accurate and
noisy gradients. For the latter case, we set the variance of measurement noises to be 0.01. We train
different Gaussian initialized VQAs with variances {0.01+, 0.1+, 7, 107, 1007}, where the value
follows the formulation in Theorem 4.1.

We illustrate results in Figures [I] and [2] which correspond to the noiseless and the noisy case, re-
spectively. As show in figures of the loss during optimizations, the Gaussian initialization with the
variance ~y outperforms other Gaussian initializations with faster convergence rates. Gaussian initial-
izations with small variances {0.01+, 0.1y} have similar performances with the zero initialization
for the noisy training case, and Gaussian initializations with large variances {10+, 100y} behave
similarly with the uniform initialization presented in the main text. Moreover, circuits initialized
with larger variances {10y, 100~} need more iterations to converge when the depth increases, while
circuits with variances {0.01+, 0.1, v} show similar convergence rates for different depths.

Next, we compare different initializations with other optimizers, i.e., the gradient descent with
momentum [1]], the Nesterov accelerated gradient (NAG) [2], and the adaptive gradient (AdaGrad) [3].
We follow the loss function (10) with (I, L) = (15,18) and (N, L) = (18.38). The learning rate and
the noise are the same as that in the experiment considering different Gaussian variances. We illustrate
results in Figures[3Jand @ As shown in Figure[3|and Figure 1 in the main text, the performance of
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Figure 1: Numerical results of finding the ground state energy of the Heisenberg model using
the noiseless gradient descent. Figures show the loss during optimizations for different
L € {14, 18,22} using the circuit 1 in the main text. For each L, we adopt Gaussian initializaions
with different variances 0.01v, 0.1, v, 10y, 100, where the value ~y follows the formulation in
Theorem 4.1. Figures show the £, norm of corresponding gradients during the optimization.
Each line illustrates the average of 5 rounds of independent experiments.

GD with momentum and the NAG is similar to that of the Adam optimizer, while the performance of
the AdaGrad is similar to the GD optimizer. By comparing Figures[3]and[f] we notice that uniformly
initialized circuits converge slower when the qubit number and the circuit depth increase.

A.2 Quantum chemistry

In this section, we introduce additional experiment results toward finding the ground state energy
of the Heisenberg model with different circuit depths. We repeat the LiH task in the main text with
the depth L € {24, 48,72} by stacking the circuit Vigivens in Eq. (11). The noise setting follows the
adaptive noise with the variance in Eq. (12). We adopt gradient descent and the Adam optimizer with
learning rates 0.1 and 0.01, respectively. The result is shown in Figure[5] For the gradient descent
case, the convergence rate of the loss function increases when the circuit depth grows. For the Adam
case, circuits with different depths show similar convergence speeds.

B Technical Lemmas

In this section, we provide some technical lemmas.

Lemma B.1. Let 0 be a variable with Gaussian distribution N'(0,~?). Let p = >, cxpy, be the
linear combination of density matrices { py, } with real coefficients {cy }. Let G be a hermitian unitary

and V. = e~ %G Let O be an arbitrary hermitian quantum observable that anti-commutes with G.
Then

, NI[(E )’I&r [Ovva]2 > (1 —492)Tr [0p]® + 492(1 — 492 Tx [iGOp)” . (1)
~, 0772

Proof. By replacing the term

V =¢% = [cosf — iGsinb,
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Figure 2: Numerical results of finding the ground state energy of the Heisenberg model using the noisy
gradient descent. Figures [2(a) show the loss during optimizations for different L € {14, 18,22}
using the circuit 1 in the main text. For each L, we adopt Gaussian initializaions with different
variances 0.01+,0.1v,, 107, 100y, where the value ~ follows the formulation in Theorem 4.1.
Figures show the £5 norm of corresponding gradients during the optimization. Each line
illustrates the average of 5 rounds of independent experiments.

we have
Tr [OVpVT] = Tr [O(I cos 0 — iG sin 0)p(I cos § + iG sin 0)]
= cos 20Tr [Op] + sin 20Tr [iGOp] , 2)

where Eq. (IZ[) follows from the condition OG + GO = 0. Since O anti-commutes with G, i{GO
could be served as a hermitian observable. Based on Eq. (2)), we have

2
E Tr[ovpvi]P = E (cos 20Tt [Op] + sin 20Tr [iGOp])
O~N(0,72) 0~N(0,72)
1+e 87 1—e 8"
_ ++Tr (0p]? + ——5—Tr [iGOp]* 3)
> (1= 49)Tr [0p]” + 492(1 — 49°)Te [iGOp)” “

where Eq. (3) is obtained by calculating expectation terms. InEq. (EI) holds since 1 — 8y2 < e=87 <
1 — 8v% + 324*. Thus, we have proved Eq. .

O

Lemma B.2. Let 0 be a variable with Gaussian distribution N'(0,~?). Let p be the density matrix
of a quantum state. Let G be a hermitian unitary and V- = e~"*C. Let O be an arbitrary hermitian
quantum observable that anti-commutes with G. Then

2 2
2Tr [OVpVT]> > (1 —49%) <2Tr [OVpVT]> +167%(1 — 492 Tx [Op)? .

E
0~N(0,72) (89 90

6=0
(%)
Proof. By calculating the gradient for both sides of Eq. (Z), we obtain
0
%Tr [OVpVT] = —2sin20Tr [Op] + 2 cos 20Tr [iGOp] . (6)
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Figure 3: Numerical results of finding the ground state energy of the Heisenberg model with qubits
N = 15 (noisy case). Figures show the loss during optimizations using the gradient descent
with momentum, the Nesterov accelerated gradient (NAG), and the adaptive gradient (AdaGrad),
respectively. Figures 3(d}3(0)]| show the ¢, norm of gradients during the optimization. Each line
illustrates the average of 5 rounds of independent experiments.

Let @ = 0 in Eq. (6), we obtain

9 [OVpVT]|  =2Tr[iGOp]. @)
a0 =0

Now we proceed to prove Lemma[B.2]

The left part of Eq. () = E (—2sin 20Tr [Op] + 2 cos 20Tr [iGOp])?
0~N(0,72)
= 2(1— e ¥ Tr [0p) + 2(1 + e ) Tr [iGOp) (8)
> 1672(1 — 492)Tr [0p)” + 4(1 — 49T [iGOp) 9)
2
= (1-149?) <889Tr [Ovpvf}> +16+2(1 — 492 Tr[0p]> . (10)
0=0

Eq. is obtained by calculating expectation terms. InEq. (EI) is obtained by using 1 — 8y? <
e ¥ <1 —89%+329% Eq. follows from Eq. . Thus, we have proved Eq.

O

Lemma B.3. Denote by p = ), cipi the linear combination of density matrices {py, } with real
coefficients {cy.}. Let V},(0) = Wyie WG Wy - . Wye= 9% where {G,}!_, is a list of hermitian
unitaries and {W,, }"_, is a list of unitary matrices. Denote by O an arbitrary hermitian quantum
observable. Then

2 2
E  Te[OVa@pVi(0)'] = Tr [OVi(0)pVa(0)'] = [120(h — 1) + 4142|3013,
0~N(0,72)
(11)

O||2 denotes the spectral norm of O, and the

where ||c||1 = Y, |ck| denotes the {1 norm of c,
1

variance v? < TR
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Figure 4: Numerical results of finding the ground state energy of the Heisenberg model with qubits
N = 18 (noisy case). Figures [4(a)h4(c)|show the loss during optimizations using the gradient descent
with momentum, the Nesterov accelerated gradient (NAG), and the adaptive gradient (AdaGrad),
respectively. Figures @(dA(D)]| show the ¢, norm of gradients during the optimization. Each line
illustrates the average of 3 rounds of independent experiments.
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Figure 5: Numerical results of finding the ground state energy of the LiH molecule using noisy
gradients. Figures[5(a)| and [5(c)| show the loss during optimizations for different L € {24, 48,72}
with the gradient descent and the Adam optimizer, respectively. Figures and[5(d)| show the ¢,
norm of gradients during the optimization. Each line illustrates the average of 3 rounds of independent
experiments.

Proof. Before the proof, we define several notations for convenience. We define Vy = I and
Vi(0) = Wiy1je  0Cn1-i . Wye=®Cn i {1,.-  h}. (12)

We denote Oy, 15, and 2, as k-dimensional vectors with components 0, 1, and 2, respectively. We
define Ofll f: = O for the k = 0 case and

Wk—TOgll:.':: :ij::ll Wi, ifip, =0, j, =0,
1 o
o 3Gk {Gk,WkTijj.,. jf,fjjwk} ,ifig =1, jr =0,
= (13

5Gu (G WSO I W] L i =2, e =0,

inOj17"'7jk—1,0 i =1,

L1, tk—1,0k

for increasing k € {1,--- , h}, where i, € {0,1,2} and j; € {0,1}.
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Forall 1 < k < ¢ < h, the definition (I3)) provides the commuting and anti-commuting parts of

1550k —1,0,0k 41,7 5
J I kL “ with respect to G, respectively, i.e.,

i1, 50k —1,0,0 k41,
OJI’ o Ik—1,00k+15 500 A1 3 Jk—1,00k41,00 1 de + 0317 3 Jk—1,0,0k41, 5 Je
D1, 58k—1,0,0k41, 0 e U, sk — 1,1, k41,00 e 1,0 =152,k 41, y0e )
Iel 0117 3 Jk=1,00k+15 000 I 3 Jk—1.00k41, ,HG
EMa1 e ie—1,Ling1, ie U1,y lk—1,1, k40,0 k>
G Oj17"'7jk71;07jk+17"'7j2 _ _Jede=1,00k41, ’jZG
D1, 5 bk—1,2,0k41, e B,y ik—1,2) i kg1, e D RC

Since for all k& € [L], G}, is a unitary matrix, Og is a hermitian observable for all i € {0, 1,2},
J € {0,1}*, and ¢ € [L]. Meanwhile, the spectral norm of O? is bounded,

J1s s Jh—1:Jn Ojly - ajh—l@ - J1s s Jn— 1»0 ]17"'7_jh71,0
1,150 ||y = 11, 8h—1,th =9 i1, ,%h—1,0 2 117“'7%,7110 9
_ J1, s Jh—15 Jl,'" WJh—1 <
Hoih ©5th—1,0 H - H i1, ih—1 = ”0”2’ (14)

where || A||2 denotes the spectral norm of the matrix A. Moreover, for all £, ¢ > 0 such that k+¢ < h,

. 0 .
the observable OJ L Z "oy =t ’j " could be recovered by
1,k sYh—k—2 7Zh 415"

§ : 2 : Ojlv"'7jk70h—k—£7jh—é+1;“‘ajh _ Oj17“'7jk70h—k—£;jh—l+1a“'7jh (15)
B, 58k th41, b h— 0t h— 041, 5Eh @1, 0k, 0n—k—e,th—e41," yin

n=k+1i,=1

Now we begin the proof. To analyze the expectation with respect to the parameter 6, we need the
detailed formulation of Tr {ovh pv,ﬁ} as the function of 6. In fact, for all 7’ € {0,1,-- , h} and all

i€ {0, 1,2}, j e {o, 13",
we have
1,/ 2,
Tr {Oth'PVh'q = Z Z (cos 20)1# I =171 =" 5 9 197111 7y [OZZJ, p} . (16)
§'=0,, i'=§'+1,,

where ||z’ Ih = i"nl ) |i},| denotes the £; norm of the vector 4.

Eq. (16)) can be proved inductively. First, for the case A’ = 0, Eq. ( . 116) holds trivially. Next, we
assume that Eq. (16) holds for the ' = k case. Then for all

i€ {0,1,2}" k1 4 e {0, 1}k
we have
Tr [OkaHkaHT] =Tr [O‘th_k(I cosf — Z'Gh,_k sin Q)VkakT(I cosf + iGh_k sin H)Wh—kq
=cos? 0Tr [Og”SVkakT} + sin 20Tr [Gh kOl 0 Gh & ViepVi }
+ sin 6 cos 6Tr {iGh,kOi’ngkaT] — sin # cos OTr [Og_”giGh,kakaq
(17)
=Tr {Ozf Vi kaq + cos 20Tr [Ofg VkakT} + sin 20Tr {0321 Vi kaT} ,
(18)

g6 where Eqs. (I7) and (T8) are derived by using the definition (T3). We proceed by employing the

h' = k case of Eq. (16)), such that

Eq. (T8) = Z Z (cos 20) 1 =13 =k (i) 9y 13”11 1y {Offfp}

=0y, i'= /+1k

+ cos 20 Z Z (cos 20) =131l —% (s11120)HJ Iy [O] 01, p}

=0y '=7"+1



+ sin 260 Z Z cos 26) 1812 = 13"l —k (sin 20) 11" Ty [03’1 }
J'=0p ¥'=7"+14
| AN 2541

Z Z (cos 20) 1 =13 I =k=1 (i) 9y l13" Il [O” 7 p} (19)

J'=0p41 %' =5"+1p 41
ss  which matches the formulation of the ' = k + 1 case of Eq. . Thus, Eq. has been proved.
s Now we begin to prove Eq. (1T). Employing the ' = h case of Eq. could yield

E (Tr [OVthhTDZ

O~N(0,42)
1y 2y 2
S 3 (cos26) il sin 26) Iy [Of } (20)
gNN( ) J=0p i=j+1p
2, 1n 2h .
= E Z (cos 20)IE1: =Ry [0 p] + Z Z (cos 20)I1El =113l =P (giyy 2) 191l Ty [ng}
N O\ i, >0n i=3 115
2D
2, 2
> E cos 20)1Hh =T [OOR
> B (z (con20)1:Tr (09
1h 2h 2h
+2 Z Z cos 20) Il =131 =P (gipy 29191l Ty [O’ } Z (cos 20)I1¥' =Py [O?,hp] .
HNN(O’Y )J>0; i=j+1 =1y
(22)

o InEq. (22) is obtained by discarding the square of the latter term in the bracket of Eq. (2I)). We remark
ot that if Eqs. (23) and (Z4) hold, we can prove Eq. (TT) by using Eqs. Z0}22).

25 2
E 20) el =Py [O0n —(Tr TOV (0) oV (V) > —(6h — 2)~21lell2IlO 2
9~N<o,fyz><z“°s WA [0F 0] | — (T [0V )pVa(0)7])" = ~(6h = 277 el}]O]3

=1y
(23)
92
lh 2h.
Z Z cos 20) 1 =131 =P (g 29 191 T [OJ } Z (cos 20) ¥l =Py [O?,"p]
HNN( ’72)J>0h i=j+1p i'=1p
> = (6h% = 9% + 3) *[|e|[F|Ol3. 24)

o3 In the following proof, we would derive Egs. (23) and (24). We focus on the Eq. (23) first. In fact,
o4 the left side of Eq. (23)) is bounded by

25 2
1— 99 lEh= _ 1| T¢ [OO9" — (Tr [O0°" 2 25
B (X - o) —wlog) e

2y 2 2, 2
- _ og\llélli—h _ 0 _ 05
= 0~N]12:0,~/2) (Z [1 (cos 20) 1} Tr [Oi p]) (Z Tr [Oi p}) (26)

i=1; =
2, 2n
- o _ lifli—h 0
> -2 igl:h Tr [Oihp] 9~N](E0,72) z; {1 (cos 26) I }Tr [Oihp] 27
2y
= — 2T OOh 1— 20 [|2]l1—h T Ooh 28
|Tr | ohPHGNNﬂz:Mz) 1;’1[ (cos 26) } r [0% p] 28)




2y
> —2|lc|[1]|O E 1 — (cos 20)IHl =R} T [OOr 29)
IebilOllz, B, |3 [1= (cos20)tte=t] 1[0 (
> —2lel?llolZ2 E 2 —cos20)" —1]. 30
> = 2| ellf]l IIQQNN(OWQ) [( ) ] (30

o5 Eq. (23) is obtained by using the definition (I3). Eq. (26) is derived by using Eq. (I3). InEq. (27) is
s obtained by using (a — b)? — b > —2|a| - [b[. Eq. (28) yields from Eq. (15). InEq. (29) is derived by
97 using

ot - [Tan{ota]

98 InEq. is obtained by using the h’ = h case of InEq. (32), i.e.,

<> el [Te [0d e[ < D lenl | 0F

k k

= leliOf2. @1y

2,/
3 [1 — (cos 26) ¥l 13"l =1 } Tr [og, ’gp} < [(2 — cos20)h—l3"llx 1] lell1 1O]],
=41,

(32)

o forallh/ €{0,1,---,h}, 5 €{0,1}", 5 e {0,1,2}" ", and j € {0,1}" "

100 InEq. can be proved inductively. First, for the case A’ = 0, Eq. (32) holds trivially. Next we
101 assume that Eq. (32) holds for the case A’ = k. Then forall i € {0,1,2}"~%~!and j € {0, 1}"=+~1,
102 we have

2541

Z [1 — (cos 29)Hi’ul—\|j’lll—k—1} Te [Offp}

i =7"+1p41

2 2 Y .
— Z Z [1 _ (COS 29)“1 i t+ig e —Ild Hl_]k+1_k_1:| Tr {OJ 7_Jk+17-7p:| ) (33)

/s :
LRI

=5 41y il =, +]

103 For the case j;  ; =1,

2
Eq. 33) = Z {1 — (cos 29)”’ =g Hl_k} Tr [Of,;fp}
V=1,
< [(2 = cos20)*719'1 — 1] Jie] Ol (34)
= :(2 — cos 20)k+17\|j'||1*j1"-,+1 _ 1} e/l ||OH2- (35)

104 InEq. is derived by using the ' = k case of InEq. . Eq. is derived by using j;_ ; = 1.
105 For the case j,’CJrl =0,

2

Eq. 33) = Z [1 — (cos 29)“1‘%7“3‘/“17]“} Tr [Og::f:g,ﬂ
i'=3'+1
2y
+ Y [1 — (cos 29)Hz"|\r\|j'\|rk+1] Tr [Og’/’,g,ijp}
i'=3'+1 o
2k ./ ./ Y .
_ Z [1 _ (COS 29)“1 lli—1lJ Hl*k} Tr [Og/:g’,gp}
V=j'+1
2
+(1-cos20) S [(cos o)l I =l"lh =k _q 1} Tr [o{,’;&g’ p} (36)
i=5' 41




106
107
108

109

110
111

112

2
< Z [1 _ (COS 20)“’ li—Ilg Hl—k} Tr [Og,;g:gp}

=4 +1p
2k ./ ./ ./ .
+ (1 — cos20) Z {1 — (cos 20) ¥ =1l3 Hl_k} Tr {Og,”g’i’p}
=7"4+1g
2k .7 .
+ (1 — cos 20) Z Tr [0{,;3;3,0} (37)
i=§'+1y
< (2= cos20)*7 19" — 1] fe]l Oll, + (1 = cos260) [(2 = cos 20) 191 —1] el |0
+ (1~ cos26) e]1 |O]l (38)
< [@ = cos20)s+1713" 1 —dkes — 1] ey O . (39)

Eq. is derived by using Eq. (13)). InEq. is obtained since |a + b| < |a| + |b|. InEq. (38))
is obtained using the &’ = k case of Eq. (32) and Eq. (15). InEq. (39) is derived by using Eq. (I4).
Thus we have proved Eq. (32) since Egs. (35) and (39) match the " = k + 1 case.

Since cos 20 > 1 — 262, we could further bound Eq. (30) by
Eq. > 2?02 E 1+20%)" -1 (40)
0 @ >~ 2lcll0, ®  [(1+2)" - 1]

h
h
:_20202 E ()292t
lelill ||20NN(0,72); t o
h

~ 2o 3 (7)ot - ey @)

t=1

h t—1
PV 1
> = 2lelfloB Y hn - 02 () @) @)
t=1

h—2 t
h—1 h—1
SAETE ;(%2 >]
> — (6h —2) || cl3Ol137>. (43)

Eq. is derived by calculating expectation terms. InEq. yields from w < 2!=1 and the
condition 72 < ﬁ Thus, we have proved InEq. .

Next, we focus on the Eq. (24). The left side of Eq. (24) could be bounded by

- 2|c[F[O]32h?

1, 2,
= K D" (cos 20l =1l =" (sin 29) 191 T [ng}
N O 00 201311 =3+ 1
2
. Z (cos 20) 17l =hy (0% p] (44)
i'=1,
1p 25
>- E (sin20)l9l { | ™ {1 — (cos Qg)nz'urujurh} Te [Ofp}
N s 0n 2111l i1,
2p 25 2,
+ Z Tr {Ozp} . < Z {]_ _ (COS 29)”":/H1*h} Tr [O?/hp] + Z Tr [Oghp] )
i=j+1p =1y =1y
(45)
1 .
2= By (s 26)191 ([(2 — cos20)" 191 1] el O3 |, + [T [00] )

3>0n,2|[17]11
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122
123
124

125

126
127
128

- ([(2 = cos260) = 1] llel |09z, + T [08: o] (46)

1y

>- E > (sin20)11 (2 — cos 20)* 713l ||| (O] 47)
~ 2
N O s 00211
1p
>—|lc[}lOl3 E > (20)1l (14 26%)2 -l (48)
O~N(0,72) . X
3>05,2([13]11
Eq. (44) is obtained by noticing that the expectation of sin® 26 cos® 26 equals to zero, if a is odd.
InEq. (45) is obtained by using >, ; (Z las) (32, 1651) . (46)

is derived by using the h' =h case of Eq and Eq. . InEq @) is obtalned by using
HOg,hH = ||O|| and Eq. (31). InEq. (48) is derlved by using (sin 20)? < (26)? and cos 20 > 1 — 262.

We proceed from InEq. (@), which could be further bounded by

"L 22 foh — 2t
— 2 2 2t 2\m
= lelfion, & 5 (5 )en X (M, )es )
[h/2] 2h—2t
h 2h — 2t
- leliton Y- (5) X (M ) am - e (50)
t=1 m=0
Lh/2] 2n—2t 2t 1
h(h—1)*71 2R —2)™
lellzllo]3 Z mZ:j TR
(2t — 1)”(2t +1)(2t +3) - (2t + 2m — 1)y* 2™ (51)
I_h/QJ 2h—2t 2 —1
h(h —1) 2h — 2
> epjofy Yo S M T B A et g 52)
t=1 m=0
Lh/2] 2h—2t
>~ [elflol3 Y <2h<h P D dnlh 2H<2h—2>M<2h>wt+2m> (53)
t=1
Lh/2] 2h—2t
=—lel3I0I5 [ D 2n(h —1)* 15 ~<1+2 > [ah(h—1)77] ) (54)
t=1 m=1
> — [le[FlO)33h(h — 1)7* (1 + 12h(h — 1)¥°) (55)
> — (6h% —9h +3) ¥*||c[F]|O]f3- (56)

Here, Eq. is obtained since the summation Z;;Oh contains (th) terms such that ||j||; = 2¢, for
allt € {1,---,[2]}. Eq. is derived by calculating expectation terms. InEq. is obtained by

using
h h(h — 1)2t—1 _1)2t—1 _ _ m
J R DA h(h— 1Pt ok 2r) _ (2h-2)
2t 20! 24120 — 1)1 m -
InEq. is derived by using ¢! > 2!~! and

(2t+2k—1)(2t+2m—2k+ <2t +m)? < (2h)*Vke{l,--- ,m—1}.
InEq. (53) is obtained by splitting the summation » = and using m! > 2m ! Vm > 1. InEq. (55) is
derived by calculatlng geometric sequences with the condltlon 72 < InEq . ) follows from

12h2
the condition fy <3 h2 Thus, we have proved Eq. (2 .

O

Lemma B.4. Let p be the density matrix of a quantum state. Let V;, = Wie WG, ... Wy, e 10Gh,
where {G,, Y1 _, is a list of hermitian unitaries and {W,, }!'_, is a list of unitary matrices. Denote by
O an arbitrary hermitian quantum observable. Then

0 2 9 2
ONNI?MQ) (8¢9Tr {OVthh D > (1-49%) (%Tr [OVthhq ‘00>

10



= 96h°(h — 1)y O[3 — 20n*(h — 1)(h — 2)72||0||§(757)

120 where ||O||2 denotes the spectral norm of O and the variance v* < 15

130 Proof For convenience, we follow the notation OJ in Eq. ( . ‘We can obtain the detailed formulation
131 of 55 O Ty {OVthh } by using the A’ = h case of Eq. .

1p

%Tr [OVthhq _ae 3 Z (cos 20) 1 =11 =7 (i, o) 911 gy [01 } (58)

1p 2p
=23 3 (Ll = il (eos 20)1 711 (i 26) 110 e [0 )
J=0p i=j+1p
1h 2h

J=0p i=j3+1p

+2 Z Z 13111 (cos 29)Hi|\17|\j|\17h+1 (sin 20)\UH1*1 Tr {ng} (59)
3=0p i_jJrlh
h
=2y Z (h =+ sl = Jill2) (cos 26) =191 (i 29) 1+ pe [ 0F |

J=0p i=j+1p

2n
+2 Z Z (cos 20) I =" ¢ [ng}
l7lli=14=5+1n
lh 2h . . .
+2 Z Z 13111 (cos 20)IEh =l =h+1 p; 9yl =Ly [ng} . (60)

lFlli>2é=5+1p

132 Here, Eq. (58) follows from Eq. (T6). Eq. (59) is derived by calculating the gradient of sine and
133 cosine terms. By discarding the square of the sum of the first and the third term in Eq. (60), we obtain

(889 {OVthh })2 >4 Z i (cos 29)”“'1_hTr [ng}

llli=1i=3+1n

1p 2p

w8 > D ||j||1(COSQG)Hi‘ll_Iljlll_hH(sin2€)”j”1_1Tr[ng}

lFll1>2¢=5+1n

Z Z (cos 20) 1l =h gy [OJ }

I3/l =14"=3"+1n

1y
$ (5035 (et I — i) (cos26) 9101 2y 9141 12
J=0n i=j+1n

3 Z (cos 20)1#' 1= hTr[OJ] . 61)

l3"[lh=14'=4"+1n
134 Let § = 0 in Eq. (60), we obtain

2

%Tr [OVthhq ’970 =2 Z Z Tr [Ofp] . (62)

B l7ll1=1%=3+1n
135 Thus, we could obtain Eq. (57) if Egs. (63}63) hold.

2 2
Zh 2h
, NEO , Z (cos 29)”1”1_hTr [OZ-,O} —(1—4+?) Z Z Tr [ng}
~NOI N =1 i=511n =1 i=3+1n

11



13

> == h*(h = 1)7?|O]I3, (63)
1, 2p i i .
E Bl — 4 cos 20 lEll i =llglli—h—1 sin 20 ||.7H1+1Tr Oa
sl | 2 20 (el = il fos20) (sin 26) [0%))
2n y . 59
> (eos20)¥ 03] | =~ n2h- D201, (64)
3= =3 +1s
1h 2h . . . .
E Z Z 115111 (cos 29)||1H1—\|J\|1—h+1 (sin 29)”]”1—1 Tr [ng}
N O\ iz =41
2n . . 5
S 0Y (cos20) Iy [og,p} > —2h2(h=1)(h = 27*[0)}3. (63)

37l =1%"=3"+1n

136 We begin by proving Eq. (63). The left side of Eq. (63) can be lower bounded as

2
2p

> E g [cos 20 — (cos 20)111 " _ cog 29} Tr [ng]
O~N(0,72) \ | £
llill=14=5+1n

2

— | cos26 Z i Tr [ng} (66)

l7ll1=14=3+1n

2
> -2 E 20)> 1 — (cos20) == ¢ |03
> QNN(Oﬁz)(cos ) Z ._Z { (cos 20) ] r{ zp}
lFll=1 |i=d+1n
zh B
S| S wof) (67)
I3/ Ih=1 |&'=3"+1n
2n )
> -2 R 26)? 2 —c0s20)""1 —1]0]2 - Tr |O? 68
22 E o (eos20)® 37 [@—cos20)' =] f0les 3T | 3 Tr[0de]| @9
[l4]1=1 l4]l1=1|i=3+1n
> -2 E  (c0s20)’h[(2—cos20)"' —1] 0|2 - k[|O]|2 (69)
0~N(0.42)
> 20?03 E  [(1+20%)"" 1] (70)
0~N (0,72
>_§h2(h—1)202 71
23 77105 (71)

Here, InEq. (66) follows from
1 —4n?% = Fy[1 — 40%) < Ey(1 — 20%)? < Egy(cos 20)2.

137 InEq. is obtained by using (a — b)? — b? > —2|a] - |b|. InEq. follows from the i’ = h and
138 ||F|| = I case of Eq. (32). InEq. is derived by using Eq. (15). InEq. is obtained by using
139 cos260 > 1 — 262 InEq. follows from the derivation below.

h—1
E (142" —1= ® 3 (h . 1) (26°)°

O~N(0,72) 0~N(0,7%) =1
h—1
h—1

-y ( t )(215 )2y 72)
t=1
h—1

<Y (h=1)(h—2) 2 (29
t=1

12



140
141

142

143
144
145
146

147

148
149

<2(h—1)y? Z [h372]t71 (73)
t=1
< %(h 1) (74)

where Eq. is obtained by calculating expectation terms. InEq follows from h® > 4(h — 2)
for integer h. InEq. is derived by calculating geometric sequences with the condition v? < —1+

T6h5 -
Next, we prove Eq. (64). The left side of Eq. (64) could be lower bounded by

2p
= E Z (cos 20) ¥ =1 gy [Og/p]
2
NI\ =1 4251
1p 2p i X . ,
S > e lilh = lilh) (cos20) 1 (sin 2) 1+ gy [0F
j=0n i=j+1;
2/((lglh+1)
(75)
2y . » 2n .
> - E Z [17((?0829)“1 Hl*l*h} Tr {Of,p} + Z Tr {Og,p}
2
N O iz \ |ir=37+1n i'=j'+1y,
1h . 2h . . .
S in20) ST (il = [l — B) (cos20) 719 [0
J=0p, i=j+1p
2/((lglh+1)
(76)
1h .
> - E ST @-cos20)" Ol Y (sin20)l9
~ 2
O N O =1 j=0,
2|(llgll1+1)
2y
. . . il —1ll1 —h . 1
S [0 =1l = (il = 1l = B (cos 26) 1711 — gy — )| T [0F )
i=j+1p
(77)
> —hlO|2 E (2—cos20)"!
0~N(072)
1y
ST (sin20) 7 (h— 5]11)(3 — cos 20)(2 — cos 26)" =L, (78)
j=0p
2/((lglh+1)

Here, Eq. (75) is obtained by noticing that the expectation of sin® 20 cos® 20 equals to zero, if a is

odd. InEq. (76) is derived by using | ar| <>, |ax|. InEq. is obtained by using the h/ = h,
ll7]l1 = 1 case of Eq. and Eq. (13). InEq. (78)) follows from Eq. and the ' = h case of

Eq. (79), i.e.
2,/
> [(h’ = I3 11) = (ll#"lx = 13”[lx = ") (cos 29)”""‘1"”’“1—’"} Tr [Oz’,’;g'p}
=4+ 1y,
<g(®" —l3'll) Ol (79)

forall b’ € {0,1,--- ,h}, 4 € {0,1,2}"~" and j € {0,1}"~"', where

g(z) =z [(3 — cos20)(2 — cos20)" ' —1]. (80)
InEq. can be proved inductively. First, InEq. holds trivially when i/ = 0. Next, we assume
that InEq. holds for the k' = k case. Then, for all i € {0,1,2}" %=1 and j € {0, 1}"~*~1, we

13



150

151

152
153

154

have

2541

S [k 1= 1510 = (Ul = 15l — b = 1)(eos 20)1 11811 e [0F 4

=4+ 141

2 2
D D[R S 1 P/ Ay

1=y T8 =3"+1k

—Wﬂh+ﬁﬂ-th—dhl—k—U®%2®W“”“““W”A“%%qﬂBfJﬂﬂd«

'i’,z;CJrl;i

1)
For the case j;_; = 1, we have
2k ./ .
Ba. @D =| > [kl — ('l = 15"l = F)(cos 20)1¥1h =11 =5) 7 [ 0312
i'=7'4+1y

< g(k = [3"1) 101, (82)
=gk +1 =13l = Jk41) 1Ol - (83)

Here, Eq. follows from the h" = k case of InEq. (79). Eq. (83) is obtained by using j;  ; = 1.
We remark that InEq. matches the b’ = k + 1 case of InEq. (79).

For the case j;_, ; = 0, the situation is more complicated. We have

Eq. 81)

2

So [ 1= 1510 = (11— 13"l — k) eos 26) ¥ 11151k 7 [ 0307 ]

=5 +1y,

2y
S [T 1) = U = 15— k1) (eos 20)11 1=k e (0304 ]
i'=7'+1y
2k ./ .
S w[of ]

V=j'+1

<

2
30 [ 1) = Ul = 11— ) eos 20111 1=K ] i [0F) 89

V=7'+1j
2k ./ .
+(1—cos20)(k+1—[5'1) > Te[0f 2]
i=j'+14

2
+cos20 Y [17(COSQQ)Hi'Hr\IJ”IIrk} Tr [og,;g;gp}

=741
2k ./ .
—(—cos20) > [tk = 130) = (181l = 13"l — k) (eos 20) 111 | 7y [0F 0|
V=4 41k
< ||o8e ]|, + 90k = 11 O, + (1 — cos26) e+ 1~ 571) |08 83|
+leos 201 (2 - cos20)* 11— G2, + (1 = cos gt~ 1110 8
< [(2 —cos20)(k — |17']11) [(3 — ¢0s20)(2 — cos 20)F "1 —1 _ 1}

+ (2 — cos 29)’“_””/”1 + (1 —cos20)(k+1— ||j'|1)} 10, (85)

14




155
156
157
158

159

160
161
162
163

164
165

166

<glk+1- ||j’|| Jre) Ol - (86)
is obtained by using the b/ = k case of Eq. InEq is obtained by using

Here, InEq. (84)

Eqs (14) and . InEq. (86] . ) follows from Eq. and the Cond1t10n Jhe1 = O Since Egs. and
(86) match the formulation of the ' = k + 1 case of Eq. (79), we have proved Eq. (79) for general

cases.

We proceed from Eq. (78), which can be lower bounded by

1p
> —hh-1D|0|3 E Z (29)Ilalll+1 2(1 + 262)2h—1-ldlh 87)
0~N(02) 5,
2|(llg11:+1)
L252) 2h—2t
h 2h — 2t
> —2n(h—1)[O[}3 E ( )29% ( )202’” 88
> -2 -lol, kS, 1 )eor X (7, e (88)
L5 2h—2t
h 2h — 2t
— _ _ 2 2t+m _ 11A2t+2m
2h(h —1)||O||? Z <2t 1) mZ:O ( . )2 (2t 4+ 2m — 1)!ly (89)
59
> - Eh?(h ~ 1203 (90)
Here, InEq. is obtained by using 1 > cos20 > 1 — 26%. InEq. is obtained since the
summation J"O contains (,," ) terms such that ||j||; = 2¢t — 1, forall ¢ € {1,---, 2L}

Eq. (89) is derived by calculating expectation terms. InEq. (90) is obtained by bounding the summation
terms, i.e.

Bl 2h—2t
h 2h — 2t
22t+m 2 9 —_ 1N 2t+2m
Z (2t _ 1) Z ( m ) (2t +2m My
t=1 m=0
LEJ 2h—
h(h —1)*72 (2h — o
< 2 Tm
- ;T He—1)N 2t—1”z
(2t = D2t 1) (2t +3) -+ (2t + 2m — 1)yH 2™ o1
L2 2h—2t
< ]’L(h — 1)2t—22t+172t Z (Qh _ 2)m2m(2h)m72m (92)
t=1 m=0
254 | 2h=2
<dhy® 30 [ah =127 T (k) 93)
t=1 m=0
6 8 59
<4 2 4
il 7= 12h (%94)

Here, InEq follows fromt > 1land (2t — 1)! = 2%¢!(2t — 1)!1. InEq. is obtained by using
t > 1and

(2t + 2k — 1)(2t +2m — 2k + 1) < (m + 2t)* < (2h)%, Vk € {1,--- ,m}.

InEq. (93) is derived by using 8h(h—1) < 2h3 for the integer h. InEq. (94) is obtalned by calculating
geometrlc sequences with the condition y? < 161h3

Finally, we prove Eq. (63). The left side of Eq. (63)) could be lower bounded by

2y
" ot Z Z (COSQH)“i,Hl—h—1Tr[Og.l/p}

~ 2
0 N(O,’Y ) ”j/”lzl =441y

1 25

Z Z 111 (cos 29)Hi|\1—|\j|\1—h+2 (sin 20)1911 =1 Ty [ng]

=0y, i=j+1p
HJH1>2 2|(HJH1 1)
95)

15



167
168
169
170

171

172
173
174

1p

> — E 2 — cos20)" 1O illy (sin 20)191 =1 (cos 20)?
o .Z,( )" Ol Z 1711 ( ) ( )
I3l =1 =0,
gl >2.2/(li31:—1)
2h . . . 2h .
Z [1—(cos29)”1”1_”]”1_h} Tr [ng} + Z Tr [ng} (96)
i=j+1p i=j+1p
> - E  h(2-cos20)"71 0|2
0~N(0,v2)
1h . i
> 17011 (sin20)191 71 (cos 260)% (2 — cos 20)" 191 O], 97)
3=0p
311 >2.2/(ll3]1: 1)
1h . h 3
> ® wol3 S il @)Vt (1420210 (98)
O0~N(0,72) j=0n
I3l >2.2/(/l31:—1)
L= h 2h—2—2t
> - E  h|O|3 < >2t+1 20)% (1 4+20%)7" 7. 99
ol s 1013 ; 9% 4+ 1 ( )(20)* ( ) 99)

Eq. (95) is obtained by noticing that the expectation of sin® 26 cos’ 20 equals to zero, if a is odd.
InEq. (96) follows from the derivation (75/{77). InEq. is obtained by using the »’ = h, ||7]1 = 1
case of Eq. (32). InEg. follows from 1 > cos 20 > 1 — 262 and (sin 20)? < (26)2. InEq.

is obtained since the summation Zalh: 0, contains ( tffH) terms such that ||j]|; = 2¢ + 1, for all
te{l,---,["51]}. We further bound InEq. by

2 2h—2-2t
h 2h —2— 2t
— 2 2 1 2 2t 2 2\m
I SRCED SN (R LENTCT N DI Gy [
[252] 2h—2-2t
h 2h —2—2t
> —hlol5 > ( )(22& +1) > ( )22t+m(2t + 2m — 1)l1y2t+2m
= 2t +1 = m
(100)
23t _
h(h — 1)(h — 2)(h — 3)2+2
> _ 2 2t 2t
2h—2—2t
> (2h—2-2t)m2™ (2t + 2m — 1)y (101)
m=0
2 2 & (h=3)*"2 o o
= —h*(h—1)(h = 2)[O]]; ; m2
2h—2—2t
> (2h—2 - 2027 (2t + 2m — 1)y (102)
m=0
5
= =P (h=1)(h = 22|03, (103)

Here, InEq. (T00) is obtained by calculating expectation terms. InEq. (T0T) is derived by using ¢ > 1.
Eq. (102) follows from (2¢)! = 2¢¢!(2¢t — 1)!I. Eq. (103) is obtained by bounding the summation
terms, i.e.

Kl _ 2h—2-2¢
0 (R =3 g o

t=1 m=0

16



175
176

177

178

179
180
181

182

183

184
185

186

187

188
189

190
191

192

2h—2-2t

< wzt 2N (2h—4)m2m(2h — 2) P (104)
< 51 v v
t=1 m=0

L25) | 2h2c
<22 3 [(h=3270 Y ()" (105)

t=1 m=0

16\> 5
<292 =2) <242 106
<2y (15) <9 (106)
Here, InEq. (104) is obtained by using ¢! > 2t~ V¢ > 1 and
(2t 42k — 1) (2t +2m — 2k + 1) < (m 4+ 2t)* < (2h—2)2 Vk e {1,---,m}.

InEq. (103 . follows from h® > 8(h — 1)(h 2) for integer h. InEq. (106) is obtained by calculating

geometric sequences with the condition 72 < 163+ Thus, we have proved Eq. 1i

O

C Proof of Theorem 4.1

Proof. Denote by Is := {mli,, # 0,m € [N]} the set of qubits where the observable acts non-
trivially. First, we notice that the norm of the whole gradient is lower bounded by that of particle
derivatives summed over a part of parameters, i.e.

2
E|Vof|* > Z > E <80qn) : (107)

q= 171,6]5

Thus, we could obtain the formulation in the theorem if
af \? 1 )
> T [0l 108
5 (aeq,n) = SS+I(L + 2)5+1 (5 Pin] (108)
holds forany g € {1,--- ,L} and n € Is.

Now we begin to prove Eq. (T08). Our main idea is to integrate the square of the partial derivative of
f with respectto @ = (604, -- ,0142) by using Lemmaand Lemma|[B.2}

We introduce several notations for convenience. Denote the variance 72 = Denote the ¢-th

1
1S(L+2)"
single qubit rotations and CZ layer as R, (6,) and CZ,, respectively, where

R@(O@) — e~ 0e1Gen ® e~ 10e2Ge2 ®R® e*wz,NGz,N’ (109)

and G/ ; is the Hamiltonian corresponding to the parameter 6, ;. Denote by py, the state after the k-th
layer, Vk € {0,1,--- ,2L + 2},

1 5
11 ¢z:ri(6:) | pin H 6,)'Cz! (k=20 <2L),
pr =4 \i=E = (110)
R%(G%)pk_lR%(O%)T (k=20+1<2L+1),
Ri12(0142)pr-1Rr2(0r42)" (k=2L+2).

Thus, py, is parameterized by {61, --- ,0,}, wherep =if k=20 <2L,p=(0+1ifk =2(+1<
2L+ 1l,andp=L+2ifk=2L+2.

Next, rewrite the formulation of Eq. (I08) in detail:

E--- E <09inTr [oiV(G)PinV(Q)TD

6, Or42
P 2
=E--- E ( Tr[UiP2L+2]) (111)
8, 0542 \0yn

17



1 9 ’
> (121 -4 (1-12)V E- E (wTr [ogu;lmﬂ]) (112)
q,n

6, Or41

1452 ) ) ?
> [472(1 _ 472)]5 +5 (1 —472)5 +283 E,E ) ..GI)E <89Tr [03”,)24) (113)
1 L q,n

2
5 s
> 11 -4)] (1-4")"E- E Tt [og)ip2z] | (114)
6, 6, \004n
193 where 3|¢ denotes the index by replacing non-zero elements of ¢ = (i1, - ,4x) with 3 and 3|%; 1
194 denotes the index by replacing non-zero elements of ¢ = (i1, -+ ,4x) with 3 if the original value

195 is 1. We refer to S7, So, and S3 as the number of 1, 2, and 3 in the index %, respectively. Eq. (111])
196 is obtained by using the notation pyy, 4o defined in (TI0). We obtain Eqs. (I12) and (T13)) by using
197 Lemma[B.T]for the Ry and Ry gate case, respectively. InEq. (TT4) follows from S = S + S5 + Ss.

198 Then, we proceed from Eq. (114) and take the expectation for parameters in (07, - - ,60411).

o 2
Eq. @ = [2’7(1 — 4’}/2)] 25 E---E (aaTI‘ [0'3|iCZLRL(0L)p2LQRL(HL)TCZTL})
an

0, o
(115)
28 0 2
=[291-4)]" E- E | 55—Tr [0aiRr(01)p2r—2R1(01)] (116)
0, 6, \004n
28 s 0 2
> [29(1-497)]7 (1 - 49?) E- E (%Tf [0'3|ip2L—2]> (117)
2
> 291 -4 (1-4) " g B ( Tr [asupzq]) . (118)
6, 6, \00yn

Eq. (TT3) follows from the definition of pyz, (T10). Eq. (T16) is obtained since
CZ(o; ® 01,)CZ" = 0 @ oy, V4, k € {0,3}.

190 InEq. (TT7) is derived by using the Lemma[B.T} We repeat the derivation in Eqs. (TT5{IT7) inductively
200 for parameters (6r,- - - ,6441), which yields InEq. (118).

201 Next, we consider the expectation with respect to 8,. We have

- b 2
Ba @9 = [0~ )] (1= 49%) " B (G oipnn ]
1 q q,n

> [29(1 - 492)]% (1 — 4y2) 9%

(14" [0 - )] 4B - E Trlonpag-a]’)
1 —1
(119)

202 where expectations with respect to parameters {6, ; }jers,j-n are calculated via Lemma and the
203 expectation with respect to 6, ,, is calculated via Lemma

204 Finally we proceed from Eq. (119) and take the expectation for parameters in (@g—1,--- ,01). We
205 have

2 2
E--- E TI'[O’3|,'p2q,2] = ‘;E - K Tr[o3|iCZq,1Rq,1(Hq,l)pgq,4Rq,1(Bq,l)TCZLl]
1

91 9q7 1 9q71

(120)
2

=E--- ETr [03)iRg—1(04-1)p2q—1Rq—1(0-1)"] (121)

1 g—1

S
>(1-4%)"E - E Tefosipa-a]” (122)

-1)S 2

> (1-49%) " Tr[ogy00)” (123)

Eq. (T20) is derived by using the definition of pz, 2. Eq. (IZ) is obtained since
CZ(o; ® 03)CZT = 0; @ oy, V4, k € {0,3}.
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206
207

208

209

210

211

212
213

214

215
216

217

218

219
220

221
222

InEq. (I22) is derived by using Lemma[B.I] We repeat the derivation in Eqs. (T20{122)) inductively
for parameters (8,1, - - - , 61), which yields InEq. (123). Employing Eq. (123) to Eq. (119) yields

Eq. (IT8) > 4 (19°)° " (1= 49%)° " T [og000) (124)
1 S+1 1 S(L+2) ,
=4 (S(L n 2)) (1 TSIy 2)) Tr[os)ipo] (25
1 S+1 1 2 )
>4 (S(L+2)> (1 - 2) Tr[o3ip0] (126)
1 2
= G5TI(L )51 1T oslino] (127)

Eq. 1i is derived by using the condition 2 = m. Eq. 1i is obtained by noticing that
function g(z) = (1 — 2)” is monotonically increasing when = > 2. Thus, we have proved Eq. (108).
O

D Proof of Theorem 4.2

Proof. To begin with, we define several notations for convenience. Denote by p; the state after the
7-th parameterized operator, i.e.

1 J
pi(r, -, 0;) = HVi(ai) Pin (H Vi(ei)T> - (128)
i=j i=1
Denote by O; the observable, i.e.
0; = V;(0)T--- VL (0)TOVL(0) - -- V;(0), ¥j € {1,--- , L}. (129)

Now we begin to prove the Theorem. First, we remark that Vj € [L], the a; # 1 case can be
converted to the a; = 1 case by using the transformation
o =

] .’
a;

where the variance of the new and the old parameter satisfies

1
Var(0}] = EVar[Gj].
j

In the following proof, we assume that a; = 1, Vj € [L]. By using the parameter-shift rule, é%

could be written as the linear sum of 2/ expectations on the observable O with coefficients 1. Then
for the case ¢ < L — 1, we have

of 2 0 2
]5(&%) o (aw r[OVL(0L)pr-1Vi(Or) ]) (130)
o 2
S (aaeTr [OVL(O)PL—lVL(O)TD —[2hg(hy — 1)+ 4 4R3AF O] (13D)
8 ’ 2_2 2
=E- E {55, Opra]) = [12he(he = 1) + 44071 O]z (132)
6 2
=E- E (f(el,m,eL_l,O)) — 12k (hr — 1) + 4] 4h7 71 | Ol13, (133)
91 9[,,1 80@

where Eq. (130) follows from the definition of p; in Eq. . InEq. is obtained by using
Lemma B.3[ where ||c||1 = 2h. Eq. (132)) follows from the definition of O; in Eq. (129). Eq. (133)
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223
224

225
226
227

228

229

230

231

232
233
234
235

236
237

238
239

follows from the formulation f(8) = Tr[Op(0)]. By proceeding the derivation (130H133) for L — ¢
times, we have

8f 2 8f 2 L
I O S — 12h: (hs — 1) 4 4] 4h2~2 2
E(50) 2 BB (GO 0000 0)) = 3 1m0y - )+ 442101
j=0{+1
6 2 L
- E...%<89£Tr [ogﬂw(e@)pg_lw(em]) - %:1[12/%»(1;,-—1)+4]4h§7§||0||§ (134)
j=t+
8 2
>E- E(1-49) (Tr [Oe+1Vz(9e)Pé—1Ve(9£)T]) — 96h7(he — 1)72(|O]I3
0, 04 06, 0,=0
L
—20h7(he — 1)(he =277 0I5 — D [12h;(h; — 1) +4]4h3~7 (O3 (135)
j=t+1
of 2
6, 6., \ 00,
L
— 2007 (he — 1) (he = 277|013 = D [12h;(h; — 1) + 4] 4h347 [ O|3, (136)
j=f+1

where EI%B_Z[) follows from definitions p; (T28) and O; (129). InEq. (T35) is derived by using

Lemma InEq. (136) follows from the parameter-shift rule. We proceed from InEq. (I36) by
employing the derivation (130{133)) for parameters (6,—1, - - - , 1), which yields

of \?2

af 2 /—1 L
() ST 1682 (3hy(hy — 1)+ 1203 — S 1683 (3h;(hy — 1) + 1] 12O
0 j=1

—\9 J=L+1
—16h202 0|12 — 9652 (ke — 1)92[OI12 — 20h2(hs — 1)(he — 22110 (137)
8f 2 L
> () 31682 [3hy(hy — 1) + 117203
9:) o 2

af\?
>(1- —_— . 138
>0-9(5) | 138)
InEq. (137) is obtained by using Lemma [B.3] where ||c||; = 2h. InEq. (138) follows from the
2 2
(%) ’ and a; = 1, Vj € [L]. Thus, we have proved
0=0

aje
16h2 (3R, (h;—1)+ 1) L[[O[3
the theorem. .

condition 'yjz <
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