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This supplementary material contains four parts:1

• Section A provides some additional experiment results.2

• Section B provides some technical lemmas which are useful for proving main theorems in3

this work.4

• Section C provides the proof of Theorem 4.1.5

• Section D provides the proof of Theorem 4.2.6

A Additional Experiments7

A.1 Heisenberg model8

In this section, we introduce additional experiment results toward finding the ground state energy of9

the Heisenberg model with different circuit depths and optimizers. We follow simulation details in10

the main text.11

First, we consider the effect of different circuit depths and Gaussian initializations with different12

variances. The loss function has the formulation Eq. (10) with the number of qubits N = 15. We13

adopt the ansatz circuit 1 with L1 ∈ {8, 10, 12} layers of RY RXCZ blocks, which correspond with14

L ∈ {14, 18, 22} case of Theorem 4.1, respectively. In the experiment, we train VQAs using gradient15

descent with the learning rate 0.01. Since the estimation of gradients on real quantum computers16

could be perturbed by statistical measurement noise, we compare optimizations using accurate and17

noisy gradients. For the latter case, we set the variance of measurement noises to be 0.01. We train18

different Gaussian initialized VQAs with variances {0.01γ, 0.1γ, γ, 10γ, 100γ}, where the value γ19

follows the formulation in Theorem 4.1.20

We illustrate results in Figures 1 and 2, which correspond to the noiseless and the noisy case, re-21

spectively. As show in figures of the loss during optimizations, the Gaussian initialization with the22

variance γ outperforms other Gaussian initializations with faster convergence rates. Gaussian initial-23

izations with small variances {0.01γ, 0.1γ} have similar performances with the zero initialization24

for the noisy training case, and Gaussian initializations with large variances {10γ, 100γ} behave25

similarly with the uniform initialization presented in the main text. Moreover, circuits initialized26

with larger variances {10γ, 100γ} need more iterations to converge when the depth increases, while27

circuits with variances {0.01γ, 0.1γ, γ} show similar convergence rates for different depths.28

Next, we compare different initializations with other optimizers, i.e., the gradient descent with29

momentum [1], the Nesterov accelerated gradient (NAG) [2], and the adaptive gradient (AdaGrad) [3].30

We follow the loss function (10) with (N,L) = (15, 18) and (N,L) = (18.38). The learning rate and31

the noise are the same as that in the experiment considering different Gaussian variances. We illustrate32

results in Figures 3 and 4. As shown in Figure 3 and Figure 1 in the main text, the performance of33
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Figure 1: Numerical results of finding the ground state energy of the Heisenberg model using
the noiseless gradient descent. Figures 1(a)-1(c) show the loss during optimizations for different
L ∈ {14, 18, 22} using the circuit 1 in the main text. For each L, we adopt Gaussian initializaions
with different variances 0.01γ, 0.1γ, γ, 10γ, 100γ, where the value γ follows the formulation in
Theorem 4.1. Figures 1(d)-1(f) show the ℓ2 norm of corresponding gradients during the optimization.
Each line illustrates the average of 5 rounds of independent experiments.

GD with momentum and the NAG is similar to that of the Adam optimizer, while the performance of34

the AdaGrad is similar to the GD optimizer. By comparing Figures 3 and 4, we notice that uniformly35

initialized circuits converge slower when the qubit number and the circuit depth increase.36

A.2 Quantum chemistry37

In this section, we introduce additional experiment results toward finding the ground state energy38

of the Heisenberg model with different circuit depths. We repeat the LiH task in the main text with39

the depth L ∈ {24, 48, 72} by stacking the circuit VGivens in Eq. (11). The noise setting follows the40

adaptive noise with the variance in Eq. (12). We adopt gradient descent and the Adam optimizer with41

learning rates 0.1 and 0.01, respectively. The result is shown in Figure 5. For the gradient descent42

case, the convergence rate of the loss function increases when the circuit depth grows. For the Adam43

case, circuits with different depths show similar convergence speeds.44

B Technical Lemmas45

In this section, we provide some technical lemmas.46

Lemma B.1. Let θ be a variable with Gaussian distribution N (0, γ2). Let ρ =
∑

k ckρk be the47

linear combination of density matrices {ρk} with real coefficients {ck}. Let G be a hermitian unitary48

and V = e−iθG. Let O be an arbitrary hermitian quantum observable that anti-commutes with G.49

Then50

E
θ∼N (0,γ2)

Tr
[
OV ρV †]2 ≥ (1− 4γ2)Tr [Oρ]

2
+ 4γ2(1− 4γ2)Tr [iGOρ]

2
. (1)

Proof. By replacing the term51

V = e−iθG = I cos θ − iG sin θ,

2
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Figure 2: Numerical results of finding the ground state energy of the Heisenberg model using the noisy
gradient descent. Figures 2(a)-2(c) show the loss during optimizations for different L ∈ {14, 18, 22}
using the circuit 1 in the main text. For each L, we adopt Gaussian initializaions with different
variances 0.01γ, 0.1γ, γ, 10γ, 100γ, where the value γ follows the formulation in Theorem 4.1.
Figures 2(d)-2(f) show the ℓ2 norm of corresponding gradients during the optimization. Each line
illustrates the average of 5 rounds of independent experiments.

we have52

Tr
[
OV ρV †] = Tr [O(I cos θ − iG sin θ)ρ(I cos θ + iG sin θ)]

= cos 2θTr [Oρ] + sin 2θTr [iGOρ] , (2)

where Eq. (2) follows from the condition OG + GO = 0. Since O anti-commutes with G, iGO53

could be served as a hermitian observable. Based on Eq. (2), we have54

E
θ∼N (0,γ2)

Tr
[
OV ρV †]2 = E

θ∼N (0,γ2)

(
cos 2θTr [Oρ] + sin 2θTr [iGOρ]

)2
=

1 + e−8γ2

2
Tr [Oρ]

2
+

1− e−8γ2

2
Tr [iGOρ]

2 (3)

≥ (1− 4γ2)Tr [Oρ]
2
+ 4γ2(1− 4γ2)Tr [iGOρ]

2
, (4)

where Eq. (3) is obtained by calculating expectation terms. InEq. (4) holds since 1− 8γ2 ≤ e−8γ2 ≤55

1− 8γ2 + 32γ4. Thus, we have proved Eq. (1).56

57

Lemma B.2. Let θ be a variable with Gaussian distribution N (0, γ2). Let ρ be the density matrix58

of a quantum state. Let G be a hermitian unitary and V = e−iθG. Let O be an arbitrary hermitian59

quantum observable that anti-commutes with G. Then60

E
θ∼N (0,γ2)

(
∂

∂θ
Tr
[
OV ρV †])2

≥ (1− 4γ2)

(
∂

∂θ
Tr
[
OV ρV †])2 ∣∣∣∣

θ=0

+ 16γ2(1− 4γ2)Tr [Oρ]
2
.

(5)

Proof. By calculating the gradient for both sides of Eq. (2), we obtain61

∂

∂θ
Tr
[
OV ρV †] = −2 sin 2θTr [Oρ] + 2 cos 2θTr [iGOρ] . (6)

3
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Figure 3: Numerical results of finding the ground state energy of the Heisenberg model with qubits
N = 15 (noisy case). Figures 3(a)-3(c) show the loss during optimizations using the gradient descent
with momentum, the Nesterov accelerated gradient (NAG), and the adaptive gradient (AdaGrad),
respectively. Figures 3(d)-3(f) show the ℓ2 norm of gradients during the optimization. Each line
illustrates the average of 5 rounds of independent experiments.

Let θ = 0 in Eq. (6), we obtain62

∂

∂θ
Tr
[
OV ρV †] ∣∣∣∣

θ=0

= 2Tr [iGOρ] . (7)

Now we proceed to prove Lemma B.2.63

The left part of Eq. (5) = E
θ∼N (0,γ2)

(−2 sin 2θTr [Oρ] + 2 cos 2θTr [iGOρ])
2

= 2(1− e−8γ2

)Tr [Oρ]
2
+ 2(1 + e−8γ2

)Tr [iGOρ]
2 (8)

≥ 16γ2(1− 4γ2)Tr [Oρ]
2
+ 4(1− 4γ2)Tr [iGOρ]

2 (9)

= (1− 4γ2)

(
∂

∂θ
Tr
[
OV ρV †])2 ∣∣∣∣

θ=0

+ 16γ2(1− 4γ2)Tr [Oρ]
2
. (10)

Eq. (8) is obtained by calculating expectation terms. InEq. (9) is obtained by using 1 − 8γ2 ≤64

e−8γ2 ≤ 1− 8γ2 + 32γ4. Eq. (10) follows from Eq. (7). Thus, we have proved Eq. (5).65

66

Lemma B.3. Denote by ρ =
∑

k ckρk the linear combination of density matrices {ρk} with real67

coefficients {ck}. Let Vh(θ) = W1e
−iθG1W2 · · ·Whe

−iθGh , where {Gn}hn=1 is a list of hermitian68

unitaries and {Wn}hn=1 is a list of unitary matrices. Denote by O an arbitrary hermitian quantum69

observable. Then70

E
θ∼N (0,γ2)

Tr
[
OVh(θ)ρVh(θ)

†
]2

≥ Tr
[
OVh(0)ρVh(0)

†
]2

− [12h(h− 1) + 4] γ2∥c∥21∥O∥22,

(11)

where ∥c∥1 =
∑

k |ck| denotes the ℓ1 norm of c, ∥O∥2 denotes the spectral norm of O, and the71

variance γ2 ≤ 1
12h2 .72
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Figure 4: Numerical results of finding the ground state energy of the Heisenberg model with qubits
N = 18 (noisy case). Figures 4(a)-4(c) show the loss during optimizations using the gradient descent
with momentum, the Nesterov accelerated gradient (NAG), and the adaptive gradient (AdaGrad),
respectively. Figures 4(d)-4(f) show the ℓ2 norm of gradients during the optimization. Each line
illustrates the average of 3 rounds of independent experiments.

0 20 40 60 80 100
training iteration with GD

10 4

10 3

10 2

f
f *

gaussian (L=24)
zero (L=24)
gaussian (L=48)
zero (L=48)
gaussian (L=72)
zero (L=72)

(a)

0 20 40 60 80 100
training iteration with GD

10 5

10 4

10 3

10 2

10 1

gr
ad

ie
nt

 n
or

m

gaussian (L=24)
zero (L=24)
gaussian (L=48)
zero (L=48)
gaussian (L=72)
zero (L=72)

(b)

0 20 40 60 80 100
training iteration with Adam

10 4

10 3

10 2

f
f *

gaussian (L=24)
zero (L=24)
gaussian (L=48)
zero (L=48)
gaussian (L=72)
zero (L=72)

(c)

0 20 40 60 80 100
training iteration with Adam

10 3

10 2

10 1

gr
ad

ie
nt

 n
or

m

gaussian (L=24)
zero (L=24)
gaussian (L=48)
zero (L=48)
gaussian (L=72)
zero (L=72)

(d)

Figure 5: Numerical results of finding the ground state energy of the LiH molecule using noisy
gradients. Figures 5(a) and 5(c) show the loss during optimizations for different L ∈ {24, 48, 72}
with the gradient descent and the Adam optimizer, respectively. Figures 5(b) and 5(d) show the ℓ2
norm of gradients during the optimization. Each line illustrates the average of 3 rounds of independent
experiments.

Proof. Before the proof, we define several notations for convenience. We define V0 = I and73

Vj(θ) = Wh+1−je
−iθGh+1−j · · ·Whe

−iθGh ,∀j ∈ {1, · · · , h}. (12)

We denote 0k, 1k, and 2k as k-dimensional vectors with components 0, 1, and 2, respectively. We74

define Oj1,··· ,jk
i1,··· ,ik = O for the k = 0 case and75

Oj1,··· ,jk
i1,··· ,ik =



Wk
†O

j1,··· ,jk−1

i1,··· ,ik−1
Wk, if ik = 0, jk = 0,

1

2
Gk

{
Gk,Wk

†O
j1,··· ,jk−1

i1,··· ,ik−1
Wk

}
, if ik = 1, jk = 0,

1

2
Gk

[
Gk,Wk

†O
j1,··· ,jk−1

i1,··· ,ik−1
Wk

]
, if ik = 2, jk = 0,

iGkO
j1,··· ,jk−1,0
i1,··· ,ik−1,ik

, if jk = 1,

(13)

for increasing k ∈ {1, · · · , h}, where ik ∈ {0, 1, 2} and jk ∈ {0, 1}.76

5



For all 1 ≤ k ≤ ℓ ≤ h, the definition (13) provides the commuting and anti-commuting parts of77

O
j1,··· ,jk−1,0,jk+1,··· ,jℓ
i1,··· ,ik−1,0,ik+1,··· ,iℓ with respect to Gk, respectively, i.e.,78

O
j1,··· ,jk−1,0,jk+1,··· ,jℓ
i1,··· ,ik−1,0,ik+1,··· ,iℓ = O

j1,··· ,jk−1,0,jk+1,··· ,jℓ
i1,··· ,ik−1,1,ik+1,··· ,iℓ +O

j1,··· ,jk−1,0,jk+1,··· ,jℓ
i1,··· ,ik−1,2,ik+1,··· ,iℓ ,

GkO
j1,··· ,jk−1,0,jk+1,··· ,jℓ
i1,··· ,ik−1,1,ik+1,··· ,iℓ = O

j1,··· ,jk−1,0,jk+1,··· ,jℓ
i1,··· ,ik−1,1,ik+1,··· ,iℓ Gk,

GkO
j1,··· ,jk−1,0,jk+1,··· ,jℓ
i1,··· ,ik−1,2,ik+1,··· ,iℓ = −O

j1,··· ,jk−1,0,jk+1,··· ,jℓ
i1,··· ,ik−1,2,ik+1,··· ,iℓ Gk.

Since for all k ∈ [L], Gk is a unitary matrix, Oj
i is a hermitian observable for all i ∈ {0, 1, 2}ℓ,79

j ∈ {0, 1}ℓ, and ℓ ∈ [L]. Meanwhile, the spectral norm of Oj
i is bounded,80 ∥∥∥Oj1,··· ,jh−1,jh

i1,··· ,ih−1,ih

∥∥∥
2
≤
∥∥∥Oj1,··· ,jh−1,0

i1,··· ,ih−1,ih

∥∥∥
2
≤ 1

2

∥∥∥Oj1,··· ,jh−1,0
i1,··· ,ih−1,0

∥∥∥
2
+

1

2

∥∥∥Oj1,··· ,jh−1,0
i1,··· ,ih−1,0

∥∥∥
2

=
∥∥∥Oj1,··· ,jh−1,0

i1,··· ,ih−1,0

∥∥∥
2
=
∥∥∥Oj1,··· ,jh−1

i1,··· ,ih−1

∥∥∥
2
≤ ∥O∥2, (14)

where ∥A∥2 denotes the spectral norm of the matrix A. Moreover, for all k, ℓ ≥ 0 such that k+ℓ ≤ h,81

the observable O
j1,··· ,jk,0h−k−ℓ,jh−ℓ+1,··· ,jh
i1,··· ,ik,0h−k−ℓ,ih−ℓ+1,··· ,ih could be recovered by82

h−ℓ∑
n=k+1

2∑
in=1

O
j1,··· ,jk,0h−k−ℓ,jh−ℓ+1,··· ,jh
i1,··· ,ik,ik+1,··· ,ih−ℓ,ih−ℓ+1,··· ,ih = O

j1,··· ,jk,0h−k−ℓ,jh−ℓ+1,··· ,jh
i1,··· ,ik,0h−k−ℓ,ih−ℓ+1,··· ,ih . (15)

Now we begin the proof. To analyze the expectation with respect to the parameter θ, we need the
detailed formulation of Tr

[
OVhρVh

†
]

as the function of θ. In fact, for all h′ ∈ {0, 1, · · · , h} and all

i ∈ {0, 1, 2}h−h′
, j ∈ {0, 1}h−h′

,

we have83

Tr
[
Oj

iVh′ρVh′
†
]
=

1h′∑
j′=0h′

2h′∑
i′=j′+1h′

(cos 2θ)
∥i′∥1−∥j′∥1−h′

(sin 2θ)
∥j′∥1 Tr

[
Oj,j′

i,i′ ρ
]
, (16)

where ∥i′∥1 ≡
∑dim(i′)

k=1 |i′k| denotes the ℓ1 norm of the vector i.84

Eq. (16) can be proved inductively. First, for the case h′ = 0, Eq. (16) holds trivially. Next, we
assume that Eq. (16) holds for the h′ = k case. Then for all

i ∈ {0, 1, 2}h−k−1, j ∈ {0, 1}h−k−1,

we have85

Tr
[
Oj

iVk+1ρVk+1
†
]
=Tr

[
Oj

iWh−k(I cos θ − iGh−k sin θ)VkρVk
†(I cos θ + iGh−k sin θ)Wh−k

†
]

=cos2 θTr
[
Oj,0

i,0VkρVk
†
]
+ sin2 θTr

[
Gh−kO

j,0
i,0Gh−kVkρVk

†
]

+ sin θ cos θTr
[
iGh−kO

j,0
i,0VkρVk

†
]
− sin θ cos θTr

[
Oj,0

i,0 iGh−kVkρVk
†
]

(17)

=Tr
[
Oj,0

i,1VkρVk
†
]
+ cos 2θTr

[
Oj,0

i,2VkρVk
†
]
+ sin 2θTr

[
Oj,1

i,2VkρVk
†
]
,

(18)

where Eqs. (17) and (18) are derived by using the definition (13). We proceed by employing the86

h′ = k case of Eq. (16), such that87

Eq. (18) =
1k∑

j′=0k

2k∑
i′=j′+1k

(cos 2θ)
∥i′∥1−∥j′∥1−k

(sin 2θ)
∥j′∥1 Tr

[
Oj,0,j′

i,1,i′ ρ
]

+ cos 2θ

1k∑
j′=0k

2k∑
i′=j′+1k

(cos 2θ)
∥i′∥1−∥j′∥1−k

(sin 2θ)
∥j′∥1 Tr

[
Oj,0,j′

i,2,i′ ρ
]

6



+ sin 2θ

1k∑
j′=0k

2k∑
i′=j′+1k

(cos 2θ)
∥i′∥1−∥j′∥1−k

(sin 2θ)
∥j′∥1 Tr

[
Oj,1,j′

i,2,i′ ρ
]

=

1k+1∑
j′=0k+1

2k+1∑
i′=j′+1k+1

(cos 2θ)
∥i′∥1−∥j′∥1−k−1

(sin 2θ)
∥j′∥1 Tr

[
Oj,j′

i,i′ ρ
]
, (19)

which matches the formulation of the h′ = k + 1 case of Eq. (16). Thus, Eq. (16) has been proved.88

Now we begin to prove Eq. (11). Employing the h′ = h case of Eq. (16) could yield89

E
θ∼N (0,γ2)

(
Tr
[
OVhρVh

†
])2

= E
θ∼N (0,γ2)

 1h∑
j=0h

2h∑
i=j+1h

(cos 2θ)∥i∥1−∥j∥1−h(sin 2θ)∥j∥1Tr
[
Oj

i ρ
]2

(20)

= E
θ∼N (0,γ2)

 2h∑
i=1h

(cos 2θ)∥i∥1−hTr
[
O0h

i ρ
]
+

1h∑
j>0h

2h∑
i=j+1h

(cos 2θ)∥i∥1−∥j∥1−h(sin 2θ)∥j∥1Tr
[
Oj

i ρ
]2

(21)

≥ E
θ∼N (0,γ2)

(
2h∑

i=1h

(cos 2θ)∥i∥1−hTr
[
O0h

i ρ
])2

+ 2 E
θ∼N (0,γ2)

1h∑
j>0h

2h∑
i=j+1h

(cos 2θ)∥i∥1−∥j∥1−h(sin 2θ)∥j∥1Tr
[
Oj

i ρ
] 2h∑
i′=1h

(cos 2θ)∥i
′∥1−hTr

[
O0h

i′ ρ
]
.

(22)

InEq. (22) is obtained by discarding the square of the latter term in the bracket of Eq. (21). We remark90

that if Eqs. (23) and (24) hold, we can prove Eq. (11) by using Eqs. (20-22).91

E
θ∼N (0,γ2)

(
2h∑

i=1h

(cos 2θ)∥i∥1−hTr
[
O0h

i ρ
])2

−
(
Tr
[
OVh(0)ρVh(0)

†])2 ≥ −(6h− 2)γ2∥c∥21∥O∥22,

(23)
92

E
θ∼N (0,γ2)

1h∑
j>0h

2h∑
i=j+1h

(cos 2θ)∥i∥1−∥j∥1−h(sin 2θ)∥j∥1Tr
[
Oj

i ρ
] 2h∑
i′=1h

(cos 2θ)∥i
′∥1−hTr

[
O0h

i′ ρ
]

≥−
(
6h2 − 9h+ 3

)
γ2∥c∥21∥O∥22. (24)

In the following proof, we would derive Eqs. (23) and (24). We focus on the Eq. (23) first. In fact,93

the left side of Eq. (23) is bounded by94

E
θ∼N (0,γ2)

(
2h∑

i=1h

[
1− (cos 2θ)∥i∥1−h − 1

]
Tr
[
O0h

i ρ
])2

−
(
Tr
[
O0h

0h
ρ
])2

(25)

= E
θ∼N (0,γ2)

(
2h∑

i=1h

[
1− (cos 2θ)∥i∥1−h − 1

]
Tr
[
O0h

i ρ
])2

−

(
2h∑

i=1h

Tr
[
O0h

i ρ
])2

(26)

≥− 2

∣∣∣∣∣
2h∑

i=1h

Tr
[
O0h

i ρ
]∣∣∣∣∣ E

θ∼N (0,γ2)

∣∣∣∣∣
2h∑

i=1h

[
1− (cos 2θ)∥i∥1−h

]
Tr
[
O0h

i ρ
]∣∣∣∣∣ (27)

=− 2
∣∣Tr
[
O0h

0h
ρ
]∣∣ E

θ∼N (0,γ2)

∣∣∣∣∣
2h∑

i=1h

[
1− (cos 2θ)∥i∥1−h

]
Tr
[
O0h

i ρ
]∣∣∣∣∣ (28)
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≥− 2∥c∥1∥O∥2 E
θ∼N (0,γ2)

∣∣∣∣∣
2h∑

i=1h

[
1− (cos 2θ)∥i∥1−h

]
Tr
[
O0h

i ρ
]∣∣∣∣∣ (29)

≥− 2∥c∥21∥O∥22 E
θ∼N (0,γ2)

[
(2− cos 2θ)h − 1

]
. (30)

Eq. (25) is obtained by using the definition (13). Eq. (26) is derived by using Eq. (15). InEq. (27) is95

obtained by using (a− b)2 − b2 ≥ −2|a| · |b|. Eq. (28) yields from Eq. (15). InEq. (29) is derived by96

using97 ∣∣∣Tr
[
Oj

i ρ
]∣∣∣ = ∣∣∣∣∣∑

k

ckTr
[
Oj

i ρk

]∣∣∣∣∣ ≤∑
k

|ck|
∣∣∣Tr
[
Oj

i ρk

]∣∣∣ ≤∑
k

|ck|
∥∥∥Oj

i

∥∥∥
2
≤ ∥c∥1∥O∥2. (31)

InEq. (30) is obtained by using the h′ = h case of InEq. (32), i.e.,98 ∣∣∣∣∣∣
2h′∑

i′=j′+1h′

[
1− (cos 2θ)

∥i′∥1−∥j′∥1−h′]
Tr
[
Oj′,j

i′,i ρ
]∣∣∣∣∣∣ ≤

[
(2− cos 2θ)h

′−∥j′∥1 − 1
]
∥c∥1 ∥O∥2

(32)

for all h′ ∈ {0, 1, · · · , h}, j′ ∈ {0, 1}h′
, i ∈ {0, 1, 2}h−h′

, and j ∈ {0, 1}h−h′
.99

InEq. (32) can be proved inductively. First, for the case h′ = 0, Eq. (32) holds trivially. Next we100

assume that Eq. (32) holds for the case h′ = k. Then for all i ∈ {0, 1, 2}h−k−1 and j ∈ {0, 1}h−k−1,101

we have102 ∣∣∣∣∣∣
2k+1∑

i′=j′+1k+1

[
1− (cos 2θ)

∥i′∥1−∥j′∥1−k−1
]

Tr
[
Oj′,j

i′,i ρ
]∣∣∣∣∣∣

=

∣∣∣∣∣∣
2k∑

i′=j′+1k

2∑
i′k+1=j′k+1+1

[
1− (cos 2θ)

∥i′∥1+i′k+1−∥j′∥1−j′k+1−k−1
]

Tr
[
O

j′,j′k+1,j

i′,i′k+1,i
ρ
]∣∣∣∣∣∣ . (33)

For the case j′k+1 = 1,103

Eq. (33) =

∣∣∣∣∣∣
2k∑

i′=j′+1k

[
1− (cos 2θ)

∥i′∥1−∥j′∥1−k
]

Tr
[
Oj′,1,j

i′,2,i ρ
]∣∣∣∣∣∣

≤
[
(2− cos 2θ)k−∥j′∥1 − 1

]
∥c∥1 ∥O∥2 (34)

=
[
(2− cos 2θ)k+1−∥j′∥1−j′k+1 − 1

]
∥c∥1 ∥O∥2 . (35)

InEq. (34) is derived by using the h′ = k case of InEq. (32). Eq. (35) is derived by using j′k+1 = 1.104

For the case j′k+1 = 0,105

Eq. (33) =

∣∣∣∣∣∣
2k∑

i′=j′+1k

[
1− (cos 2θ)

∥i′∥1−∥j′∥1−k
]

Tr
[
Oj′,0,j

i′,1,i ρ
]

+

2k∑
i′=j′+1k

[
1− (cos 2θ)

∥i′∥1−∥j′∥1−k+1
]

Tr
[
Oj′,0,j

i′,2,i ρ
]∣∣∣∣∣∣

=

∣∣∣∣∣∣
2k∑

i′=j′+1k

[
1− (cos 2θ)

∥i′∥1−∥j′∥1−k
]

Tr
[
Oj′,0,j

i′,0,i ρ
]

+ (1− cos 2θ)

2k∑
i′=j′+1k

[
(cos 2θ)

∥i′∥1−∥j′∥1−k − 1 + 1
]

Tr
[
Oj′,0,j

i′,2,i ρ
] ∣∣∣∣∣ (36)
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≤

∣∣∣∣∣∣
2k∑

i′=j′+1k

[
1− (cos 2θ)

∥i′∥1−∥j′∥1−k
]

Tr
[
Oj′,0,j

i′,0,i ρ
]∣∣∣∣∣∣

+ (1− cos 2θ)

∣∣∣∣∣∣
2k∑

i′=j′+1k

[
1− (cos 2θ)

∥i′∥1−∥j′∥1−k
]

Tr
[
Oj′,0,j

i′,2,i ρ
]∣∣∣∣∣∣

+ (1− cos 2θ)

∣∣∣∣∣∣
2k∑

i′=j′+1k

Tr
[
Oj′,0,j

i′,2,i ρ
]∣∣∣∣∣∣ (37)

≤
[
(2− cos 2θ)k−∥j′∥1 − 1

]
∥c∥1 ∥O∥2 + (1− cos 2θ)

[
(2− cos 2θ)k−∥j′∥1 − 1

]
∥c∥1 ∥O∥2

+ (1− cos 2θ)∥c∥1 ∥O∥2 (38)

≤
[
(2− cos 2θ)k+1−∥j′∥1−j′k+1 − 1

]
∥c∥1 ∥O∥2 . (39)

Eq. (36) is derived by using Eq. (15). InEq. (37) is obtained since |a + b| ≤ |a| + |b|. InEq. (38)106

is obtained using the h′ = k case of Eq. (32) and Eq. (15). InEq. (39) is derived by using Eq. (14).107

Thus we have proved Eq. (32) since Eqs. (35) and (39) match the h′ = k + 1 case.108

Since cos 2θ ≥ 1− 2θ2, we could further bound Eq. (30) by109

Eq. (30) ≥− 2∥c∥21∥O∥22 E
θ∼N (0,γ2)

[
(1 + 2θ2)h − 1

]
(40)

=− 2∥c∥21∥O∥22 E
θ∼N (0,γ2)

h∑
t=1

(
h

t

)
(2θ2)t

=− 2∥c∥21∥O∥22
h∑

t=1

(
h

t

)
(2t− 1)!!(2γ2)t (41)

≥− 2∥c∥21∥O∥22
h∑

t=1

h(h− 1)t−12t−1

(
1

6h2

)t−1

(2γ2) (42)

=− 2∥c∥21∥O∥222hγ2

[
1 +

h− 1

3h2

h−2∑
t=0

(
h− 1

3h2

)t
]

≥− (6h− 2) ∥c∥21∥O∥22γ2. (43)

Eq. (41) is derived by calculating expectation terms. InEq. (42) yields from (2t−1)!!
t! ≤ 2t−1 and the110

condition γ2 ≤ 1
12h2 . Thus, we have proved InEq. (23).111

Next, we focus on the Eq. (24). The left side of Eq. (24) could be bounded by112

= E
θ∼N (0,γ2)

1h∑
j>0h,2|∥j∥1

2h∑
i=j+1h

(cos 2θ)∥i∥1−∥j∥1−h(sin 2θ)∥j∥1Tr
[
Oj

i ρ
]

·
2h∑

i′=1h

(cos 2θ)∥i
′∥1−hTr

[
O0h

i′ ρ
]

(44)

≥− E
θ∼N (0,γ2)

1h∑
j>0h,2|∥j∥1

(sin 2θ)∥j∥1

∣∣∣∣∣∣
2h∑

i=j+1h

[
1− (cos 2θ)∥i∥1−∥j∥1−h

]
Tr
[
Oj

i ρ
]∣∣∣∣∣∣

+

∣∣∣∣∣∣
2h∑

i=j+1h

Tr
[
Oj

i ρ
]∣∣∣∣∣∣
 ·

(∣∣∣∣∣
2h∑

i′=1h

[
1− (cos 2θ)∥i

′∥1−h
]

Tr
[
O0h

i′ ρ
]∣∣∣∣∣+

∣∣∣∣∣
2h∑

i′=1h

Tr
[
O0h

i′ ρ
]∣∣∣∣∣
)

(45)

≥− E
θ∼N (0,γ2)

1h∑
j>0h,2|∥j∥1

(sin 2θ)∥j∥1

([
(2− cos 2θ)h−∥j∥1 − 1

]
∥c∥1

∥∥O0h
0h

∥∥
2
+
∣∣∣Tr
[
Oj

2jρ
]∣∣∣)
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·
([

(2− cos 2θ)h − 1
]
∥c∥1

∥∥O0h
0h

∥∥
2
+
∣∣Tr
[
O0h

0h
ρ
]∣∣) (46)

≥− E
θ∼N (0,γ2)

1h∑
j>0h,2|∥j∥1

(sin 2θ)∥j∥1(2− cos 2θ)2h−∥j∥1∥c∥21 ∥O∥22 (47)

≥− ∥c∥21∥O∥22 E
θ∼N (0,γ2)

1h∑
j>0h,2|∥j∥1

(2θ)∥j∥1(1 + 2θ2)2h−∥j∥1 . (48)

Eq. (44) is obtained by noticing that the expectation of sina 2θ cosb 2θ equals to zero, if a is odd.113

InEq. (45) is obtained by using
∑

i,j aibj ≥ −(
∑

i |ai|)(
∑

j |bj |) and |a+ b| ≤ |a|+ |b|. InEq. (46)114

is derived by using the h′ = h case of Eq. (32) and Eq. (15). InEq. (47) is obtained by using115

∥O0h
0h
∥ = ∥O∥ and Eq. (31). InEq. (48) is derived by using (sin 2θ)2 ≤ (2θ)2 and cos 2θ ≥ 1− 2θ2.116

We proceed from InEq. (48), which could be further bounded by117

=− ∥c∥21∥O∥22 E
θ∼N (0,γ2)

⌊h/2⌋∑
t=1

(
h

2t

)
(2θ)2t

2h−2t∑
m=0

(
2h− 2t

m

)
(2θ2)m (49)

=− ∥c∥21∥O∥22
⌊h/2⌋∑
t=1

(
h

2t

) 2h−2t∑
m=0

(
2h− 2t

m

)
22t+m(2t+ 2m− 1)!!γ2t+2m (50)

≥− ∥c∥21∥O∥22
⌊h/2⌋∑
t=1

2h−2t∑
m=0

h(h− 1)2t−1

2tt!(2t− 1)!!

(2h− 2)m

m!
22t+m

· (2t− 1)!!(2t+ 1)(2t+ 3) · · · (2t+ 2m− 1)γ2t+2m (51)

≥− ∥c∥21∥O∥22
⌊h/2⌋∑
t=1

2h−2t∑
m=0

h(h− 1)2t−1

2t2t−1

(2h− 2)m

m!
22t+m(2h)mγ2t+2m (52)

≥− ∥c∥21∥O∥22
⌊h/2⌋∑
t=1

(
2h(h− 1)2t−1γ2t +

2h−2t∑
m=1

4h(h− 1)2t−1(2h− 2)m(2h)mγ2t+2m

)
(53)

=− ∥c∥21∥O∥22

⌊h/2⌋∑
t=1

2h(h− 1)2t−1γ2t

 ·

(
1 + 2

2h−2t∑
m=1

[
4h(h− 1)γ2

]m)
(54)

≥− ∥c∥21∥O∥223h(h− 1)γ2
(
1 + 12h(h− 1)γ2

)
(55)

≥−
(
6h2 − 9h+ 3

)
γ2∥c∥21∥O∥22. (56)

Here, Eq. (49) is obtained since the summation
∑1h

j>0h
contains

(
h
2t

)
terms such that ∥j∥1 = 2t, for118

all t ∈ {1, · · · , ⌊h
2 ⌋}. Eq. (50) is derived by calculating expectation terms. InEq. (51) is obtained by119

using120 (
h

2t

)
≤ h(h− 1)2t−1

(2t)!
=

h(h− 1)2t−1

2tt!(2t− 1)!!
and

(
2h− 2t

m

)
≤ (2h− 2t)m

m!
.

InEq. (52) is derived by using t! ≥ 2t−1 and121

(2t+ 2k − 1)(2t+ 2m− 2k + 1) ≤ (2t+m)2 ≤ (2h)2,∀k ∈ {1, · · · ,m− 1}.
InEq. (53) is obtained by splitting the summation

∑
m and using m! ≥ 2m−1,∀m ≥ 1. InEq. (55) is122

derived by calculating geometric sequences with the condition γ2 ≤ 1
12h2 . InEq. (56) follows from123

the condition γ2 ≤ 1
12h2 . Thus, we have proved Eq. (24).124

125

Lemma B.4. Let ρ be the density matrix of a quantum state. Let Vh = W1e
−iθG1W2 · · ·Whe

−iθGh ,126

where {Gn}hn=1 is a list of hermitian unitaries and {Wn}hn=1 is a list of unitary matrices. Denote by127

O an arbitrary hermitian quantum observable. Then128

E
θ∼N (0,γ2)

(
∂

∂θ
Tr
[
OVhρVh

†
])2

≥ (1− 4γ2)

(
∂

∂θ
Tr
[
OVhρVh

†
] ∣∣∣

θ=0

)2
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− 96h2(h− 1)γ2∥O∥22 − 20h2(h− 1)(h− 2)γ2∥O∥22,
(57)

where ∥O∥2 denotes the spectral norm of O and the variance γ2 ≤ 1
16h3 .129

Proof. For convenience, we follow the notation Oj
i in Eq. (13). We can obtain the detailed formulation130

of ∂
∂θTr

[
OVhρVh

†
]

by using the h′ = h case of Eq. (16),131

∂

∂θ
Tr
[
OVhρVh

†
]
=

∂

∂θ

1h∑
j=0h

2h∑
i=j+1h

(cos 2θ)
∥i∥1−∥j∥1−h

(sin 2θ)
∥j∥1 Tr

[
Oj

i ρ
]

(58)

=2

1h∑
j=0h

2h∑
i=j+1h

(h+ ∥j∥1 − ∥i∥1) (cos 2θ)∥i∥1−∥j∥1−h−1
(sin 2θ)

∥j∥1+1 Tr
[
Oj

i ρ
]

+ 2

1h∑
j=0h

2h∑
i=j+1h

∥j∥1 (cos 2θ)∥i∥1−∥j∥1−h+1
(sin 2θ)

∥j∥1−1 Tr
[
Oj

i ρ
]

(59)

=2

1h∑
j=0h

2h∑
i=j+1h

(h+ ∥j∥1 − ∥i∥1) (cos 2θ)∥i∥1−∥j∥1−h−1
(sin 2θ)

∥j∥1+1 Tr
[
Oj

i ρ
]

+ 2
∑

∥j∥1=1

2h∑
i=j+1h

(cos 2θ)
∥i∥1−h Tr

[
Oj

i ρ
]

+ 2

1h∑
∥j∥1≥2

2h∑
i=j+1h

∥j∥1 (cos 2θ)∥i∥1−∥j∥1−h+1
(sin 2θ)

∥j∥1−1 Tr
[
Oj

i ρ
]
. (60)

Here, Eq. (58) follows from Eq. (16). Eq. (59) is derived by calculating the gradient of sine and132

cosine terms. By discarding the square of the sum of the first and the third term in Eq. (60), we obtain133 (
∂

∂θ
Tr
[
OVhρVh

†
])2

≥ 4

 ∑
∥j∥1=1

2h∑
i=j+1h

(cos 2θ)
∥i∥1−h Tr

[
Oj

i ρ
]2

+ 8

 1h∑
∥j∥1≥2

2h∑
i=j+1h

∥j∥1 (cos 2θ)∥i∥1−∥j∥1−h+1
(sin 2θ)

∥j∥1−1 Tr
[
Oj

i ρ
]

·

 ∑
∥j′∥1=1

2h∑
i′=j′+1h

(cos 2θ)
∥i′∥1−h Tr

[
Oj′

i′ ρ
]

+ 8

 1h∑
j=0h

2h∑
i=j+1h

(h+ ∥j∥1 − ∥i∥1) (cos 2θ)∥i∥1−∥j∥1−h−1
(sin 2θ)

∥j∥1+1 Tr
[
Oj

i ρ
]

·

 ∑
∥j′∥1=1

2h∑
i′=j′+1h

(cos 2θ)
∥i′∥1−h Tr

[
Oj′

i′ ρ
] . (61)

Let θ = 0 in Eq. (60), we obtain134

∂

∂θ
Tr
[
OVhρVh

†
] ∣∣∣

θ=0
= 2

∑
∥j∥1=1

2h∑
i=j+1h

Tr
[
Oj

i ρ
]
. (62)

Thus, we could obtain Eq. (57) if Eqs. (63-65) hold.135

E
θ∼N (0,γ2)

 ∑
∥j∥1=1

2h∑
i=j+1h

(cos 2θ)
∥i∥1−h Tr

[
Oj

i ρ
]2

− (1− 4γ2)

 ∑
∥j∥1=1

2h∑
i=j+1h

Tr
[
Oj

i ρ
]2

11



≥ −13

3
h2(h− 1)γ2∥O∥22, (63)

E
θ∼N (0,γ2)

 1h∑
j=0h

2h∑
i=j+1h

(h+ ∥j∥1 − ∥i∥1) (cos 2θ)∥i∥1−∥j∥1−h−1
(sin 2θ)

∥j∥1+1 Tr
[
Oj

i ρ
]

·

 ∑
∥j′∥1=1

2h∑
i′=j′+1h

(cos 2θ)
∥i′∥1−h Tr

[
Oj′

i′ ρ
] ≥ −59

6
h2(h− 1)γ2∥O∥22, (64)

E
θ∼N (0,γ2)

 1h∑
∥j∥1≥2

2h∑
i=j+1h

∥j∥1 (cos 2θ)∥i∥1−∥j∥1−h+1
(sin 2θ)

∥j∥1−1 Tr
[
Oj

i ρ
]

·

 ∑
∥j′∥1=1

2h∑
i′=j′+1h

(cos 2θ)
∥i′∥1−h Tr

[
Oj′

i′ ρ
] ≥ −5

2
h2(h− 1)(h− 2)γ2∥O∥22. (65)

We begin by proving Eq. (63). The left side of Eq. (63) can be lower bounded as136

≥ E
θ∼N (0,γ2)

 ∑
∥j∥1=1

2h∑
i=j+1h

[
cos 2θ − (cos 2θ)

∥i∥1−h − cos 2θ
]

Tr
[
Oj

i ρ
]2

−

cos 2θ
∑

∥j∥1=1

2h∑
i=j+1h

Tr
[
Oj

i ρ
]2

(66)

≥ − 2 E
θ∼N (0,γ2)

(cos 2θ)2
∑

∥j∥1=1

∣∣∣∣∣∣
2h∑

i=j+1h

[
1− (cos 2θ)

∥i∥1−1−h
]

Tr
[
Oj

i ρ
]∣∣∣∣∣∣

·
∑

∥j′∥1=1

∣∣∣∣∣∣
2h∑

i′=j′+1h

Tr
[
Oj′

i′ ρ
]∣∣∣∣∣∣ (67)

≥ − 2 E
θ∼N (0,γ2)

(cos 2θ)2
∑

∥j∥1=1

[
(2− cos 2θ)h−1 − 1

]
∥O∥2 ·

∑
∥j∥1=1

∣∣∣∣∣∣
2h∑

i=j+1h

Tr
[
Oj

i ρ
]∣∣∣∣∣∣ (68)

≥ − 2 E
θ∼N (0,γ2)

(cos 2θ)2h
[
(2− cos 2θ)h−1 − 1

]
∥O∥2 · h∥O∥2 (69)

≥ − 2h2∥O∥22 E
θ∼N (0,γ2)

[
(1 + 2θ2)h−1 − 1

]
(70)

≥ − 13

3
h2(h− 1)γ2∥O∥22. (71)

Here, InEq. (66) follows from

1− 4γ2 = Eθ[1− 4θ2] ≤ Eθ(1− 2θ2)2 ≤ Eθ(cos 2θ)
2.

InEq. (67) is obtained by using (a− b)2 − b2 ≥ −2|a| · |b|. InEq. (68) follows from the h′ = h and137

∥j∥ = 1 case of Eq. (32). InEq. (69) is derived by using Eq. (15). InEq. (70) is obtained by using138

cos 2θ ≥ 1− 2θ2. InEq. (71) follows from the derivation below.139

E
θ∼N (0,γ2)

(1 + 2θ2)h−1 − 1 = E
θ∼N (0,γ2)

h−1∑
t=1

(
h− 1

t

)
(2θ2)t

=

h−1∑
t=1

(
h− 1

t

)
(2t− 1)!!(2γ2)t (72)

≤
h−1∑
t=1

(h− 1)(h− 2)t−12t−1(2γ2)t

12



≤ 2(h− 1)γ2
h−1∑
t=1

[
h3γ2

]t−1
(73)

≤ 13

6
(h− 1)γ2, (74)

where Eq. (72) is obtained by calculating expectation terms. InEq (73) follows from h3 ≥ 4(h− 2)140

for integer h. InEq. (74) is derived by calculating geometric sequences with the condition γ2 ≤ 1
16h3 .141

Next, we prove Eq. (64). The left side of Eq. (64) could be lower bounded by142

= E
θ∼N (0,γ2)

 ∑
∥j′∥1=1

2h∑
i′=j′+1h

(cos 2θ)
∥i′∥1−1−h Tr

[
Oj′

i′ ρ
]

·

 1h∑
j=0h

2|(∥j∥1+1)

2h∑
i=j+1h

(h+ ∥j∥1 − ∥i∥1) (cos 2θ)∥i∥1−∥j∥1−h
(sin 2θ)

∥j∥1+1 Tr
[
Oj

i ρ
]

(75)

≥ − E
θ∼N (0,γ2)

∑
∥j′∥1=1

∣∣∣∣∣∣
2h∑

i′=j′+1h

[
1− (cos 2θ)

∥i′∥1−1−h
]

Tr
[
Oj′

i′ ρ
]∣∣∣∣∣∣+

∣∣∣∣∣∣
2h∑

i′=j′+1h

Tr
[
Oj′

i′ ρ
]∣∣∣∣∣∣


·
1h∑

j=0h

2|(∥j∥1+1)

(sin 2θ)
∥j∥1+1

∣∣∣∣∣∣
2h∑

i=j+1h

(∥i∥1 − ∥j∥1 − h) (cos 2θ)
∥i∥1−∥j∥1−h Tr

[
Oj

i ρ
]∣∣∣∣∣∣
(76)

≥ − E
θ∼N (0,γ2)

∑
∥j′∥1=1

(2− cos 2θ)h−1∥O∥2
1h∑

j=0h

2|(∥j∥1+1)

(sin 2θ)
∥j∥1+1

∣∣∣∣∣∣
2h∑

i=j+1h

[
(h− ∥j∥1)− (∥i∥1 − ∥j∥1 − h) (cos 2θ)

∥i∥1−∥j∥1−h − (h− ∥j∥1)
]

Tr
[
Oj

i ρ
]∣∣∣∣∣∣

(77)

≥ − h∥O∥22 E
θ∼N (0,γ2)

(2− cos 2θ)h−1

·
1h∑

j=0h

2|(∥j∥1+1)

(sin 2θ)
∥j∥1+1

(h− ∥j∥1)(3− cos 2θ)(2− cos 2θ)h−∥j∥1−1. (78)

Here, Eq. (75) is obtained by noticing that the expectation of sina 2θ cosb 2θ equals to zero, if a is143

odd. InEq. (76) is derived by using |
∑

k ak| ≤
∑

k |ak|. InEq. (77) is obtained by using the h′ = h,144

∥j∥1 = 1 case of Eq. (32) and Eq. (15). InEq. (78) follows from Eq. (15) and the h′ = h case of145

Eq. (79), i.e.146 ∣∣∣∣∣∣
2h′∑

i′=j′+1h′

[
(h′ − ∥j′∥1)− (∥i′∥1 − ∥j′∥1 − h′)(cos 2θ)∥i

′∥1−∥j′∥1−h′
]

Tr
[
Oj′,j

i′,i ρ
]∣∣∣∣∣∣

≤ g(h′ − ∥j′∥1) ∥O∥2 (79)

for all h′ ∈ {0, 1, · · · , h}, i ∈ {0, 1, 2}h−h′
, and j ∈ {0, 1}h−h′

, where147

g(x) = x
[
(3− cos 2θ)(2− cos 2θ)x−1 − 1

]
. (80)

InEq. (79) can be proved inductively. First, InEq. (79) holds trivially when h′ = 0. Next, we assume148

that InEq. (79) holds for the h′ = k case. Then, for all i ∈ {0, 1, 2}h−k−1 and j ∈ {0, 1}h−k−1, we149

13



have150 ∣∣∣∣∣∣
2k+1∑

i′=j′+1k+1

[
(k + 1− ∥j′∥1)− (∥i′∥1 − ∥j′∥1 − k − 1)(cos 2θ)∥i

′∥1−∥j′∥1−k−1
]

Tr
[
Oj′,j

i′,i ρ
]∣∣∣∣∣∣

=

∣∣∣∣∣
2∑

i′k+1=j′k+1+1

2k∑
i′=j′+1k

[
(k + 1− ∥j′∥1 − j′k+1)

− (∥i′∥1 + i′k+1 − ∥j′∥1 − j′k+1 − k − 1)(cos 2θ)∥i
′∥1+i′k+1−∥j′∥1−j′k+1−k−1

]
Tr
[
O

j′,j′k+1,j

i′,i′k+1,i
ρ
] ∣∣∣∣∣.

(81)

For the case j′k+1 = 1, we have151

Eq. (81) =

∣∣∣∣∣
2k∑

i′=j′+1k

[
(k − ∥j′∥1)− (∥i′∥1 − ∥j′∥1 − k)(cos 2θ)∥i

′∥1−∥j′∥1−k
]
Tr
[
Oj′,1,j

i′,2,i ρ
] ∣∣∣∣∣

≤ g(k − ∥j′∥1) ∥O∥2 (82)

= g(k + 1− ∥j′∥1 − j′k+1) ∥O∥2 . (83)

Here, Eq. (82) follows from the h′ = k case of InEq. (79). Eq. (83) is obtained by using j′k+1 = 1.152

We remark that InEq. (83) matches the h′ = k + 1 case of InEq. (79).153

For the case j′k+1 = 0, the situation is more complicated. We have154

Eq. (81)

=

∣∣∣∣∣
2k∑

i′=j′+1k

[
(k + 1− ∥j′∥1)− (∥i′∥1 − ∥j′∥1 − k)(cos 2θ)∥i

′∥1−∥j′∥1−k
]

Tr
[
Oj′,0,j

i′,1,i ρ
]

+

2k∑
i′=j′+1k

[
(k + 1− ∥j′∥1)− (∥i′∥1 − ∥j′∥1 − k + 1)(cos 2θ)∥i

′∥1−∥j′∥1−k+1
]

Tr
[
Oj′,0,j

i′,2,i ρ
] ∣∣∣∣∣

≤

∣∣∣∣∣
2k∑

i′=j′+1k

Tr
[
Oj′,0,j

i′,1,i ρ
]

+

2k∑
i′=j′+1k

[
(k − ∥j′∥1)− (∥i′∥1 − ∥j′∥1 − k)(cos 2θ)∥i

′∥1−∥j′∥1−k
]

Tr
[
Oj′,0,j

i′,0,i ρ
]

+ (1− cos 2θ)(k + 1− ∥j′∥1)
2k∑

i′=j′+1k

Tr
[
Oj′,0,j

i′,2,i ρ
]

+ cos 2θ

2k∑
i′=j′+1k

[
1− (cos 2θ)∥i

′∥1−∥j′∥1−k
]

Tr
[
Oj′,0,j

i′,2,i ρ
]

− (1− cos 2θ)

2k∑
i′=j′+1k

[
(k − ∥j′∥)− (∥i′∥1 − ∥j′∥1 − k)(cos 2θ)∥i

′∥1−∥j′∥1−k
]

Tr
[
Oj′,0,j

i′,2,i ρ
] ∣∣∣∣∣

≤
∥∥∥O0k,0,j

0k,1,i

∥∥∥
2
+ g(k − ∥j′∥1) ∥O∥2 + (1− cos 2θ)(k + 1− ∥j′∥1)

∥∥∥O0k,0,j
0k,2,i

∥∥∥
2

+ | cos 2θ|
[
(2− cos 2θ)k−∥j′∥1 − 1

] ∥∥∥O0k,0,j
0k,2,i

∥∥∥
2
+ (1− cos 2θ)g(k − ∥j′∥1) ∥O∥2 (84)

≤
[
(2− cos 2θ)(k − ∥j′∥1)

[
(3− cos 2θ)(2− cos 2θ)k−∥j′∥1−1 − 1

]
+ (2− cos 2θ)k−∥j′∥1 + (1− cos 2θ)(k + 1− ∥j′∥1)

]
∥O∥2 (85)
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≤ g(k + 1− ∥j′∥ − j′k+1) ∥O∥2 . (86)
Here, InEq. (84) is obtained by using the h′ = k case of Eq. (79). InEq. (85) is obtained by using155

Eqs. (14) and (80). InEq. (86) follows from Eq. (80) and the condition j′k+1 = 0. Since Eqs. (83) and156

(86) match the formulation of the h′ = k + 1 case of Eq. (79), we have proved Eq. (79) for general157

cases.158

We proceed from Eq. (78), which can be lower bounded by159

≥ − h(h− 1)∥O∥22 E
θ∼N (0,γ2)

1h∑
j=0h

2|(∥j∥1+1)

(2θ)
∥j∥1+1

2(1 + 2θ2)2h−1−∥j∥1 (87)

≥ − 2h(h− 1)∥O∥22 E
θ∼N (0,γ2)

⌊h+1
2 ⌋∑

t=1

(
h

2t− 1

)
(2θ)2t

2h−2t∑
m=0

(
2h− 2t

m

)
(2θ2)m (88)

= − 2h(h− 1)∥O∥22
⌊h+1

2 ⌋∑
t=1

(
h

2t− 1

) 2h−2t∑
m=0

(
2h− 2t

m

)
22t+m(2t+ 2m− 1)!!γ2t+2m (89)

≥ − 59

6
h2(h− 1)γ2∥O∥22. (90)

Here, InEq. (87) is obtained by using 1 ≥ cos 2θ ≥ 1 − 2θ2. InEq. (88) is obtained since the160

summation
∑1h

j=0h
contains

(
h

2t−1

)
terms such that ∥j∥1 = 2t − 1, for all t ∈ {1, · · · , ⌊h+1

2 ⌋}.161

Eq. (89) is derived by calculating expectation terms. InEq. (90) is obtained by bounding the summation162

terms, i.e.163

⌊h+1
2 ⌋∑

t=1

(
h

2t− 1

) 2h−2t∑
m=0

(
2h− 2t

m

)
22t+m(2t+ 2m− 1)!!γ2t+2m

≤
⌊h+1

2 ⌋∑
t=1

h(h− 1)2t−2

2t−1(t− 1)!(2t− 1)!!

2h−2t∑
m=0

(2h− 2t)m

m!
22t+m

· (2t− 1)!!(2t+ 1)(2t+ 3) · · · (2t+ 2m− 1)γ2t+2m (91)

≤
⌊h+1

2 ⌋∑
t=1

h(h− 1)2t−22t+1γ2t
2h−2t∑
m=0

(2h− 2)m2m(2h)mγ2m (92)

≤ 4hγ2

⌊h+1
2 ⌋∑

t=1

[
h(h− 1)2γ2

]t−1
2h−2t∑
m=0

(2h3γ2)m (93)

≤ 4hγ2 16

15
× 8

7
≤ 59

12
hγ2. (94)

Here, InEq (91) follows from t ≥ 1 and (2t− 1)! = 2tt!(2t− 1)!!. InEq. (92) is obtained by using
t ≥ 1 and

(2t+ 2k − 1)(2t+ 2m− 2k + 1) ≤ (m+ 2t)2 ≤ (2h)2, ∀k ∈ {1, · · · ,m}.
InEq. (93) is derived by using 8h(h−1) ≤ 2h3 for the integer h. InEq. (94) is obtained by calculating164

geometric sequences with the condition γ2 ≤ 1
16h3 .165

Finally, we prove Eq. (65). The left side of Eq. (65) could be lower bounded by166

= E
θ∼N (0,γ2)

 ∑
∥j′∥1=1

2h∑
i′=j′+1h

(cos 2θ)
∥i′∥1−h−1 Tr

[
Oj′

i′ ρ
]

·

 1h∑
j=0h

∥j∥1≥2,2|(∥j∥1−1)

2h∑
i=j+1h

∥j∥1 (cos 2θ)∥i∥1−∥j∥1−h+2
(sin 2θ)

∥j∥1−1 Tr
[
Oj

i ρ
]
(95)
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≥ − E
θ∼N (0,γ2)

∑
∥j′∥1=1

(2− cos 2θ)h−1∥O∥2
1h∑

j=0h

∥j∥1≥2,2|(∥j∥1−1)

∥j∥1 (sin 2θ)∥j∥1−1
(cos 2θ)

2


∣∣∣∣∣∣

2h∑
i=j+1h

[
1− (cos 2θ)

∥i∥1−∥j∥1−h
]

Tr
[
Oj

i ρ
]∣∣∣∣∣∣+

∣∣∣∣∣∣
2h∑

i=j+1h

Tr
[
Oj

i ρ
]∣∣∣∣∣∣
 (96)

≥ − E
θ∼N (0,γ2)

h(2− cos 2θ)h−1∥O∥2

·
1h∑

j=0h

∥j∥1≥2,2|(∥j∥1−1)

∥j∥1 (sin 2θ)∥j∥1−1
(cos 2θ)

2
(2− cos 2θ)

h−∥j∥1 ∥O∥2 (97)

≥ − E
θ∼N (0,γ2)

h∥O∥22
1h∑

j=0h

∥j∥1≥2,2|(∥j∥1−1)

∥j∥1 (2θ)∥j∥1−1 (
1 + 2θ2

)2h−1−∥j∥1 (98)

≥ − E
θ∼N (0,γ2)

h∥O∥22
⌊h−1

2 ⌋∑
t=1

(
h

2t+ 1

)
(2t+ 1)(2θ)2t

(
1 + 2θ2

)2h−2−2t
. (99)

Eq. (95) is obtained by noticing that the expectation of sina 2θ cosb 2θ equals to zero, if a is odd.167

InEq. (96) follows from the derivation (75-77). InEq. (97) is obtained by using the h′ = h, ∥j∥1 = 1168

case of Eq. (32). InEq. (98) follows from 1 ≥ cos 2θ ≥ 1− 2θ2 and (sin 2θ)2 ≤ (2θ)2. InEq. (99)169

is obtained since the summation
∑1h

j=0h
contains

(
h

2t+1

)
terms such that ∥j∥1 = 2t + 1, for all170

t ∈ {1, · · · , ⌊h−1
2 ⌋}. We further bound InEq. (99) by171

= − E
θ∼N (0,γ2)

h∥O∥22
⌊h−1

2 ⌋∑
t=1

(
h

2t+ 1

)
(2t+ 1)(2θ)2t

2h−2−2t∑
m=0

(
2h− 2− 2t

m

)
(2θ2)m

≥ − h∥O∥22
⌊h−1

2 ⌋∑
t=1

(
h

2t+ 1

)
(2t+ 1)

2h−2−2t∑
m=0

(
2h− 2− 2t

m

)
22t+m(2t+ 2m− 1)!!γ2t+2m

(100)

≥ − h∥O∥22
⌊h−1

2 ⌋∑
t=1

h(h− 1)(h− 2)(h− 3)2t−2

(2t)!
22tγ2t

·
2h−2−2t∑

m=0

(2h− 2− 2t)m2m(2t+ 2m− 1)!!γ2m (101)

= − h2(h− 1)(h− 2)∥O∥22
⌊h−1

2 ⌋∑
t=1

(h− 3)2t−2

2tt!(2t− 1)!!
22tγ2t

·
2h−2−2t∑

m=0

(2h− 2− 2t)m2m(2t+ 2m− 1)!!γ2m (102)

= − 5

2
h2(h− 1)(h− 2)γ2∥O∥22. (103)

Here, InEq. (100) is obtained by calculating expectation terms. InEq. (101) is derived by using t ≥ 1.172

Eq. (102) follows from (2t)! = 2tt!(2t − 1)!!. Eq. (103) is obtained by bounding the summation173

terms, i.e.174

⌊h−1
2 ⌋∑

t=1

(h− 3)2t−2

2tt!(2t− 1)!!
22tγ2t

2h−2−2t∑
m=0

(2h− 2− 2t)m2m(2t+ 2m− 1)!!γ2m

16



≤
⌊h−1

2 ⌋∑
t=1

(h− 3)2t−2

2t−1
2tγ2t

2h−2−2t∑
m=0

(2h− 4)m2m(2h− 2)mγ2m (104)

≤ 2γ2

⌊h−1
2 ⌋∑

t=1

[
(h− 3)2γ2

]t−1
2h−2−2t∑

m=0

(
h3γ2

)m
(105)

≤ 2γ2

(
16

15

)2

≤ 5

2
γ2. (106)

Here, InEq. (104) is obtained by using t! ≥ 2t−1,∀t ≥ 1 and

(2t+ 2k − 1)(2t+ 2m− 2k + 1) ≤ (m+ 2t)2 ≤ (2h− 2)2, ∀k ∈ {1, · · · ,m}.

InEq. (105) follows from h3 ≥ 8(h− 1)(h− 2) for integer h. InEq. (106) is obtained by calculating175

geometric sequences with the condition γ2 ≤ 1
16h3 . Thus, we have proved Eq. (65).176

177

C Proof of Theorem 4.1178

Proof. Denote by IS := {m|im ̸= 0,m ∈ [N ]} the set of qubits where the observable acts non-179

trivially. First, we notice that the norm of the whole gradient is lower bounded by that of particle180

derivatives summed over a part of parameters, i.e.181

E
θ
∥∇θf∥2 ≥

L∑
q=1

∑
n∈IS

E
θ

(
∂f

∂θq,n

)2

. (107)

Thus, we could obtain the formulation in the theorem if182

E
θ

(
∂f

∂θq,n

)2

≥ 1

SS+1(L+ 2)S+1
Tr [σjρin]

2
, (108)

holds for any q ∈ {1, · · · , L} and n ∈ IS .183

Now we begin to prove Eq. (108). Our main idea is to integrate the square of the partial derivative of184

f with respect to θ = (θ1, · · · ,θL+2) by using Lemma B.1 and Lemma B.2.185

We introduce several notations for convenience. Denote the variance γ2 = 1
4S(L+2) . Denote the ℓ-th186

single qubit rotations and CZ layer as Rℓ(θℓ) and CZℓ, respectively, where187

Rℓ(θℓ) = e−iθℓ,1Gℓ,1 ⊗ e−iθℓ,2Gℓ,2 ⊗ · · · ⊗ e−iθℓ,NGℓ,N , (109)

and Gℓ,j is the Hamiltonian corresponding to the parameter θℓ,j . Denote by ρk the state after the k-th188

layer, ∀k ∈ {0, 1, · · · , 2L+ 2},189

ρk :=



 1∏
i= k

2

CZiRi(θi)

 ρin

 k
2∏

i=1

Ri(θi)
†CZ†

i

 (k = 2ℓ ≤ 2L),

R k+1
2
(θ k+1

2
)ρk−1R k+1

2
(θ k+1

2
)† (k = 2ℓ+ 1 ≤ 2L+ 1),

RL+2(θL+2)ρk−1RL+2(θL+2)
† (k = 2L+ 2).

(110)

Thus, ρk is parameterized by {θ1, · · · ,θp}, where p = ℓ if k = 2ℓ ≤ 2L, p = ℓ+1 if k = 2ℓ+1 ≤190

2L+ 1, and p = L+ 2 if k = 2L+ 2.191

Next, rewrite the formulation of Eq. (108) in detail:192

E
θ1

· · · E
θL+2

(
∂

∂θq,n
Tr
[
σiV (θ)ρinV (θ)†

])2

= E
θ1

· · · E
θL+2

(
∂

∂θq,n
Tr [σiρ2L+2]

)2

(111)

17



≥
[
4γ2(1− 4γ2)

]S1
(
1− 4γ2

)S3 E
θ1

· · · E
θL+1

(
∂

∂θq,n
Tr
[
σ3|i;1ρ2L+1

])2

(112)

≥
[
4γ2(1− 4γ2)

]S1+S2
(
1− 4γ2

)S1+2S3 E
θ1

· · · E
θL

(
∂

∂θq,n
Tr
[
σ3|iρ2L

])2

(113)

≥
[
4γ2(1− 4γ2)

]S (
1− 4γ2

)S
E
θ1

· · · E
θL

(
∂

∂θq,n
Tr
[
σ3|iρ2L

])2

, (114)

where 3|i denotes the index by replacing non-zero elements of i = (i1, · · · , iN ) with 3 and 3|i; 1193

denotes the index by replacing non-zero elements of i = (i1, · · · , iN ) with 3 if the original value194

is 1. We refer to S1, S2, and S3 as the number of 1, 2, and 3 in the index i, respectively. Eq. (111)195

is obtained by using the notation ρ2L+2 defined in (110). We obtain Eqs. (112) and (113) by using196

Lemma B.1 for the RY and RX gate case, respectively. InEq. (114) follows from S = S1 + S2 + S3.197

Then, we proceed from Eq. (114) and take the expectation for parameters in (θL, · · · ,θq+1).198

Eq. (114) =
[
2γ(1− 4γ2)

]2S
E
θ1

· · · E
θL

(
∂

∂θq,n
Tr
[
σ3|iCZLRL(θL)ρ2L−2RL(θL)

†CZ†
L

])2

(115)

=
[
2γ(1− 4γ2)

]2S
E
θ1

· · · E
θL

(
∂

∂θq,n
Tr
[
σ3|iRL(θL)ρ2L−2RL(θL)

†])2

(116)

≥
[
2γ(1− 4γ2)

]2S (
1− 4γ2

)S
E
θ1

· · · E
θL−1

(
∂

∂θq,n
Tr
[
σ3|iρ2L−2

])2

(117)

≥
[
2γ(1− 4γ2)

]2S (
1− 4γ2

)(L−q)S
E
θ1

· · · E
θq

(
∂

∂θq,n
Tr
[
σ3|iρ2q

])2

. (118)

Eq. (115) follows from the definition of ρ2L (110). Eq. (116) is obtained since

CZ(σj ⊗ σk)CZ
† = σj ⊗ σk,∀j, k ∈ {0, 3}.

InEq. (117) is derived by using the Lemma B.1. We repeat the derivation in Eqs. (115-117) inductively199

for parameters (θL, · · · ,θq+1), which yields InEq. (118).200

Next, we consider the expectation with respect to θq . We have201

Eq. (118) =
[
2γ(1− 4γ2)

]2S (
1− 4γ2

)(L−q)S
E
θ1

· · · E
θq

(
∂

∂θq,n
Tr
[
σ3|iρ2q−1

])2

≥
[
2γ(1− 4γ2)

]2S (
1− 4γ2

)(L−q)S (
1− 4γ2

)S−1 [
4γ2(1− 4γ2)

]
4 E
θ1

· · · E
θq−1

Tr
[
σ3|iρ2q−2

]2
,

(119)

where expectations with respect to parameters {θq,j}j∈IS ,j ̸=n are calculated via Lemma B.1 and the202

expectation with respect to θq,n is calculated via Lemma B.2.203

Finally we proceed from Eq. (119) and take the expectation for parameters in (θq−1, · · · ,θ1). We204

have205

E
θ1

· · · E
θq−1

Tr
[
σ3|iρ2q−2

]2
= E

θ1

· · · E
θq−1

Tr
[
σ3|iCZq−1Rq−1(θq−1)ρ2q−4Rq−1(θq−1)

†CZ†
q−1

]2
(120)

= E
θ1

· · · E
θq−1

Tr
[
σ3|iRq−1(θq−1)ρ2q−4Rq−1(θq−1)

†]2 (121)

≥
(
1− 4γ2

)S
E
θ1

· · · E
θq−2

Tr
[
σ3|iρ2q−4

]2
(122)

≥
(
1− 4γ2

)(q−1)S
Tr
[
σ3|iρ0

]2
. (123)

Eq. (120) is derived by using the definition of ρ2q−2. Eq. (121) is obtained since

CZ(σj ⊗ σk)CZ
† = σj ⊗ σk,∀j, k ∈ {0, 3}.

18



InEq. (122) is derived by using Lemma B.1. We repeat the derivation in Eqs. (120-122) inductively206

for parameters (θq−1, · · · ,θ1), which yields InEq. (123). Employing Eq. (123) to Eq. (119) yields207

Eq. (118) ≥ 4
(
4γ2
)S+1 (

1− 4γ2
)S(L+2)

Tr
[
σ3|iρ0

]2
(124)

= 4

(
1

S(L+ 2)

)S+1(
1− 1

S(L+ 2)

)S(L+2)

Tr
[
σ3|iρ0

]2
(125)

≥ 4

(
1

S(L+ 2)

)S+1(
1− 1

2

)2

Tr
[
σ3|iρ0

]2
(126)

=
1

SS+1(L+ 2)S+1
Tr
[
σ3|iρ0

]2
. (127)

Eq. (125) is derived by using the condition γ2 = 1
4S(L+2) . Eq. (126) is obtained by noticing that208

function g(x) = (1− 1
x )

x is monotonically increasing when x ≥ 2. Thus, we have proved Eq. (108).209

210

D Proof of Theorem 4.2211

Proof. To begin with, we define several notations for convenience. Denote by ρj the state after the212

j-th parameterized operator, i.e.213

ρj(θ1, · · · , θj) =

 1∏
i=j

Vi(θi)

 ρin

(
j∏

i=1

Vi(θi)
†

)
. (128)

Denote by Oj the observable, i.e.214

Oj = Vj(0)
† · · ·VL(0)

†OVL(0) · · ·Vj(0), ∀j ∈ {1, · · · , L}. (129)

Now we begin to prove the Theorem. First, we remark that ∀j ∈ [L], the aj ̸= 1 case can be215

converted to the aj = 1 case by using the transformation216

θ′j =
θj
aj

,

where the variance of the new and the old parameter satisfies217

Var[θ′j ] =
1

a2j
Var[θj ].

In the following proof, we assume that aj = 1, ∀j ∈ [L]. By using the parameter-shift rule, ∂f
∂θℓ

218

could be written as the linear sum of 2h expectations on the observable O with coefficients ±1. Then219

for the case ℓ ≤ L− 1, we have220

E
θ

(
∂f

∂θℓ

)2

= E
θ1
· · · E

θL

(
∂

∂θℓ
Tr
[
OVL(θL)ρL−1VL(θL)

†])2

(130)

≥ E
θ1
· · · E

θL−1

(
∂

∂θℓ
Tr
[
OVL(0)ρL−1VL(0)

†])2

− [12hL(hL − 1) + 4] 4h2
Lγ

2
L∥O∥22 (131)

= E
θ1
· · · E

θL−1

(
∂

∂θℓ
Tr [OLρL−1]

)2

− [12hL(hL − 1) + 4] 4h2
Lγ

2
L∥O∥22 (132)

= E
θ1
· · · E

θL−1

(
∂f

∂θℓ
(θ1, · · · , θL−1, 0)

)2

− [12hL(hL − 1) + 4] 4h2
Lγ

2
L∥O∥22, (133)

where Eq. (130) follows from the definition of ρj in Eq. (128). InEq. (131) is obtained by using221

Lemma B.3, where ∥c∥1 = 2h. Eq. (132) follows from the definition of Oj in Eq. (129). Eq. (133)222

19



follows from the formulation f(θ) = Tr[Oρ(θ)]. By proceeding the derivation (130-133) for L− ℓ223

times, we have224

E
θ

(
∂f

∂θℓ

)2

≥ E
θ1
· · ·E

θℓ

(
∂f

∂θℓ
(θ1, · · · , θℓ, 0, · · · , 0)

)2

−
L∑

j=ℓ+1

[12hj(hj − 1) + 4] 4h2
jγ

2
j ∥O∥22

= E
θ1
· · ·E

θℓ

(
∂

∂θℓ
Tr
[
Oℓ+1Vℓ(θℓ)ρℓ−1Vℓ(θℓ)

†])2

−
L∑

j=ℓ+1

[12hj(hj − 1) + 4] 4h2
jγ

2
j ∥O∥22 (134)

≥ E
θ1
· · · E

θℓ−1

(1− 4γ2
ℓ )

(
∂

∂θℓ
Tr
[
Oℓ+1Vℓ(θℓ)ρℓ−1Vℓ(θℓ)

†])2 ∣∣∣∣
θℓ=0

− 96h2
ℓ(hℓ − 1)γ2

ℓ ∥O∥22

− 20h2
ℓ(hℓ − 1)(hℓ − 2)γ2

ℓ ∥O∥22 −
L∑

j=ℓ+1

[12hj(hj − 1) + 4] 4h2
jγ

2
j ∥O∥22 (135)

≥ E
θ1
· · · E

θℓ−1

(
∂f

∂θℓ
(θ1, · · · , θℓ−1, 0, 0, · · · , 0)

)2

− 4γ2
ℓ (2hℓ)

2∥O∥22 − 96h2
ℓ(hℓ − 1)γ2

ℓ ∥O∥22

− 20h2
ℓ(hℓ − 1)(hℓ − 2)γ2

ℓ ∥O∥22 −
L∑

j=ℓ+1

[12hj(hj − 1) + 4] 4h2
jγ

2
j ∥O∥22, (136)

where Eq. (134) follows from definitions ρj (128) and Oj (129). InEq. (135) is derived by using225

Lemma B.4. InEq. (136) follows from the parameter-shift rule. We proceed from InEq. (136) by226

employing the derivation (130-133) for parameters (θℓ−1, · · · , θ1), which yields227

E
θ

(
∂f

∂θℓ

)2

≥
(
∂f

∂θℓ

)2 ∣∣∣∣
0

−
ℓ−1∑
j=1

16h2
j [3hj(hj − 1) + 1] γ2

j ∥O∥22 −
L∑

j=ℓ+1

16h2
j [3hj(hj − 1) + 1] γ2

j ∥O∥22

− 16h2
ℓγ

2
ℓ ∥O∥22 − 96h2

ℓ(hℓ − 1)γ2
ℓ ∥O∥22 − 20h2

ℓ(hℓ − 1)(hℓ − 2)γ2
ℓ ∥O∥22 (137)

≥
(
∂f

∂θℓ

)2 ∣∣∣∣
0

−
L∑

j=1

16h2
j [3hj(hj − 1) + 1] γ2

j ∥O∥22

≥ (1− ϵ)

(
∂f

∂θℓ

)2 ∣∣∣∣
0

. (138)

InEq. (137) is obtained by using Lemma B.3, where ∥c∥1 = 2h. InEq. (138) follows from the228

condition γ2
j ≤ a2

jϵ

16h2
j (3hj(hj−1)+1)L∥O∥2

2

(
∂f
∂θℓ

)2∣∣∣∣
θ=0

and aj = 1, ∀j ∈ [L]. Thus, we have proved229

the theorem.230
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