
A Computing Information Measures

Our goal is to compute the Entropy for a neuron, Ax, and MI between a pair of neurons, Ax and
Ay , for some (x, y) ∈ {1, . . . , N}, where the neurons are represented as their activations for a given
number of samples (S).

A.1 Entropy

Algorithm 2 Computing entropy

1: procedure ENTROPY(Ax)
2: H(Ax)← 0

3: Âx ← BIN(A(x, i)) ▷ Discretizing activations by binning
4: for i ∈ {1, . . . , Nbins} do
5: p(â(x,i))← {1{â(x,i) == â(x,j)}}Sj=1/S ▷ Computing probability
6: h(a(x,i))← p(â(x,i)) log(1/p(â(x,i))) ▷ As per Eq. 1
7: H(Ax)← H(Ax) + h(a(x,i))
8: end for
9: H(Ax)← H(Ax)/S ▷ As per Eq. 1

10: return H(Ax)
11: end procedure

In order to compute entropy, we first discretize the set of neuron activations by binning them in a
uniform range of values (Darbellay & Vajda, 1999). Specifically, we divide the range of activations for
a neurons into a constant number of bins (usually 100), each of the same size. Then, the probability for
each activation is determined by the number of activations that share the same discrete value. Plugging
these values in Equation 1, across all activations for a neurons gives us the entropy for that neuron.

A.2 Mutual Information

To compute the MI between these one-dimensional variables, we use the estimator proposed in
Kraskov et al. (2004), which provides a tight lower bound to the mutual information, especially in
low-dimensional cases (Belghazi et al., 2018).

Kraskov et al. (2004) consider the popular interpretation of mutual information I(X;Y ) between
two continuous random variables X and Y as “the amount of uncertainty left in Y when X is
known". In terms of Shannon entropy, this is equivalent to I(X;Y ) = H(Y ) − H(Y |X) ≡
H(X) +H(Y )−H(X,Y ). Following this formalization, we require to work with three variables-
Ax, Ay, and Az = (Ax, Ay). To compute the MI, the k-nearest neighbor distances are considered
for these variables. Particularly, for some given distance metric, we represent ϵi as the distance of
a given point a(z,i) = (a(x,i), a(y,i)) to its kth-neighbor. This distance is then considered in the x
and y spaces—e(x,i) and e(y,i) depict the number of points that lie at a distance lesser than ϵi with
respect to a(x,i) and a(y,i), respectively. Then, the mutual information is given as:

I(Ax;Ay) = ψ(k) + ψ(S)− 1

S

S∑
i=1

(ψ(e(x,i)) + ψ(e(y,i))) (3)

where, ψ(·) is the digamma function, or the logarithmic derivative of the gamma function Γ(·):
ψ(x) = Γ′(x)

Γ(x) = lnx− 1
2x .

We use the Chebyshev distance or the L∞ metric as our distance metric for all distance computations
in the X , Y , and Z spaces.

Popular recent estimators take a neural approach for estimating MI and consider an alternate interpre-
tation of MI as the dependence between two random variables, i.e., I(X;Y ) = DKL(P(X,Y )||PX ⊗
PY ) = DKL(P(Y |X)||PY ). Since p(y|x) is a-priori unknown for most real-world distributions,
Cheng et al. (2020) approximate it through a parametric variational distribution qθ(y|x). Belghazi
et al. (2018) instead consider representations that estimate the KL divergence. They parameterize the
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Algorithm 3 Computing mutual information

1: procedure MI(Ax, Ay)
2: I(Ax;Ay)← ψ(k) + ψ(S) ▷ As per Eq. 3
3: Az ← Ax

⊕
Ay

4: KNN ← KNN(Az) ▷ Initializing k-nearest neighbor distances
5: ex ← 0, ey ← 0
6: for i ∈ {1, . . . , S} do
7: ϵi ← KNN(a(z,i)).r(k) ▷ Distance to the kth neighbor
8: e(x,i) ← {1{||xj − xi|| < ϵi}}X−i

j=1

9: e(y,i) ← {1{||yj − yi|| < ϵi}}X−i
j=1

10: ex ← ex + ψ(e(x,i)), ey ← ey + ψ(e(y,i))
11: end for
12: I(Ax;Ay)← I(Ax;Ay)− 1

|X| (ex + ey) ▷ As per Eq. 3
13: return I(Ax;Ay)
14: end procedure

family of functions that defines the bound of these representations using a neural network. However,
these approaches require us to learn a distinct neural network for each pair of random variable across
which we wish to compute the MI. Considering the large number of pairwise operations, especially
when working at the level of individual neurons, these approaches are not feasible for our analysis.

B Extended Experimental Details

Table 3: Values for network and training hyper-parameters across different experimental settings.
Model # Layers # Parameters # Epochs LR Batch size Pretrained?
MLP (Colored MNIST) 3 0.232M 50 0.001 512 ×
MLP (Shuffled MNIST) 3 0.184M 200 0.001 512 ×
DistilBERT 6 66M 20 5e-5 64 !

RoBERTa-base 12 123M 10 5e-5 64 !
ResNet-18 18 11M 25 1e-5 64 ×

Details for network architectures and training regimes are given in Table 3. Further explanations
regarding datasets for the various experimental settings are elaborated below.

B.1 Colored MNIST

All images in the training and evaluation sets are colored green or red. α ∈
{0.00, 0.25, 0.50, 0.75, 1.00} corresponds to the fraction of training examples that follow the color-
to-label correlation: green→ label-0 (digits 0–4) and red→ label-1 (digits 5–9). The size of the set
is same as the original MNIST set, that is a training set of 50k examples and an evaluation set of 10k
examples. The hyper-parameters for model training were picked from (Arjovsky et al., 2019).

B.2 Sentiment Adjectives

The chosen set of adjectives for sub-sampling examples from IMDb and then induce the adjective-
based spurious correlations are: Positive: {good, great, wonderful, excellent, best}, and Negative:
{bad, terrible, awful, poor, negative}. To maintain the correlation for each individual adjective, the
set does not contains examples that contain adjectives from both of the sets. The size of this sampled
set came to be ∼6k, out of which 67% of the example already abide to the heuristic. That is, the
true label corresponding to these examples is same as the nature of adjective(s) they contain. Thus,
we vary the labels corresponding to the other 33% of the examples with increasing α. Particularly,
α takes a value in {0.00, 0.25, 0.50, 0.75, 1.00}, where 0.00 suggests that 33% of the data does not
follow the heuristic, while 1.00 suggests that all examples follow the heuristic. The learning rate
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(LR) and batch size was chosen after a hyper-parameter sweep with values {5e− 3, 3e− 4, 5e− 5},
{16, 32, 64} on the generalizing training set (α = β = 0.00).

B.3 Bias-in-Bios

We perform our analysis over trained models released by Orgad et al. (2022) for randomly picked
random seeds of 0, 5, 26, 42, and 63. Bias-in-Bios (De-Arteaga et al., 2019) contains around 400k
biographies, the networks are trained on 65% of this set, while a sub-sampled balancing from the rest
of examples are used for evaluation and analysis.

B.4 NICO++

We sub-sample 6 animal classes with the most number of examples across them (bear, dog, cat, bird,
horse, sheep) from the original dataset, spanning∼10k training and∼7.8k evaluation examples. Both
balanced and unbalanced set contain all individual contexts for the animals. For the unbalanced
set: one from ten common contexts is associated to each of the chosen animal classes (grass, water,
autumn, dim, outdoor, rock, respectively). On the other hand, the balanced set contains equal
number of images from all these contexts for each of the animal classes.

B.5 Shuffled MNIST

Labels are shuffled for the 10 digits of MNIST over the 50k training examples. β ∈
{0.00, 0.25, 0.50, 0.75, 1.00}. The evaluation and analysis is performed over 10k balanced testing
examples from the original set.

B.6 Shuffled IMDb

The networks are trained for the 25k training examples and shuffled for β ∈
{0.00, 0.25, 0.50, 0.75, 1.00}. Performance computations and analysis is performed on 5k examples
sampled from the evaluation set.

C Extended Experimental Results

C.1 Semi-synthetic Heuristic Memorization
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Figure 8: Variation of neuron entropy across all layers of DistilBERT on Sentiment Adjectives.

Figure 8 shows the variation of neuron entropy across increasing values of α (here, adjective-to-
sentiment correlation during training) for all layers of DistilBERT. As discussed in the main text
(§3.1), we primarily see a variation in entropy for later layers in the network. In the first layer, we
observe that entropy for all values of α remains similar and low, while as we go towards the later
layers, we start to see certain differences in entropy, with the network for alpha = 1.0 showing
especially lower entropy. Since all these networks have been fine-tuned from the same pre-trained
initialization and vary only in terms of how much spurious correlation is present in their training
sets, we attribute this pattern across layers to a possibility that such spurious correlation are largely
captured in the later layers during fine-tuning.
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Figure 9: Comparison of entropy for MLP networks with varying number of layers.

C.2 Effect of Model Capacity

Theoretically, we expect that capacity of a network would influence entropy and MI. To test this, we
train MLP networks with varying depths for the tasks of Colored MNIST and Shuffled MNIST, and
compare the neuron entropy for the obtained networks. From results shown in Figure 9 observe that
our hypothesis holds true for all capacities (ranging from single to four-layered networks). However,
different capacity networks show entropy values in different ranges and hence they are likely not
directly comparable with each other.

C.3 Bias-in-Bios variation across layers
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Figure 10: Distribution of MI across neuron pairs for different layers in RoBERTa-base fine-tuned on
Bias-in-Bios training sets. Colors represent the value of gender extractability with the MDL probe.
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Figure 10 shows how the density of neuron pairs across MI values changes across layers of RoBERTa-
base when trained on different training sets of Bias-in-Bios. By looking at these distributions of
MI in conjunction with the value of compression (obtained through the MDL probe), we observe a
very interesting phenomenon: The relation between MI and compression is maintained throughout the
network across its different layers. Networks trained on the different training sets have very similar
presence of gender information, as indicated by compression values (color of the Gaussian plots). This
is replicated in the MI distribution where all plots are clustered at very similar values. We see that the
distinction among the different sets stars to become more lucid with later layers (reflected in the colors)
and the same distinction is observed with MI, where more biased models (darker colors) show higher
MI. We reported the results for the last layer in the main text (§3.2) because compression values vary
the most at this layer, and is consequently reflected in MI. However, looking at the variation across
all layers here validates the usage of information measures as a tool for evaluation even strongly.

C.4 Relation to Complexity Measures

Table 4: Pearson correlation coefficient (PCC) between norm-based complexity measures and
information measures for the two memorization types.

PCC for Colored MNIST PCC for Shuffled MNISTComplexity
Measures Mean Entropy Mean MI Mean Entropy Mean MI
2-Norm 0.31 0.14 0.96 1

Frobenius-Norm 0.5 0.31 0.99 0.95
Path-Norm 0.58 0.3 0.98 0.94

Validation Acc. 0.96 0.85 0.87 0.7

Here, we validate that the activation diversity does not simply capture the complexity of a learned
model. Popular norm-based measures are often used as complexity measures (also used for model
selection; see appendix D.2). On computing the absolute pearson correlation between these com-
plexity measures and our proposed information measures in Table 4, we observe that the two are
weakly correlated for Colored MNIST and strongly correlated for Shuffled MNIST. This suggests
that the information measures might approximate to model complexity in the case of example-level
memorization, but captures more than just complexity as evident for heuristic memorization. Notably,
in both cases, our measures are strongly correlated to the validation accuracy.

C.5 Variance of Entropy and MI

As seen from results on our various experimental setups (Figures 1-7), typically a wide distribution
of values is observed for both entropy and MI, for all models trained on different α and β values.
Since entropy is computed for each neuron in the network and MI for all pairs of neurons, a large
number of values are obtained for each network, resulting to this wide distribution. Even though
these distributions have a wide range, an observable difference is seen that follows the expected trend
across both kinds of memorizations. This is further apparent through the model selection results
where even the mean over these two distributions yields encouraging rankings. However, such a
variance could make it challenging for practitioners to identify differences in cases when the amount
of memorization between two models is not high (for instance, a difference of α = 0.5).

D Extended Analysis for Model Selection

D.1 Model Rankings for Bias-in-Bios

Here, we compute the Kendall τ ranking correlations between all ranking metrics for the
Bias-in-Bios dataset (Table 5). We observe that extrinsic metrics (TPR, FPR, Separation, and Suf-
ficiency Gap) share higher correlations between each other than those with MI and Entropy, that are
only weakly positive. All these extrinsic metrics are computed by training and assessing the networks
on specifically curated sets that are labeled for gender information and are thus expected to be more
similar to each other. However, we see that compression (an intrinsic metric that still requires labeled
data) correlates in a similar manner to extrinsic as well as the information theoretic measures (not
requiring labeled data).
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Table 5: Kendall’s τ between model rankings from all pairs of intrinsic and extrinsic metrics. τ can
range from -1.0 (perfect disagreement) to 1.0 (perfect agreement).

Comp-
ression

TPR
Gap

FPR
Gap

Separation
Gap

Sufficiency
Gap

Entropy
(Mean)

MI
(Mean)

Compression 1.00 0.47 0.60 0.47 0.47 0.47 0.60
TPR Gap 0.47 1.00 0.87 0.73 0.73 0.20 0.07
FPR Gap 0.60 0.87 1.00 0.60 0.60 0.07 0.20

Separation Gap 0.47 0.73 0.60 1.00 1.00 0.20 0.33
Sufficiency Gap 0.47 0.73 0.60 1.00 1.00 0.20 0.33
Entropy (Mean) 0.47 0.20 0.07 0.20 0.20 1.00 0.60

MI (Mean) 0.60 0.07 0.20 0.33 0.33 0.60 1.00

D.2 Comparison with Baseline Generalization Measures

We perform model selection on several benchmark generalization measures. Norm-based measures
are popularly used in literature as a measure of generalization (Jiang et al., 2019), and we conduct
comparisons with three of them: 2-norm, Frobenuis-norm, and Path-norm. We do this for all
our setups across example-level and heuristic memorization (Path-norm is not computed on the
transformer models, since no established way exists to do so). On comparing the model selection
performance with our information measures, we observe that while these baselines (specifically
Frobenius-norm and Path-norm) do reasonably well in ranking models that perform example-level
memorization, they do poorly for heuristic memorization. This follows from the fact that these
metrics are conventionally based and tested on the more widely known notion of memorization, that
of individual examples. Where 2-norm gives τ = 1 on Shuffled-IMDb, it is totally uncorrelated
(τ = 0.00) for Sentiment Adjectives.

At the same time, our information measures hold positive τ values across all models and tasks, while
the baseline measures are inconsistent, varying from extremely low to high values across setups.
Frobenius-norm shows perfect negative and positive correlations with Shuffled IMDb and MNIST,
respectively, depicting that a high norm value could mean anything depending on the dataset and
model.

Table 6: Expanded results for model selection with added Kendall τ ranking correlations for norm-
based generalization measures (Jiang et al., 2019).

Sentiment
Adjectives

Colored
MNIST Bias-in-Bios Shuffled

IMDb
Shuffled
MNIST

Validation
Accuracy

Validation
Accuracy

Comp-
ression

TPR
Gap

Suff.
Gap

Validation
Accuracy

Validation
Accuracy

Mean Entropy 0.80 1.00 0.47 0.20 0.20 0.60 1.00
Mean MI 0.80 1.00 0.60 0.07 0.33 0.80 1.00
2-Norm 0.00 -0.20 0.33 0.60 0.87 1.00 0.80
Frobenius-Norm -0.40 0.80 -0.20 0.07 0.07 -1.00 1.00
Path-Norm 0.80 1.00

E Compute Resources and Details

For our experiments that work with MLP networks, we use a single NVIDIA GeForce RTX 2080
GPU (16 GB) to perform the training and inference. For other experiments with larger transformer
and convolutional networks—DistilBERT, RoBERTa, and ResNet-18—we use a single NVIDIA A40
GPU (48 GB) to perform fine-tuning/training and inference. We use pre-trained checkpoints from
prior work whenever possible and limit the amount of training we do ourselves. In all, we use ∼190
GPU hours for our experiments, a breakdown of which is given in Table 7.
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Table 7: GPU hours used per experiment.
# Types

(Dataset/Training
Configurations)

# Seeds/
Type Training Inference Total Time

(Hours)
Time/Run
(Hours)

Total
(Hours)

Time/Run
(Hours)

Total
(Hours)

MLP (Colored MNIST) 5 10 0.25 12.5 0.05 2.5 15
MLP (Shuffled MNIST) 5 10 1 50 0.05 2.5 52.5
DistilBERT
(Sentiment Adjectives) 5 5 1 25 0.20 5 30

DistilBERT
(Shuffled IMDb) 5 5 2.5 62.5 0.20 5 67.5

RoBERTa-base 5 5 - - 0.5 12.5 12.5
ResNet-18 2 5 1 10 0.25 2.5 12.5
Total GPU Time 190

F Potential Societal Impacts

Our work in aimed at comparing a given set of models by shedding light on their potential reliance
on two facets of memorization. While such evaluation is meant to be used to pick the best model, (for
instance, the least biased one) one could instead use it to choose the least generalizing model (the
most biased). This can be especially worrisome in sensitive scenarios like that of gender bias, where
one could easily switch the order of entropy and MI to obtain a network which attends to gender
information the most.

G Dataset Licenses

All datasets used in this work are freely publicly available.

Bias-in-Bios: MIT License

MNIST: GNU General Public License v3.0

IMDb: License statement can be found here.

NICO: License statement can be found here.
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