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Abstract

In single positive multi-label learning (SPML), only one of multiple positive labels
is observed for each instance. The previous work trains the model by simply treating
unobserved labels as negative ones, and designs the regularization to constrain the
number of expected positive labels. However, in many real-world scenarios, the
true number of positive labels is unavailable, making such methods less applicable.
In this paper, we propose to solve SPML problems by designing a Label-Aware
global Consistency (LAC) regularization, which leverages the manifold structure
information to enhance the recovery of potential positive labels. On one hand, we
first perform pseudo-labeling for each unobserved label based on its prediction
probability. The consistency regularization is then imposed on model outputs to
balance the fitting of identified labels and exploring of potential positive labels. On
the other hand, by enforcing label-wise embeddings to maintain global consistency,
LAC loss encourages the model to learn more distinctive representations, which is
beneficial for recovering the information of potential positive labels. Experiments
on multiple benchmark datasets validate that the proposed method can achieve
state-of-the-art performance for solving SPML tasks.

1 Introduction

Multi-label learning (MLL) is a practical and effective learning framework for tackling objects with
complex semantics, where each instance is assumed to be associated with multiple class labels. For
example, an image may be annotated with labels beach, sea and sky simultaneously. Multi-label
learning aims to train a classifier that can accurately predict all the relevant labels for unseen instances.
It has been successfully applied into many real-world applications, such as image annotation [2],
scene understanding [22], facial attribute recognition [13].

Given the output space is exponentially larger than that of single-label learning, it often requires a
large number of examples with precise annotations to train an effective MLL classifier. However, in
many real-world scenarios, it is difficult and costly to collect the precise annotations. To reduce the
labeling cost, an alternative solution is to ask the annotators to assign the most obvious label to each
instance, leading to only a single positive label available. Such problem has been formulated as a
learning framework called single positive multi-label learning (SPML) [4]. In this case, except for
the annotated positive label, each of other labels could be positive or negative but unknown, thus the
learning task becomes much more challenging due to the lack of supervision.

To solve SPML problems, the previous work [4] intuitively designs the "assume negative" (AN) loss,
which treats all unobserved labels as negative ones, and trains an MLL classifier with the conventional
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Figure 1: An illustration of the comparison between clustering regularization and our proposed
label-aware global consistency regularization.

binary cross entropy (BCE) loss. Unfortunately, AN loss often introduces many false negative labels,
leading to a noticeable decrease in performance of the model. To alleviate the negative impact of false
negative labels, authors further propose a regularization to constrain the number of expected positive
labels. However, since the true number of positive labels cannot be accessible in many real-world
scenarios, it often requires additional estimation or elaborate hyper-parameter tuning to determine its
true value.

Clustering assumption [35] is first proposed to solve semi-supervised learning (SSL) problems.
It aims to recover the true labels for unlabeled examples by utilizing the global consistency, i.e.,
encouraging points on the same structure (typically referred to as a clustering) to be assigned with
the same label. The idea of clustering assumption has been successfully extended to solve many
weakly-supervised learning problems [23, 28]. Unfortunately, applying clustering regularization to
solve SPML problems is not as straightforward as in SSL case, since it is difficult to measure the
underlying similarity between any two examples with multiple labels. For example, in SSL case (see
the left side in Figure 1), it is feasible to distinguish examples from different classes by measuring
their similarity based on image-level feature representations. While in multi-label case (see the right
side in Figure 1), it is hard to measure the similarity between any two images, which share the same
object (e.g., person), while still have individual objects (e.g., bike and horse).

In this paper, we design a Label-Aware global Consistency (LAC) regularization to leverage the
manifold structure information for solving SPML problems. On one hand, we first identify the
potential positive labels mislabeled by AN loss based on class probabilities predicted by the model.
The pseudo-labeling consistency regularization is then used for training model to boost its ability on
identifying the potential positive labels. On the other hand, as illustrated in the right side of Figure 1,
the LAC loss is designed to encourage the global consistency among label-wise embeddings, i.e.,
pulling together intra-class embeddings while pulling apart inter-class embeddings. By leveraging
the manifold structure information, the LAC loss enhances the distinctiveness of learned feature
representations, which is beneficial for identifying the potential positive labels. Extensive experimen-
tal results on multiple benchmark datasets demonstrate that our method can achieve state-of-the-art
performance.

2 Related Work

There are a plenty of studies in multi-label learning literature. Existing methods can be roughly
classified into three groups. Considering the traditional binary cross entropy (BCE) loss often suffers
from the positive-negative imbalance issue, the first kind of methods aims to design specific loss
functions to alleviate this issue. Among them, asymmetric loss (ASL) [11] is a representative method
that dynamically down-weights and hard-thresholds easy negative examples. The second kind of
methods is proposed to capture the label correlations, which are regarded as an essential element
for improving the practical performance of MLL. ML-GCN [2] and its variant [30] utilize the graph
convolution network (GCN) to capture the co-occurrence correlations among labels. Considering an
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image often contains multiple objects, the last kind of methods is designed to locate areas of interest
related to semantic labels by using attention technique.

Traditional multi-label learning assumes that each instance has been annotated with all of its relevant
labels. However, in many real-world scenarios, it is costly and difficult to precisely assign an image
with multiple labels. To solve this issue, the current efforts are mainly dedicated to reducing the
labeling cost by training an MLL model with only partial labels. For example, [9] fine-tune the
pre-trained model on ImageNet with partial annotations and perform pseudo-labeling to recover
the potential positive labels. In [16], authors propose a two-stage interactive learning framework
that performs similarity learning and CNN training interactively to improve performance of each
other. [20] propose an unified framework to exploit instance-level and prototype-level semantic
representation for recovering the potential positive labels.

SPML is the extreme case of multi-label learning with partial labels, where only one of multiple
potential positive labels can be observed. The earliest work intuitively treats all unobserved labels as
negative ones, and trains an MLL model by introducing the regularization terms that alleviate the
negative impact of false negative labels [4]. The spatial consistency [26] is designed to avoid the
bias toward negative prediction by maintaining the consistency of classification maps between the
network and exponential moving average (EMA) model. Unlike aforementioned methods, [36] treat
unobserved labels as unknown and propose to maximize the entropy of predicted probabilities for
unobserved labels. Furthermore, authors combine the asymmetric pseudo-labeling and self-paced
strategy to obtain more accurate pseudo labels.

Besides SPML, a variety of weakly-supervised multi-label learning frameworks have been widely
studied, including learning with multi-label noise [34], partial multi-label learning [32, 24], few-shot
multi-label learning [1], learning with pairwise relevance comparison [33], and semi-supervised
multi-label learning [29].

3 The Proposed Method

In the SPML problem, let x ∈ X be a feature vector and ŷ ∈ Y be its corresponding labels, where
X = Rd is the feature space and Y = {0, 1}q is the target space with q possible class labels. Here,
ŷj = 1 indicates the j-th label is the only observed positive label for instance x while ŷj = 0
indicates the j-th label cannot be observed. Since only a single positive label can be observed, we
have

∑q
j=1 ŷij = 1 for every instance xi. We further denote by y the true label vector for instance

x. Let p(y|x) be the predicted probability distribution over classes and p(yj |x) be the predicted
probability of the j-th class for input x. We use [q] to denote the integer set {1, ..., q}.
Label-wise Embedding Model To obtain the label-wise embedding with respect to every label,
existing methods can be roughly divided into two groups, i.e., global-average-pooling (GAP) based
methods [31, 12] and attention-based methods [18, 21, 6]. For simplicity, we adopt the attention-based
method to construct the label-wise embedding model . Assume that the label-wise embedding model
is composed of a label-wise embedding decoder f , which can generate a high-dimensional label-wise
feature representation fj(x) with respect to the j-th label of instance x, and a classification head h,
which can output the predicted probability of the j-th class p(yj |x) = h(fj(x)). We further denote
by g(·) a non-linear projection head, which transforms a high-dimensional embedding fj(x) to a
low-dimensional embedding zj = g(fj(x)).

In traditional multi-label classification, the most commonly used loss function is binary cross entropy
(BCE) loss, which decomposes the original task into multiple binary classification problems. Formally,
given a batch of examples {(xi,yi)}bi=1, the BCE loss can be defined as follows:

LBCE = −1

b

b∑
i=1

q∑
j=1

yij log(p(yj |xi)) + (1− yij) log(1− p(yj |xi)) (1)

The assume negative (AN) loss However, the conventional BCE loss cannot be directly applied
to solve SPML problems, where only a single positive label can be accessible for every instance.
Training the neural network with only one positive label often makes model collapse to a trivial
solution. To mitigate this issue, an intuitive method is to treat all unobserved labels as negative ones,
and then the neural network can be trained with the resulting AN loss [4] given a batch of SPML
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Figure 2: An illustration of the proposed learning framework.

examples {(xi, ŷi)}bi=1:

LAN = −1

b

b∑
i=1

q∑
j=1

ŷij log(p(yj |xi))) + (1− ŷij) log(1− p(yj |xi))) (2)

Unfortunately, AN loss often introduces a large number of false negative labels, which leads to a
noticeable decrease in generalization performance of the model. To alleviate the negative impact of
false negatives, we design the following two regularization losses: 1) the pseudo-labeling consistency
regularization LPLC to identify the potential positive labels mislabeled by AN loss, 2) the label-aware
global consistency loss LLAC to leverage the manifold structure information for learning a more
distinctive feature representation. The overall objective function can be defined as:

L = LAN + λPLCLPLC + λLACLLAC (3)

Figure 2 provides an illustration of the proposed learning framework. For a batch of SPML ex-
amples, we generate the pseudo labels based on their weakly-augmented versions. On one hand,
the consistency regularization is conducted between the pseudo labels and model outputs on the
strongly-augmented versions to prevent from over-fitting to false negative labels. On the other hand,
the label-aware global consistency is used to learn more distinctive feature representations such that
intra-class embeddings are pushed together while inter-class embeddings are pushed away. In the
following content, we will introduce these two regularization losses in detail.

3.1 Pseudo-Labeling Consistency Regularization

In this section, we propose the pseudo-labeling consistency regularization for recovering the ground-
truth labeling information of unobserved labels.

We define the loss LPLC between the pseudo labels and the model predictions. Specifically, for the j-th
label of xi, let pwij = p(yj |Augw(xi)) denote the pseudo labels, where Augw(·) is a stochastic weak
augmentation. To avoid the trivial solution, let psij = p(yj |Augs(xi)) denote the model prediction,
where Augs(·) is a stochastic strong augmentation. Then, the pseudo-labeling consistency loss can
be formulated as:

LPLC = −1

b

b∑
i=1

q∑
j=1

I(pwij ≥ δ|ŷij = 0) log(psij) + I(pwij ≤ δ̄|ŷij = 0) log(1− psij) (4)

where δ (or δ̄ = 1 − δ) is a threshold that controls how many positive (or negative) pseudo labels
would be used for model training. Here, I(·) is the indicator function that output 1 if the condition

4



satisfies while 0, otherwise, and the condition ŷij = 0 is used to ensure the loss LPLC is only imposed
on the unobserved labels. Generally, the loss LPLC imposes a consistency regularization on the model
such that encourages it to output the same probability with respect to an unobserved label for an
example even after it is strongly augmented. By using a strong augmentation, LPLC would alleviate
the over-fitting issue to false negative labels and improve the ability of identifying potential positive
labels.

3.2 Label-Aware Global Consistency Regularization

As discussed in the above section, LPLC can be regarded as a consistency regularization on the
high-level representation, i.e., the final output of network. With the increase of the depth of the
neural network, the impact on network parameters of enforcing the consistency on the high-level
representation may be gradually degraded [12], and thus weakens the effectiveness of the proposed
loss LPLC. To further alleviate the harmfulness caused by the false negative labels, motivated by
the clustering assumption [35], we design label-aware global consistency regularization LLAC to
maintain global consistency among label-wise embeddings. The main idea is to pull intra-class
label-wise embeddings to be close while pull inter-class label-wise embeddings to be separated. The
intuition is that by maintaining the global consistency among label-wise embeddings, LAC enhances
the distinctiveness of learned representations, which is beneficial for recovering the true labeling
information of potential positive labels.

To derive the LLAC loss, for a batch of examples, we first use the label-wise embedding decoder f
and projection head g to produce a set of embeddings Z = {zk|1 ≤ k ≤ B}, where B = b · q is
the total number of embeddings for b instances with q classes. For notational convenience, for the
embedding zk with respect to j-class of instance xi, we define the mapping i = i(k), j = j(k) to
bridge the embedding index k with its original instance index i and class index j.

In order to exploit as more as possible supervised information to learn distinctive representations, we
compute the LLAC loss not only on unobserved labels but also on observed ones. To obtain a unified
formulation, for the single positive label ŷij = 1, we treat its pseudo label as pwij = 1 although it
is actually the true label. For any two intra-class label-wise embeddings zk and zk′ , by denoting
i = i(k), j = j(k) and i′ = i(k′), j′ = j(k′), we can construct the intra-class connection matrix I
of size B ×B to connect them:

Ikk′ =

{
1 if j = j′ and pwij ≥ δ, pwi′j′ ≥ δ
0 otherwise

. (5)

From the equation Eq.(5), every embedding a pseudo label larger than the threshold δ would be
treated as the anchor embedding and be connected with embeddings from the same class that satisfy
the same condition. Since a low prediction probability indicates the corresponding label is likely to
be negative, its embedding is invalid and would never be used.

Similarly, we can construct the inter-class connection matrix Ī of the same size to connect any two
inter-class label-wise embeddings:

Īkk′ =

{
1 if j 6= j′ and pwij ≥ δ, pwi′j′ ≥ δ
0 otherwise

. (6)

From the equation Eq.(6), an anchor embedding is connected with embeddings from other classes
with pseudo labels larger than a threshold δ.

Next, we can train the label-wise embedding decoder f and the projection head g by enforcing the
global consistency among label-wise embeddings. It is expected to pull together an anchor label-wise
embedding and its intra-class label-wise embeddings while separate the anchor label-wise embedding
from its inter-class label-wise embeddings. To achieve this goal, given the connection matrices I and
Ī , we define label-aware global consistency loss as follows:

LLAC = − 1

B

B∑
k=1

B∑
k′=1

Ikk′ log
exp(zk · zk′/τ)∑B

t=1 Īkt exp(zk · zt/τ)
(7)

It is noteworthy that when k = k′, i.e., an anchor embedding and itself, in order to avoid a trivial
solution, we produce two different embeddings zk and z′k′ by imposing two different augmentations
to its original training image.
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Memory queue. Inspired of the previous work [14], we introduce a memory queue to store the past
K embeddings and their corresponding pseudo labels MQ = {(zk, pwk )|k ∈ [K]}, where pwk is the
pseudo label for embedding zk. It is noteworthy that the memory queue consists of embeddings
with respect to both unobserved and observed labels. Then, the connection matrices I and Ī are
extended to size of B × (B +K). This means we would impose the label-aware global consistency
regularization between an anchor embedding of the current embedding set and every embedding of
the memory queue.

Two-stage training strategy. In our experiments, we find that training model with Eq.(3) in an end-
to-end fashion often leads to an unfavorable performance that can be worse than that without LLAC.
The main reason is that at the early stage of training, the model suffers from the insufficient training
issue, which leads model to produce low-quality label-wise embeddings. Enforcing low-quality
label-wise embeddings to maintain global consistency may destroy the feature representation learning
and thus significantly degrades model performance. To solve this issue, we propose a two-stage
training strategy, which aims to let model learn a high-quality label-wise embeddings firstly and then
perform LAC regularization. Specifically, at the first stage, we train the model by minimizing AN loss
and PLC loss, i.e., LAN + LPLC, until it reaches the convergence. The model is expected to produce
sufficiently high-quality label-wise embeddings for the second stage training. At the second stage, we
fine-tune the model with Eq.3 consisting of all three losses to learn a more distinctive representation.

4 Experiments

In this section, we first perform experiments to compare our method with state-of-the-art methods;
then, we conduct ablation studies to examine the effectiveness of each component for the proposed
method.

4.1 Experimental Settings

Datasets. We perform experiments to evaluate our proposed method on four benchmark datasets:
Pascal VOC-2012 (VOC for short) 3 [10], MS-COCO-2014 (COCO for short) 4 [17], NUS-WIDE
(NUS for short) 5 [3], and CUB-200-2011 (CUB for short) 6 [27]. Table 1 reports the detailed
characteristics of four benchmark datasets. Specifically, VOC contains 5,717 training images and
5,823 validation images for 20 classes. We divide the training set into 4,574 training examples and
1,143 validation examples, and then use the original validation set for testing. COCO contains 82,081
training images and 40,137 validation images for 80 classes. We divide the training set into 65,665
training examples and 16,416 validation examples, and then use the original validation set for testing.
NUS is not complete online because of many invalid URLs. We sent a request email to the authors
and obtain the complete dataset, which consists of 126,034 training images and 84,226 testing images
for 81 classes. Following [4], we merge all images and randomly select 150,000 training samples and
60,260 testing examples. Finally, we withhold 30,000 images from training examples for validation.
CUB contains 5,994 training images and 5,794 testing images. Following [4], instead of using 200
bird categories as class labels, we assign a vector that indicates the presence or absence of 312 binary
attributes to every image. We divide the original training set into 4,795 training examples and 1,199
validation examples. In order to compare our method with state-of-the-art methods, we use the code
shared by [4] to generate the training, validation and testing sets. For each dataset, we withhold 20%
of the training examples for validation. To construct SPML data, we randomly select one positive
label for each training example, while keep the validation and testing sets always fully labeled. Follow
[4], We report the mean average precision (mAP) on the testing set by using predictions of the model
with the best validation performance.

Comparing methods. Besides the baseline AN loss, we compare the proposed method with the
following state-of-the-art algorithms: WAN [4], which introduces a weight parameter to down-
weight the losses with respect to negative labels; EPR [4], which utilizes an expected positive

3http://host.robots.ox.ac.uk/pascal/VOC/
4https://cocodataset.org
5https://lms.comp.nus.edu.sg/wp-content/uploads/2019/research/nuswide/NUS-WIDE.

html
6http://www.vision.caltech.edu/visipedia/CUB-200-2011.html
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Table 1: The detailed characteristics of benchmark datasets.

Dataset # Training # Validation # Testing # Classes

VOC 4,574 1,143 5,823 20
COCO 65,665 16,416 40,137 80
NUS 120,000 30,000 60,260 81
CUB 4,795 1,199 5,794 312

regularization to mitigate the negative impact of false negative labels; AN-LS, which incorporates the
label smoothing technique to AN loss; ROLE [4], which adopts regularized online label estimation
(ROLE) technique to alleviate the negative impact of false negative labels; EN+SCL [26], which
combines expected negative loss with the spatial consistency loss (SPL); EM+APL [36], which
incorporates asymmetric pseudo-labeling (APL) loss into entropy minimization.

Implementation. The label-wise embedding model consists of two components, including a back-
bone for extracting visual features, and a label-wise embedding decoder for producing label-wise
embeddings. Following [4], we use a ResNet-50 [15] pretrained on the ImageNet [7] as the backbone
to extract features. Then, the extracted features are fed into the label-wise embedding decoder to
produce label-wise embeddings. The label-wise embedding decoder consists of a standard self-
attention block and a cross-attention block [25]. After obtaining label-wise embeddings, we can feed
them into the classification head h consisting of a linear layer to obtain the final predictions. By
feeding label-wise embeddings into the projection head g consisting of two linear layers and a ReLU
layer, we can obtain the low-dimensional embeddings for performing label-aware global consistency
regularization. In particular, the training process consists of two stages, and only the second stage
training needs the low-dimensional embeddings produced by the projection head g. Therefore, we
freeze the parameters of projection head at the first stage. We resize the resolution of input images
to 448 × 448 as in [4]. For training images, we use both a weak augmentation (only containing
random horizontal flipping) and a strong augmentation (containing Cutout [8] and RandAugment
[5]). For training the model, we use the AdamW [19] optimizer with the weight decay of 0.01. The
OneCycleLR scheduler is used to change the learning rate with the max learning rate of 0.0001. We
train the model for 40 epochs with the early stopping. We consider the batch size in the range of
{8, 16, 32, 64}. At the first stage, we set λPCL = 1 and determine the threshold δ from the range of
{0.5, 0.6, 0.7, 0.8, 0.9}. At the second stage, there are two extra parameters, including the balancing
parameter λLAC, the size of memory queue K. We set λLAC = 1, and determine K from the range
of {512, 1024, 2048, 4096, 8192}, respectively. All hyperparameters are determined according to
their mAP obtained on the validation set. In Section 4.4, we conduct experiments to analyze the
sensitivity for unfixed parameters. Furthermore, we apply exponential moving average (EMA) to
model parameters θ with a decay of 0.9997. We perform all experiments on GeForce RTX 3090
GPUs. The random seed is set to 1 for all experiments

4.2 Comparison Results with the State-of-the-Arts

Table 2 reports comparison results between the proposed method and comparing methods in terms
of mAP on four benchmark datasets. To make a fair comparison, besides the results reported
in their original paper (marked by ResNet-50), we still report the results of comparing methods
trained with the label-wise embedding model (LEM) (marked by LEM). It is noteworthy that for
EN methods, including LEN+LCL and LEN+ LSCL, in their original paper, only the results on VOC
and COCO are reported. Furthermore, we cannot reproduce these two methods based on LEM due
to the inaccessibility of source codes. From the table, it can be observed that: 1) AN loss achieves
unfavorable performance in almost all cases. This validates that simply using AN cannot effectively
solve SPML problems, since it introduces a large number of false negative labels, which are harmful
for model training. 2) ROLE method cannot be easily adapted to the label-wise embedding model,
since its performance suffers from a significant drop by replacing the original ResNet-50 with LEM.
One possible reason is that we fail to perform "LinearInit." that has been used to initialize the weights
of the classifier based on given feature representations in its original implementation, since these
given feature representations cannot be used by LEM. 3) Our proposed method consistently achieves
desirable performance and achieves the best performance on almost all cases except for CUB, where
LEM+LAPL outperforms our method with minor improvement. In particular, our method achieves
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Table 2: Mean average precision (mAP) of each comparing method on four benchmark datasets. The
best performance is highlighted in bold.

Methods LEM ResNet-50

VOC COCO NUS CUB VOC COCO NUS CUB

LWAN 89.2 73.5 48.5 22.5 86.5 64.8 46.3 20.3
LEPR 88.8 72.7 49.3 23.1 85.5 63.3 46.0 20.0
LAN 87.6 72.3 48.5 18.6 85.1 64.1 42.0 19.1
LAN-LS 88.0 70.9 47.1 16.3 86.5 69.2 50.5 16.6
LROLE 88.1 69.6 44.5 14.2 88.2 69.0 51.0 16.8
LEN + LCL - - - - 87.6 71.6 - -
LEN + LSCL - - - - 88.0 72.1 - -
LEM 89.2 73.2 48.7 22.2 89.1 70.7 47.2 20.9

LEM + LAPL 89.2 73.1 48.6 23.6 89.2 70.9 47.6 21.8

Ours 89.6 75.6 51.1 23.3 - - - -

Table 3: The ablation studies on VOC and COCO.

Methods mAP (%)

Assume negative PLC LAC Two-stage Memory queue VOC COCO
√

87.6 72.3√ √
89.0 73.7√ √ √
84.5 65.6√ √ √ √
89.2 74.7

√ √ √ √ √
89.6 75.6

favorable performance on two large-scale datasets and improve upon the state-of-the-art performance
by 2.1% on COCO and 1.8% on NUS in terms of mAP. These results validate that the proposed
method can effectively solve SPML problems.

4.3 Ablation Studies

In this section, to further analyze how the proposed method improves performance of SPML, we
conduct a series of ablation studies on VOC and COCO and report the results on Table 3. We first
conduct the experiment to validate the effectiveness for the proposed pseudo-labeling consistency
regularization LPLC. The achieved performance is 89.0% on VOC and 73.7% on COCO by utilizing
LPLC that are better than 87.6% and 72.3% achieved by only utilizing AN loss LAN. This discloses
that by using LPLC, the model can recover the true positive labels that benefits for model training.
To validate the effectiveness of the proposed label-aware global consistency regularization LAC, as
discussed in Section 3.2, we train the model with two strategies, including end-to-end training, which
directly optimizes the joint loss Eq.(3) in a pipeline, and two-stage training, which first trains the
model with the first two losses until the model converges, and then trains the model with Eq.(3). It
is can be observed that by adopting the end-to-end training strategy, the performance is degraded
from 89.0% to 84.5% on VOC and 73.7% to 65.6% on COCO by adding LAC into training while
are improved to 89.2% and 74.7% by utilizing two-stage training. This is because by adopting the
end-to-end training strategy, at the early stage of model training, it is difficult for the model to produce
high-quality label-wise embeddings for performing LAC regularization. Enforcing low-quality label-
wise embeddings to maintain the global consistency may destroy the feature representation learning
and thus lead to a noticeable decrease in model performance. Compared to end-to-end training, the
two-stage training strategy primarily learn high-quality label embeddings at the first stage, and then
utilize the LAC regularization to encourage global consistency among label-wise embeddings, which
improves the discrimination ability of the model. Finally, we examine the usefulness of memory
queue. By using the memory queue, the performance is improved with 0.4% increment from 89.2%
on VOC and with 0.9% increment from 74.7%. The main reason is that the memory queue provides
the model with much more supervision for learning more distinctive representations, which are
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Figure 3: The performance curve as the threshold δ increases.
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Figure 4: The performance curve as the temperature τ increases.
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Figure 5: The performance curve as the size of memory queue K increases.

beneficial for the model to identify the potential positive labels. These results convincingly validate
that each component of the proposed method makes positive contribution to the final performance.

4.4 Parameter Sensitivity Analyses

In this section, we study the influence of three parameters, i.e., threshold δ, temperature τ and the
size of memory queue K. Figure 3, Figure 4 and Figure 5 illustrate the performance curves of the
proposed method as the threshold δ, the temperature τ and the size of memory queue K change
in the range of {0.5, 0.6, 0.7, 0.8, 0.9}, {0.1, 0.5, 1.0, 1.5, 2.0} and {512, 1024, 2048, 4096, 8192},
respectively. As shown in the figures, the performance of the proposed method is generally insensitive
to these three parameters. Specifically, the largest performance gap with respect to δ, τ and K are
respectively about 0.3% on COCO, 0.2% on NUS and 0.2% on COCO. The results indicate that we
can safely set these parameters in a large range in practice.

4.5 Case Studies

To disclose the mechanism behind the effectiveness of the proposed method for identifying the
potential positive labels, Figure 6 visualizes some cases of attention maps on COCO. For every
original image in the first (or fourth) column, we illustrate the attention maps of the single observed
positive labels and identified positive labels in the next three columns. From the figures, it is
interesting to observe that some small objects without annotations can be captured by the proposed
method precisely, such as potted plant in the first row, bowl and carrot in the second row as well as
clock and tie in the last row. These observations disclose that the proposed method can capture small
objects by maintaining the global consistency of embeddings between the object and its intra-class
objects. This further indicates LAC can significantly enhance the ability of model for identifying the
potential positive labels.
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Figure 6: Visualization of attention maps on COCO.

5 Conclusion

The paper studies the problem of multi-label learning with single positive labels. In order to solve
SPML problems, we design the PLC regularization that exploits the model outputs predicted on
weakly-augmented and strongly-augmented images, and LAC regularization that leverages the
manifold structure information to recover the true labeling information of the potential positive labels.
By utilizing these two regularizations, the model is expected to learn a more distinctive representation,
which is beneficial for identifying the potential positive labels. Extensive experimental results on
multiple benchmark datasets validate the proposed method can achieve state-of-the-art performance.
In the future, we plan to improve the performance of SPML by using other structure information,
such as label correlations.
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