
Appendices

A Proofs

A.1 Proof of Proposition 1

Proposition 1. Let B̃ 2 Rd⇥d
>0 be the weighted adjacency matrix of a graph G with d vertices. G is a

DAG if and only if B̃
d
= 0.

Proof. Any path in a d-node DAG cannot be longer than d� 1, and thus we must have (B̃
d
)ij = 0

for all i, j, which indicates for DAG we must have B̃
d
= 0. On the other side, a nilpotent adjacency

matrix must form a DAG [44, Lemma 1].

A.2 Proof of Proposition 2

Proposition 2. Let B̃ 2 Rd⇥d
>0 be the weighted adjacency matrix of a graph G with d vertices, let k

be the length of longest simple path in G, the following 3 conditions are equivalent: (1) G is a DAG,

(2) B̃
k+1

= 0, and (3) h
k
trunc

(B̃) = 0.

Proof. First notice that (B̃
k
)j` > 0 if and only if there is at least a directed walk with length k from

node j to node ` in G. We consider the following cases:

• (1) =) (2): Since G is a DAG, the diagonal entries of B̃
k+1

are zero. Therefore, it suffices
to consider its non-diagonal entries. For a DAG, any directed path in a DAG must be a
simple path without loop. If it is not, then we can find a directed path, where a node appears
twice, which means that there is a loop in the graph and it is in contradiction with the acyclic
property. Thus if G is a DAG, there will be no path with length larger than k, and so the
non-diagonal entries of B̃

k+1
are zero. Combining both cases, we have B̃

k+1
= 0.

• (1) =) (3): Since G is a DAG, the diagonal entries of B̃
i
, i = 1, . . . , d are zeros. Therefore,

we must have tr
⇣Pk

i=1 B̃
i
⌘
= 0.

• (2) =) (1): Since B̃
k+1

= 0, B̃ is nilpotent and G must be acyclic.

• (3) =) (1): It is clear that a directed graph is a DAG if and only if it does not contain simple
cycle. Since tr

⇣Pk
i=1 B̃

i
⌘
= 0, all path with length smaller than or equal to k must not be

a (simple) cycle. If there exists any path with length larger than k that forms a simple cycle,
then there exists a simple path that is longer than k, which contradicts our assumption that k
is the longest simple path. Combining both cases, G does not contain simple cycle and thus
must be acyclic.

Here we proved that (1) and (2) are equivalent; (1) and (3) are equivalent. Thus the three conditions
are equivalent under the assumption of the proposition.

A.3 Proof of Proposition 3

We first describe a property of the polynomials of matrices in Lemma 2, which will be used to prove
Proposition 3.
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Lemma 2. Given B̃ 2 Rd⇥d
>0 , assume that we have two series [↵0,↵1, . . . ,↵k] 2 Rk+1

>0 and

[�0,�1, . . . ,�k] 2 Rk+1
>0 . If we have ↵i > �i for i = 0, 1, . . . k, then the following inequalities hold:

�����

kX

i=0

↵iB̃
i

�����
F

>
�����

kX

i=0

�iB̃
i

�����
F

, (13a)

�����

kX

i=0

↵iB̃
i

�����
1

>
�����

kX

i=0

�iB̃
i

�����
1

. (13b)

Proof. By the assumption that B̃ 2 Rd⇥d
>0 , we have B̃

i
2 Rd⇥d

>0 for i = 0, 1, . . . , k. Then, using

the assumption that ↵i > �i for i = 0, 1, . . . k, straightly we can see that each entry of
Pk

i=0 ↵iB̃
i

should be no less than the corresponding entry of
Pk

i=0 �iB̃
i
. Thus (13) must hold.

With the lemma above, we now present the proof of Proposition 3.

Proposition 3. Given B̃ 2 Rd⇥d
>0 , if there exists k < d such that kB̃

k
k1 6 ✏ <

1
(k+1)d , then we

have

0 6 hgeo(B̃)� h
k
trunc

(B̃) 6 1� (d✏)d/k�1

1� (d✏)1/k
d
2+1/k

✏
1+1/k

,

0 6 krB̃hgeo(B̃)�rB̃h
k
trunc

(B̃)kF 6 (k + 1)d✏krB̃hgeo(B̃)kF .

Proof. Let [�1,�2, . . . ,�d] be the d eigen values of B̃. We have

max
i

|�
k
i | 6 kB̃

k
kF 6 dkB̃

k
k1 6 d✏, (14)

which indicates that

max
i

|�i| 6 (d✏)1/k. (15)

As all entries of B̃ are non-negative, for all j > 1 we have

tr(B̃
k+j

) = |tr(B̃
k+j

)| =

�����

dX

i=1

�
k+j
i

����� 6
dX

i=1

|�
k+j
i | 6 dmax

i
|�

k+j
i | = d(max

i
|�i|)

k+j 6 d
2+j/k

✏
1+j/k

,

which implies that

hgeo(B̃)� h
k
trunc(B̃) =

d�kX

j=1

tr(B̃
k+j

) 6
d�kX

j=1

d
2+j/k

✏
1+j/k =

1� (d✏)d/k�1

1� (d✏)1/k
d
2+1/k

✏
1+1/k

.
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This finishes the proof of the first part of the proposition. For the second part, we have

krB̃[hgeo(B̃)� h
k
trunc(B̃)]kF

=

������

d�kX

j=1

(k + j)Bk+j�1

������
F

6

������

d�kX

j=1

(kj + j)Bk+j�1

������
F| {z }

kj+j>k+j for j=1,2,...d�k, and then by Lemma 2

=(k + 1)

������
B̃

k
d�kX

j=1

jB̃
j�1

������
F

6 (k + 1)kB̃
k
kF

������

d�kX

j=1

jB̃
j�1

������
F| {z }

Submultiplicativity of Frobenius norm

=(k + 1)kB̃
k
kF

������

d�kX

j=1

jB̃
j�1

+
dX

j=d�k+1

0B̃
j�1

������
F

6 (k + 1)kB̃
k
kF

������

dX

j=1

jB̃
j�1

������
F| {z }

By Lemma 2

6 (k + 1)d✏

������

dX

j=1

jB̃
j�1

������
F| {z }

By Eq. (14)

=(k + 1)d✏krB̃hgeo(B̃)kF .

A.4 Proof of Proposition 4

Proposition 4. Given any d⇥d real matrix B̃, let fi(B̃) = B̃+B̃
2
+· · ·+B̃

i
and hi(B̃) = tr(fi(B̃)).

Then we have the following recurrence relations:

fi+j(B̃) =fi(B̃) + B̃
i
fj(B̃),

rB̃hi+j(B̃) =rB̃hi(B̃) + (B̃
i
)>rB̃hj(B̃) + ifj(B̃)>(B̃

i�1
)>.

Proof. Substituting i+ j for i in the definition of fi(B̃), we have

fi+j(B̃) = B̃+ B̃
2
+ · · ·+ B̃

i
+ B̃

i+1
+ B̃

i+2
+ · · ·+ B̃

i+j

= (B̃+ B̃
2
+ · · ·+ B̃

i
) + (B̃

i+1
+ B̃

i+1
+ B̃

i+2
+ · · ·+ B̃

i+j
)

= fi(B̃) + B̃
i
(B̃+ B̃

2
+ · · ·+ B̃

j
)

= fi(B̃) + B̃
i
fj(B̃).

Similarly, to establish the recurrence relation for rB̃hi+j(B̃), we have

rB̃hi+j(B̃) = rB̃tr(fi+j(B̃))

= rB̃tr(fi(B̃)) +rB̃tr(B̃
i
fj(B̃))

= rB̃hi(B̃) +rB̃tr(B̃
i
fj(B̃))

= rB̃hi(B̃) + (B̃
i
)>rB̃tr(fj(B̃)) + fj(B̃)>rB̃tr(B̃

i
)

= rB̃hi(B̃) + (B̃
i
)>rB̃hj(B̃) + ifj(B̃)>(B̃

i�1
)>

where the fourth equality follows from the product rule.
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A.5 Proof of Corollary 1

Corollary 1. Given any matrix d⇥ d real matrix B̃, let fi(B̃) = B̃+ B̃
2
+ · · ·+ B̃

i
and hi(B̃) =

tr(fi(B̃)). Then we have have the following recurrence relations:

f2i(B̃) =(I+ B̃
i
)fi(B̃),

rB̃h2i(B̃) =rB̃hi(B̃) + (B̃
i
)>rB̃hi(B̃) + i

⇣
f2i(B̃)� fi(B̃) + B̃

i
� B̃

2i
⌘>

.

Proof. The first equality is straightforwardly obtained by substituting i = j in the first equality
of Proposition 4. Similarly, for the second equality, substituting i = j in the second equality of
Proposition 4 yields

rB̃h2i(B̃) = rB̃hi(B̃) + (B̃
i
)>rB̃hi(B̃) + ifi(B̃)>(B̃

i�1
)>

= rB̃hi(B̃) + (B̃
i
)>rB̃hi(B̃) + i

⇣
B̃

i
+ B̃

i+1
+ · · ·+ B̃

2i�1
⌘>

= rB̃hi(B̃) + (B̃
i
)>rB̃hi(B̃) + i

⇣
f2i(B̃)� fi(B̃) + B̃

i
� B̃

2i
⌘>

.

A.6 Proof of Proposition 5

Proposition 5. Given B̃ 2 Rd⇥d
>0 , if there exists k such that kB̃

k
k1 6 ✏ < 1/d , then we have

�����(I� B̃)�1
�

kX

i=0

B̃
k

�����
F

6 d✏

���(I� B̃)�1
���
F
.

Proof. Under the assumption of the proposition, the spectral radius of B̃ is upper bounded by (d✏)1/k

with similar reasoning in (15), which is smaller than one; therefore, we can write (I � B̃)�1 =P
1

j=0 B̃
j . Thus we have

�����(I� B̃)�1
�

kX

i=0

B̃
k

�����
F

=

������

1X

j=1

B̃
k+j

������
F

=

������
B̃

k
1X

j=1

B̃
j

������
F

6kB̃
k
kF

������

1X

j=0

B̃
j

������
F

6 dkB̃
k
k1

���(I� B̃)�1
���
F
= d✏

���(I� B̃)�1
���
F
.

B Fast Truncated Matrix Power Iteration

B.1 Example Implementation

We provide an example implementation of Algorithm 2 in Listing 1.
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1 import numpy as np
2

3

4 def h_fast_tmpi(B, eps=1e-6):
5 d = B.shape [0]
6 global old_g
7 global old_B
8 global sec_g
9 if old_g is None:

10 old_g = np.zeros_like(B)
11 old_B = np.zeros_like(B)
12 sec_g = np.zeros_like(B)
13 if old_g.shape [0] != d:
14 old_g = np.zeros_like(B)
15 old_B = np.zeros_like(B)
16 sec_g = np.zeros_like(B)
17 _B = np.copy(B)
18 _g = np.copy(B)
19 _grad = np.eye(d)
20

21 i = 1
22 while i <= d:
23 np.copyto(old_B , _B)
24 np.copyto(old_g , _g)
25 np.matmul(_B, _g , out=_g)
26 np.add(old_g , _g , out=_g)
27

28 np.copyto(sec_g , _grad)
29 np.matmul(_B.T, _grad , out=_grad)
30 np.matmul(_B, _B , out=_B)
31 np.add(_grad , sec_g , out=_grad)
32 np.copyto(sec_g , _g)
33 sec_g -= old_g
34 sec_g += old_B
35 sec_g -= _B
36 sec_g *= i
37

38 _grad += sec_g.T
39

40 if np.max(np.abs(_B)) <= eps:
41 break
42 i *= 2
43

44 return np.trace(_g), _grad

Listing 1: An example implementation of Algorithm 2 in Python.

B.2 Comparison of Time Complexity of Different DAG Constraints

The time complexity for computing the proposed DAG constraints, along with the existing ones, is
provided in Table 2. Note that the complexity is described in terms of matrix multiplications, whose
efficient algorithms have received much attention in the field of numerical linear algebra in the past
decades. Coppersmith–Winograd [12] algorithm and Strassen algorithm [40] are widely used and
require O(d2.376) and O(d2.807) operations, respectively.

C Additional Experimental Results

C.1 Other Performance Metrics

The False Discovery Rate (FDR), True Positive Rate (TPR), and False Positive Rate (FPR) are
provided in this section, and our TMPI based algorithm often achieves best performance for all these
metrics.
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Table 2: Complexity of different DAG constraints terms and their gradients in terms of matrix multiplications.
DAG constraint term (and its gradient) Complexity

Matrix exponential [50]i
O(d)

Binomial [45] ii
O(log d)

Polynomial [44] O(d)
NOBEARS [21] O(1)
Single term O(log d)
Geometric O(d)
Fast geometric O(log d)
TMPI O(k)
Fast TMPI O(log k)

i More precisely, the complexity of matrix exponential depends on the desired accuracy of the computation, for
which a wide variety of algorithms are available [1, 2]. Here we use a fixed complexity since the first d terms of
the Taylor expansion are sufficient to form a DAG constraint. ii Based on exponentiation by squaring.

H
(Ours)

Figure 5: False Discovery Rate (FDR, lower is better), True Positive Rate (TPR, higher is better) and
False Positive Rate (FPR, lower is better) of MSE based algorithms on ER2 (top) and ER3 (bottom)
graphs.

H
(Ours)

Figure 6: False Discovery Rate (FDR, lower is better), True Positive Rate (TPR, higher is better) and
False Positive Rate (FPR, lower is better) of likelihood loss based algorithms on ER2 (top) and ER3
(bottom) graphs.
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C.2 Experiments on Scale-Free Graphs

We consider the scale-free graph model [3] and the results are shown in Figures 7, where we can see
that with different graph structures our algorithm consistently achieves better results.

H
(Ours)

(a) Gaussian. (b) Exponential. (c) Gumbel.

Figure 7: SHD of different algorithms on SF2 graphs.

C.3 Experiments with Smaller Sample Size

We experiment with a smaller sample size, i.e., n = 200 samples, on the linear SEM, and the results
are shown in Figure 8, where our algorithm outperforms all others in most of the cases.

H
(Ours)

Gaussian Exponential Gumbel

Figure 8: Results with 200 samples on ER2 (top) and ER3 (bottom) graphs.

C.4 Experiments on Larger Graphs

We conduct experiments on ER2 graph with 500 nodes with Gaussian noises. For these kind of graphs,
the GOLEM algorithm is known to perform well [23]. Thus we combine the GOLEM algorithm
with different DAG constraints, where for all DAG constraints, the parameters ⌘1 and ⌘2 for GOLEM
algorithm are set to 0.02 and 5.0, respectively, and the number of iterations is set to 70000. The
results are shown in Table 3 and our algorithm achieves the best SHD and fastest running time. The
running time are measured on a server with V100 GPU.
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Table 3: Experiments on 500-node ER2 graph with Gaussian noise. Best results are in bold. All
results are averaged from 20 simulations, along with the standard errors.

GOLEM + Exponetial GOLEM + Binomial GOLEM + TMPI

SHD # 45.20± 6.44 46.75± 7.41 14.45± 2.27
Running Time(s) # 882.22± 1.08 795.24± 1.24 670.26± 0.76

C.5 Comparison with NOFEARS

Wei et al. [44] and Ng et al. [24] mentioned that the operation B�B is one source of gradient
vanishing. Based on the observation, Wei et al. [44] proposed a KKT condition based local search
strategy (named NOFEARS) to avoid gradient vanishing caused by B�B. As shown by Wei et al.
[44], to attain best performance the NOFEARS method is applied as a post-processing procedure
for NOTEARS[50]. Our method identified a different source of gradient vanishing caused by the
small coefficients for higher-order terms in DAG constraints. Thus our work is in parallel with
previous work [24, 44], and the local search strategy by Wei et al. [44] can be combined with our
technique. We compare the performance of our algorithm and NOFEARS [44] in Figure 9, where our
method outperforms the original NOFEARS (NOTEARS+KKTS search) in most cases. The method
that combines our method and NOFEARS attains the best performance (i.e., lowest SHD and False
Discovery Rate (FDR), highest True Positive Rate (TPR)).

Figure 9: Comparison with KKT based local search strategy [44] on ER2 graphs with linear Gaussian
SEMs. The results are averaged from 100 simulations. The NOFEARS method (NOTEARS+KKTS
search) achieves better performance tham that of the original NOTEARS (MSE Exponential), but it
performs worse than our TMPI method in most cases. The method that combines TMPI and local
search (TMPI+KKTS search) achieves the best performance.

C.6 Experiments on Denser Graphs

We have conducted a simple experiment on ER6 graphs to compare the performance of different
polynomial constraints on ER6 graphs (where the expected degree of node is 12). The dataset
generating procedure for ER6 graph is the same as Section 4, but the number of samples n is set to
5000. The result is shown in Figure 10, where our TMPI method achieves best performance (i.e.,
lowest SHD and False Detection Rate (FDR), highest True Positive Rate (TPR)).

Figure 10: Comparison of different polynomial based DAG constraints on ER6 graphs. All results
are averaged from 20 simulations.
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C.7 Additional Ablation Study

We provide an ablation study to illustrate the numeric difference between different k for our
DAG constraint, as depicted in Figure 11. One observes that typically the error of our trun-
cated DAG constraints against the geometric series based DAG constraint appears to drop
exponentially as k increases. Furthermore, this error may often exceed the machine preci-
sion. Therefore, for our TMPI algorithm (i.e., the O(k) implementation described in Algo-
rithm 1), the value of k is often not large, and thus the TMPI algorithm is usually faster
than both the geometric and fast geometric method, as demonstrated by the empirical study
in Figure 4. Our fast TMPI algorithm (i.e., the O(log k) implementation described in Algo-
rithm 2) further accelerates the procedure and its running time is the shortest in most settings.

Figure 11: Typical example of kB̃kk1, error of hk
trunc(B̃) against hgeo(B̃), and error of rB̃h

k
trunc(B̃) against

rB̃hgeo(B̃) (in terms of infinity norm). The analysis is based on ER2 (top) and ER3 (bottom) graphs.
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