
Appendix

A Derivation of (3)

Based on the fact that the θ∗(m) is satisfied with the stationary condition of the lower-level objective
function in (2), we obtain

∇θg(m,θ∗) = ∇θℓ(m⊙ θ∗) + γθ∗ = 0, (A1)

where for ease of notation, we omit the dependence of θ∗(m) w.r.t. m. We then take derivative of
the second equality of (A1) w.r.t. m by using the implicit function theory. This leads to

∇2
mθℓ(m⊙ θ∗) +

dθ∗(m)

dm
∇2

θℓ(m⊙ θ∗) + γ
dθ∗(m)

dm
= 0;

=⇒dθ∗(m)

dm
= −∇2

mθℓ(m⊙ θ∗)[∇2
θℓ(m⊙ θ∗) + γI]−1. (A2)

B BIP Algorithm Details

Upper Level: Sparsification

Lower Level: Retraining

SPGD

SGD

Mask 0
Initiate

SPGD

Dense Model

SGD

...

...

Weight 1

Mask T

Original

Sparse Model

Pruned

Mask 1

Weight 2

...

Figure A1: Overview of the BIP pruning algorithm. The BIP algorithm iteratively carry out model retraining
in the lower level and pruning in the upper level. In the plots, SGD refers to the lower-level stochastic gradient
descent update and SPGD refers to the upper-level stochastic projected gradient descent. Masks may vary
between each iteration, and the pruned weights are indicated using the light gray color. Different colors of
the edges in the neural networks refer to the weight update. The arcs in this figure represent the data flow of
weights/connections.

At iteration t of BIP, there are two main steps:

★ Lower-level SGD for model retraining: Given m(t−1), θ(t−1), and z(t−1) := m(t−1) ⊙ θ(t−1),
we update θ(t) by applying SGD (stochastic gradient descent) to the lower-level problem of (1),

θ(t) = θ(t−1) − α∇θg(m
(t−1),θ(t−1))

(7)
= θ(t−1) − α[m(t−1) ⊙∇zℓ(z) | z=z(t−1) + γθ(t−1)], (θ-step)

where α > 0 is the lower-level learning rate.

★ Upper-level SPGD for pruning: Given m(t−1), θ(t), and z(t+1/2) := m(t−1) ⊙ θ(t), we update
m using PGD (projected gradient descent) along the IG-enhanced descent direction (2),

m(t) =PS

[
m(t−1) − β

dℓ(m⊙ θ(t))

dm
|m=m(t−1)

]
(6)
=PS

[
m(t−1) − β

(
θ(t) − 1

γ
m(t−1) ⊙∇zℓ(z) | z=z(t+1/2)

)
⊙∇zℓ(z) | z=z(t+1/2)

]
, (m-step)

where β > 0 is the upper-level learning rate, and PS(·) denotes the Euclidean projection onto the
constraint set S given by S = {m |m ∈ {0, 1}n,1Tm ≤ k} in (1) and is achieved by the top-k
hard-thresholding operation as will be detailed below.

Implementation of discrete optimization. In the actual implementation, we use m̃(t) ∈ [0, 1]d

and obtain m(t) ∈ {0, 1}d where m(t) ← PS
[
m̃(t)

]
. The (m-step) is then implemented as the

following:

19



Table A1: Dataset and model setups. The following parameters are shared across all the methods.

Settings CIFAR-10 CIFAR-100 Tiny-ImageNet ImageNet

RN-18 RN-20 RN-56 VGG-16 RN-18 RN-20 RN-18 RN-50

Batch Size 64 64 64 64 64 64 32 1024

Model Size 11.22 M 0.27 M 0.85 M 14.72 M 11.22 M 0.27 M 11.22 M 25.56 M

m̃(t) =m̃(t−1) − β

(
θ(t) − 1

γ
m̃(t−1) ⊙∇zℓ(z) |z=z(t+1/2)

)
⊙∇zℓ(z) |z=z(t+1/2) (m̃-step)

and then m(t) ← PS
[
m̃(t)

]
, with z(t+1/2) := m(t−1) ⊙ θ(t) as defined above.

Algorithm A1 BIP
1: Initialize: Model θ0, pruning mask score m0, binary mask z∗, sparse ratio p%, regularization

parameter λ, upper- and lower-level learning rate α and β.
2: for Iteration t = 0, 1, . . . , do
3: Pick different random data batches Bα and Bβ for different levels of tasks.
4: Lower-level: Update model parameters using data batch Bβ via SGD calling:

θt+1 = θt − β
dℓtr(m⊙ θ)

dθ

∣∣∣
m=z∗,θ=θt

(A3)

5: Upper-level: Update pruning mask score using data batch Bα via SGD calling:

mt+1 = mt − α

(
∇mℓtr(m⊙ θ)− 1

γ
∇zℓtr(z) |z=m⊙θ ⊙∇θℓtr(m⊙ θ)

)∣∣∣
m=mt,θ=θt+1

(A4)

6: Update the binary mask z∗: Hard-threshold the mask score m with the give sparse ratio p:

z∗ = T{0,1}d(mt+1, s). (A5)

7: end for

C Additional Experimental Details and Results

C.1 Datasets and Models

Our dataset and model choices follow the pruning benchmark in [22]. We summarize the datasets
and model configurations in Tab. A1. In particular, we would like to stress that we adopt the
ResNet-18 with convolutional kernels of 3 × 3 in the first layer for Tiny-ImageNet, aligned with
CIFAR-10 and CIFAR-100, compared to ImageNet (7×7). See https://github.com/kuangliu/
pytorch-cifar/blob/master/models/resnet.py for more details.

C.2 Detailed Training Settings

Baselines. For both unstructured and structured pruning settings, we consider four baseline methods
across various pruning categories, including IMP [17], OMP [17], HYDRA [9] and GRASP [23].
For HYDRA and GRASP, we adopt the original setting as well as hyper-parameter choices on
their official code repositories. For IMP and OMP, we adopt the settings from the current SOTA
implementations [22]. Details on the pruning schedules can be found in Tab. A2. In particular,
HYDRA prunes the dense model to the desired sparsity with 100 epoch for pruning and 100 epoch
for retraining. GRASP conducts one-shot pruning to the target sparsity, followed by the 200-epoch
retraining. In each pruning iteration, IMP prunes 20% of the remaining parameters before 160-epoch
retraining. HYDRA adopts the cosine learning rate scheduler for both pruning and retraining stage.
The learning rate scheduler for IMP, OMP, and GRASP is the step learning rate with a learning rate
decay rate of 0.1 at 50% and 75% epochs. The initial learning rate for all the methods are 0.1.

20

https://github.com/kuangliu/pytorch-cifar/blob/master/models/resnet.py
https://github.com/kuangliu/pytorch-cifar/blob/master/models/resnet.py


Table A2: Computation complexities of different pruning methods on (CIFAR-10, ResNet-18) in unstructured
pruning setting. The training epoch numbers of pruning/retraining baselines are consistent with their official
settings or the latest benchmark implementations. All the evaluations are based on a single Tesla-V100 GPU.

Runtime v.s. targeted sparsity Training epoch #Method \ Sparsity 20% 59% 83.2% 95.6%

IMP 69 min 276 min 621 min 966 min 160 epoch retrain

GRASP 89 min 200 epoch retrain

OMP 69 min 160 epoch retrain

HYDRA 115 min 100 epoch prune
100 epoch retrain

BIP 86 min 100 epoch

Table A3: Detailed training details for each method. All the baselines adopt the recommended settings either
from the official or their latest benchmark (e.g., LTH[22]) for a fair comparison. Note by default setting, only
our method BIP do not require additional epochs for retraining.

Method Epoch Number Initial
Learning Rate

Learning Rate
Scheduler

Learning Rate
Decay Factor

Learning Rate
Decay Epoch Mementum Weight

Decay
Rewind
Epoch Warm-up

IMP 160 for Retrain 0.1 Step LR 10 80/120 0.9 5.00E-04 8 75 for VGG16

OMP 160 for Retrain 0.1 Step LR 10 80/120 0.9 5.00E-04 8 75 for VGG16

HYDRA
100 for Prune

100 for Retrain 0.1 Cosine LR N/A N/A 0.9 5.00E-04 N/A 75 for VGG16

GRASP 200 for Retrain 0.1 Step LR 10 100/150 0.9 5.00E-04 N/A 75 for VGG16

BIP 100 0.1 for m; 0.01 for θ Cosine LR N/A N/A 0.9 5.00E-04 N/A 75 for VGG16

Hyper-parameters for BIP. In both structured and unstructured pruning settings, cosine learning
rate schedulers are adopted, and BIP takes an initial learning rate of 0.1 for the upper-level problem
(pruning) and 0.01 for the lower-level problem (retraining). The lower-level regularization coefficient
λ is set to 1.0 throughout the experiments. By default, we only take one SGD step for lower-level
optimization in all settings. Ablation studies on different SGD steps for lower-level optimization can
be found in Fig. A8(b) and Fig. A14. We use 100 training epochs for BIP, and ablation studies on
different training epochs for larger pruning ratios can be found in Fig. A15.

0 20 40 60 80 100
Pruning Ratio (%)

89.0

89.5

90.0

90.5

91.0

91.5

92.0

92.5

Te
st

 A
cc

ur
ac

y 
(%

)

Dense Model
IMP
OMP
IMP w/ 20 epochs
IMP w/ 40 epochs
IMP w/ 80 epochs

20 40 60 80 100
Pruning Ratio (%)

102

103

Ti
m

e 
C

on
su

m
pt

io
n 

(m
in

)

Figure A2: Performance comparisons among OMP, IMP, and IMP with less retraining epochs on CIFAR-10
with ResNet-20.

Structured pruning. To differentiate of the filter-wise and channel-wise structured pruning setting,
we illustrate the details of these settings in Fig. A3. Note, the filter-wise pruning setting prunes the
output dimension (output channel) of the parameters in one layer, while the channel-wise prunes the
input dimension (input channel).

C.3 Additional Experiment Results

Comparison with IMP using reduced retraining epochs. As IMP is significantly more time-
consuming than one-shot pruning methods, a natural way to improve the efficiency is to decrease the
retraining epoch numbers at each pruning cycle. In Fig. A2, the performance and time consumption of

21



(a) Filter-wise Pruning (b) Channel-wise Pruning

Figure A3: Illustration of filter-wise pruning and channel-wise pruning. The blocks in the middle column in (a)
and (b) represent the parameters (filters) of the ith convolutional layer, where the red ones represent the pruning
unit in each setting. The left blocks in gray denote the input feature maps and the right columns denote the
output feature maps generated by the corresponding filters marked in the same color.

IMP using 20, 40, and 80 epochs at each retraining cycle are presented. The results and conclusions
are in general aligned with Fig. 2. First, with fewer epoch numbers, the time consumption decreases
at the cost of evident performance degradation. Second, IMP with fewer epoch numbers are unable
to obtain winning tickets. Thus, the direct simplification of IMP would hamper the pruning accuracy.
This experiment shows the difficulty of achieving efficient and effective pruning under the scope of
heuristics-based pruning, and thus justifies the necessity in developing a more powerful optimization-
based pruning method.

0 20 40 60 80 100
Pruning Ratio (%)

88

89

90

91

92

93

Te
st

 A
cc

ur
ac

y 
(%

)

Dense Model
Hydra
IMP
OMP
Grasp
SynFlow
Snip
BiP
Best Winning Ticket

Figure A4: Unstructured pruning performance of BIP vs. prune-at-initialization baselines on (CIFAR-10,
ResNet-20).

Comparison with more prune-at-initialization baselines. In Fig. A4, we include more heuristics-
based one-shot pruning baselines (SYNFLOW [24], SNIP [21]) for comparison. Together with GRASP,
these methods belong to the category of pruning at initialization, which determines the sparse sub-
networks prior to training. As we can see, the advantage of our method over the newly added methods
are clear, and the benefit becomes more significant as the sparsity increases. This further demonstrates
the superiority of the optimization-basis of BIP over the heuristics-based one-shot methods.

Experiments on unstructured pruning with more baselines. We compare our proposed method
BIP to more baselines on different datasets and architectures in Fig. A5. We add two more baselines,
including EARLYBIRD [28] and PROSPR [25]. The results show that PROSPR is indeed better
than GRASP but is still not as good as IMP and our method BIP in different architecture-dataset
combinations. Meanwhile, except for the unstructured pruning settings of ResNet18 pruning over
CIFAR10 and CIFAR100, PROSPR, as a pruning before training, can achieve comparable performance
to the state-of-the-art implementation of OMP. However, the gap between this SOTA pruning-at-
initialization method and our method still exists. Besides, the result shows that EARLYBIRD can
effectively achieve comparable or even better testing performance than OMP in most different

22



0 20 40 60 80 100
Pruning Ratio (%)

93.0

93.5

94.0

94.5

95.0

95.5

Te
st

 A
cc

ur
ac

y 
(%

)

CIFAR-10, ResNet-18

Dense Model
Hydra
IMP
OMP
Grasp
Early Bird
ProsPr
BiP
Best Winning Ticket

0 20 40 60 80 100
Pruning Ratio (%)

89.0

89.5

90.0

90.5

91.0

91.5

92.0

92.5

Te
st

 A
cc

ur
ac

y 
(%

)

CIFAR-10, ResNet-20

0 20 40 60 80 100
Pruning Ratio (%)

92.0

92.5

93.0

93.5

94.0

94.5

Te
st

 A
cc

ur
ac

y 
(%

)

CIFAR-10, VGG-16

0 20 40 60 80 100
Pruning Ratio (%)

72.0

73.0

74.0

75.0

76.0

77.0

78.0

Te
st

 A
cc

ur
ac

y 
(%

)

CIFAR-100, ResNet-18

Dense Model
Hydra
IMP
OMP
Grasp
Early Bird
ProsPr
BiP
Best Winning Ticket

0 20 40 60 80 100
Pruning Ratio (%)

60.0

62.0

64.0

66.0

68.0

70.0

Te
st

 A
cc

ur
ac

y 
(%

)

CIFAR-100, ResNet-20

0 20 40 60 80 100
Pruning Ratio (%)

60.0

61.0

62.0

63.0

64.0

Te
st

 A
cc

ur
ac

y 
(%

)

Tiny-ImageNet, ResNet-18

Figure A5: Unstructured pruning trajectory given by test accuracy (%) vs. pruning ratio (%). The visual
presentation setting is consistent with Fig. 4. We consider two more baseline methods: EARLYBIRD [28] and
PROSPR [25].

architecture-dataset combinations, which is also the main contribution of [28]. However, EARLYBIRD
is still not as strong as IMP in testing performance.

0 20 40 60 80 100
Pruning Ratio (%)

91.0
91.5
92.0
92.5
93.0
93.5
94.0
94.5
95.0
95.5

Te
st

 A
cc

ur
ac

y 
(%

)

CIFAR-10, ResNet-18

Dense Model
Hydra
IMP
OMP
Grasp
ProsPr
BiP
Best Winning Ticket

0 20 40 60 80 100
Pruning Ratio (%)

82.0

84.0

86.0

88.0

90.0

92.0

Te
st

 A
cc

ur
ac

y 
(%

)

CIFAR-10, ResNet-20

0 20 40 60 80 100
Pruning Ratio (%)

70.0

71.0

72.0

73.0

74.0

75.0

76.0

77.0

78.0

Te
st

 A
cc

ur
ac

y 
(%

)

CIFAR-100, ResNet-18

0 20 40 60 80 100
Pruning Ratio (%)

45.0

50.0

55.0

60.0

65.0

70.0

Te
st

 A
cc

ur
ac

y 
(%

)

CIFAR-100, ResNet-20

Figure A6: Structured pruning trajectory given by test accuracy (%) vs. pruning ratio (%). The visual
presentation setting is consistent with Fig. 6. We add PROSPR [25] as our new baseline.

Experiments on structured pruning with more baselines. We compare our proposed method
BIP to the new baseline PROSPR on different datasets and architectures in Fig. A6. on the structured
pruning setting. As we can see, BIP consistently outperforms PROSPR and still stands top among all
the baselines.

More results on ImageNet. In Fig. A7, we provide additional results on the dataset ImageNet with
ResNet-18 in the unstructured pruning setting, in addition to the results of (ImageNet, ResNet-50)
shown in Fig. 4. As we can see, the performance of BIP still outperforms the strongest baseline IMP
and the same conclusion can be drawn as Fig. 4.

Sanity check of BIP on specialized hyperparameters. In Fig.A8, we show the sensitivity of BIP
to its specialized hyperparameters at lower-level optimization, including the number of SGD iterations
(N ) in (θ-step), and the regularization parameter γ in (1). Fig. A8(a) shows the test accuracy of
BIP-pruned models versus the choice of N . As we can see, more SGD iterations for the lower-level
optimization do not improve the performance of BIP. This is because in BIP, the θ-step is initialized
by a pre-trained model which does not ask for aggressive weight updating. The best performance of
BIP is achieved at N ≤ 3. We choose N = 1 throughout the experiments as it is computationally
lightest. Fig. A8(b) shows the performance of BIP by varying γ. As we can see, the choice of
γ ∈ {0.5, 1} yields the best pruning accuracy across all pruning ratios. If γ is too small, the lack

23



0 20 40 60 80 100
Pruning Ratio (%)

69.0

69.5

70.0

70.5

71.0

71.5

72.0

Te
st

 A
cc

ur
ac

y 
(%

)

ImageNet, ResNet-18

Dense Model
IMP
BiP
Best Winning Ticket

Figure A7: Unstructured pruning trajectory on ImageNet with ResNet-18. The experiment setting is consistent
with Fig. 4. We only compare BIP with our strongest baseline IMP due to limited computational resource.

1 2 3 4 5
Lower-level Step Number

90

91

92

93

Te
st

 A
cc

ur
ac

y 
(%

)

0.1 0.5 1 10
 (Lower-level Regularization)

87

88

89

90

91

92

93

Te
st

 A
cc

ur
ac

y 
(%

)

20% 67% 87% 96%
Pruning Ratio (%)

89

90

91

92

93

Te
st

 A
cc

ur
ac

y 
(%

)

92.48
92.14

91.28

89.89

91.87

91.14

90.39

89.12

Dense Model
w/o IG
w/ IG

(a) (b) (c)

Figure A8: The sensitivity of BIP to (a) the lower-level step number N , (b) the lower-level regularizer γ,
and (c) the contribution of the IG-term at various pruning ratios on (CIFAR-10, ResNet-20). Each curve
or column represents a certain sparsity. In (c), we fix the γ to 1.0 and compare the performance of the
IG-involved/excluded (2) BIP.

of strong convexity of lower-level optimization would hamper the convergence. If γ is too large,
the lower-level optimization would depart from the true model objective and causes a performance
drop. Fig. A8(c) demonstrates the necessity of the IG enhancement in BIP. We compare BIP with its
IG-free version by dropping the IG term in (2). We observe that BIP without IG (marked in blue)
leads to a significant performance drop (> 1%) at various sparsities. This highlights that the IG in
the (m-step) plays a critical role in the performance improvements obtained by BIP, justifying our
novel BLO formulation for the pruning problem. In Fig. A9, we further demonstrate the influence of
different choices of lower-level learning rate α as well as the batch size on the performance of BIP.
Fig. A9 (a) shows that the test accuracy of BIP-pruned models is not quite sensitive to the choice of
α ∈ {0.01, 0.008}. A large α value (e.g., α > 0.05) will slightly decrease the performance of BIP.
By contrast, a small α is preferred due to the fact that the model parameters are updated based on the
pre-trained values. Fig. A9 (b) shows how the batch size influences the performance. As we can see,

0.005 0.008 0.01 0.03 0.05
Learning Rate 

90

91

92

93

Te
st

 A
cc

ur
ac

y 
(%

)

Dense Model
p=20%

p=67.2%
p=86.58%

32 64 128 256 512
Batch Size

90.5

91.0

91.5

92.0

92.5

93.0

Te
st

 A
cc

ur
ac

y 
(%

)

(a) (b)

Figure A9: Ablation studies of BIP on different hyper-parameters. All the experiments are based on CIFAR-10
with ResNet-20. We select three sparsity values of a wide range (from not sparse to extreme sparse) to make the
results more general. We study the influence of different (a) lower-level learning rate α and (b) batch size.

24



a large batch size might hurt the stochasticity of the algorithm and thus degrades the performance.
We list our detailed batch size choices for different datasets in Tab. A1.

0 20 40 60 80 100
Pruning Ratio (%)

84.0

86.0

88.0

90.0

92.0

94.0

Te
st

 A
cc

ur
ac

y 
(%

)

CIFAR-10, VGG-16

Dense Model
Hydra
IMP
OMP
Grasp
BiP
Best Winning Ticket

0 20 40 60 80 100
Pruning Ratio (%)

88.0

89.0

90.0

91.0

92.0

93.0

94.0

Te
st

 A
cc

ur
ac

y 
(%

)

CIFAR-10, ResNet-56

Figure A10: Filter-wise pruning test accuracy (%) v.s. sparsity (%) on CIFAR-10 with VGG-16 and ResNet-56.

Additional structured pruning experiments. In addition to filter pruning in Fig. 6, we provide
more results in the structured pruning setting, including both filter-wise and channel-wise pruning (as
illustrated in Fig. A3). In Fig. A10, results on CIFAR-10 with VGG-16 and ResNet-56 are added as
new experiments compared to Fig. 6. Fig. A11 shows the results of the channel-wise pruning. As we
can see, consistent with Fig. 6, BIP is able to find the best winning tickets throughout the experiments
while it is difficult for IMP to find winning tickets in most cases. We also notice that HYDRA, as the
optimization-based baseline, serves as a strong baseline in filter-wise pruning. It also indicates the
superiority of the optimization-based methods over the heuristics-based ones in dealing with more
challenging pruning settings.

0 20 40 60 80 100
Pruning Ratio (%)

89.0

90.0

91.0

92.0

93.0

94.0

95.0

Te
st

 A
cc

ur
ac

y 
(%

)

CIFAR-10, ResNet-18

Dense Model
Hydra
IMP
OMP
Grasp
BiP
Best Winning Ticket

0 20 40 60 80 100
Pruning Ratio (%)

82.0

84.0

86.0

88.0

90.0

92.0

Te
st

 A
cc

ur
ac

y 
(%

)

CIFAR-10, ResNet-20

0 20 40 60 80 100
Pruning Ratio (%)

88.0

89.0

90.0

91.0

92.0

93.0

94.0

Te
st

 A
cc

ur
ac

y 
(%

)

CIFAR-10, ResNet-56

0 20 40 60 80 100
Pruning Ratio (%)

70.0

71.0

72.0

73.0

74.0

75.0

76.0

77.0

78.0

Te
st

 A
cc

ur
ac

y 
(%

)

CIFAR-100, ResNet-18

0 20 40 60 80 100
Pruning Ratio (%)

56.0

58.0

60.0

62.0

64.0

66.0

68.0

70.0

Te
st

 A
cc

ur
ac

y 
(%

)

CIFAR-100, ResNet-20

0 20 40 60 80 100
Pruning Ratio (%)

86.0

87.0

88.0

89.0

90.0

91.0

92.0

93.0

94.0

Te
st

 A
cc

ur
ac

y 
(%

)

CIFAR-10, VGG-16

Figure A11: Channel-wise pruning test accuracy (%) v.s. sparsity (%). Settings are consistent with Fig. A10.

Training trajectory of BIP. We show in Fig. A12 that the BIP algorithm converges quite well
within 100 training epochs using a cosine learning rate scheduler.

The training trajectory of the mask IoU score. To verify the argument that the mask also
converges at the end of the training, we show the training trajectory of the mask similarity between
two adjacent-epoch models in Fig. A13 at different pruning ratios. Here the mask similarity is
represented through the intersection of the union (IoU) score of the two masks found by two adjacent
epochs. The IoU score ranges from 0.0 to 1.0, and a higher IoU implies a larger similarity between

25



0 20 40 60 80 100
Epoch Number

80

85

90

95

100

A
cc

ur
ac

y 
(%

)

Training Acc
Test Acc

Figure A12: The training trajectory of BIP for unstructured pruning on (CIFAR-10, ResNet-18) with a pruning
ratio of p = 80%.

0 20 40 60 80 100
Epoch Number

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Io
U

 sc
or

e

p=20%
p=59%
p=86.58%

Figure A13: Training trajectory of the IoU (intersection over union) score between the masks of two adjacent
epochs. We show the trajectory of different pruning ratios.

the two masks. As we can see, the IoU score converges to 1.0 in the end, which denotes that the mask
also converges at the end of the training phase. Also, with a smaller pruning ratio, the mask turns to
converge more quickly.

0 20 40 60 80 100
Epoch Number

86

88

90

92

94

96

98

100

A
cc

ur
ac

y 
(%

)

Training Accuracy
Step=1
Step=3
Step=5

0 20 40 60 80 100
Epoch Number

82

84

86

88

90

92

94

A
cc

ur
ac

y 
(%

)

Test Accuracy
Step=1
Step=3
Step=5

Figure A14: Training dynamics of BIP with different lower-level (SGD) steps on (CIFAR-10, ResNet-18) with
the pruning ratio of p=80%.

The effect of different lower-level steps in BIP on the training dynamics. We conduct additional
experiments to demonstrate the effectiveness of using one-step SGD in BIP. In our new experiments,
we consider the number of SGD steps, 1, 3, and 5. We report the training trajectories of BIP in
Fig. A14. As we can see, the use of multi-step SGD accelerates model pruning convergence at its
early phase. Yet, if we run BIP for a sufficient number of epochs (we used 100 by default in other
experiments), the final test accuracy of using different SGD settings shows little difference. Although

26



the use of multiple SGD steps could improve the convergence speed, it introduces extra computation
complexity per BLO step. Thus, from the overall computation complexity perspective, using 1 SGD
step but running more epochs is advantageous in practice.

50 100 200 300 400 500
Epoch Number

76

78

80

82

84

86

88

90

92
Te

st
 A

cc
ur

ac
y 

of
 B

iP
 (%

)
CIFAR10, ResNet20

Dense Model
p=86.58%

p=94.50%
p=97.75%

50 100 200 300 400 500
Epoch Number

86
87
88
89
90
91
92
93
94
95

Te
st

 A
cc

ur
ac

y 
of

 B
iP

 (%
)

CIFAR10, ResNet18

Dense Model
p=86.58%

p=94.50%
p=97.75%

50 100 200 300 400 500
Epoch Number

64

66

68

70

72

74

76

Te
st

 A
cc

ur
ac

y 
of

 B
iP

 (%
)

CIFAR100, ResNet18

Dense Model
p=86.58%

p=94.50%
p=97.75%

Figure A15: The effect of total training epoch number on the test accuracy with large pruning ratios. The epoch
number is by default set to 100 in this paper. In each sub-figure, we report the performance of BIP with three
different sparse ratios p.

The effect of larger training epoch numbers with extreme sparsities. We allow more time
(training epochs) for BIP when a higher pruning rate is considered and the results are shown in
Fig. A15. Specifically, we test three datasets and consider three pruning ratios (p=86.58%, 94.50%,
97.75%). For each pruning ratio, we examine the test accuracy of BIP versus the training epoch
number from 50 to 500. Note that the number of training epochs in our original experiment setup was
set to 100. As we can see, the performance of BIP gets saturated when the epoch number is over 100.
Thus, even for a higher pruning ratio, the increase of training epoch number over 100 does not gain
much improvement in accuracy.

The effect of different training batch schemes. We conducted ablation studies on three different
schemes of BIP’s training batches for the upper and lower level. In addition to two different random
batches for the two levels, we also consider the same batch and the reverse batch scheme. BIP (same
batch) always uses the same data batches for the two levels in each iteration while BIP (reverse batch)
uses the data batches in a reversed order for the two level. Fig. A16 shows that both the random batch
scheme (i.e., BIP) and the reverse batch scheme can bring a better testing accuracy performance than
the same batch scheme throughout different pruning ratio settings. Fig. A17 shows that BIP the same
batch scheme converges slower compared to the other two. Both of the results indicate BIP benefits
from the diverse batch selection.

0 20 40 60 80 100
Pruning Ratio (%)

94.0

94.2

94.4

94.6

94.8

95.0

95.2

95.4

Te
st

 A
cc

ur
ac

y 
(%

)

CIFAR-10, ResNet-18

Dense Model
IMP
BiP
BiP (reverse batch)
BiP (same batch)
Best Winning Ticket

0 20 40 60 80 100
Pruning Ratio (%)

75.0

75.5

76.0

76.5

77.0

77.5

78.0

Te
st

 A
cc

ur
ac

y 
(%

)

CIFAR-100, ResNet-18

Dense Model
IMP
BiP
BiP (reverse batch)
BiP (same batch)
Best Winning Ticket

Figure A16: The effect of different training batch schemes on the performance of BIP. We consider two
different variants of BIP denoted as BIP (reverse batch) and BIP (same batch). For BIP (reverse batch), the data
batches are fed into the upper- and lower-step in a reversed order within each epoch, while for BIP (same batch),
the data batches for upper- and lower-level are always the same. Experiment settings are consistent with Fig. 4.
For better readability, we only plot the strongest baseline IMP for comparison.

27



0 20 40 60 80 100
Epoch Number

86

88

90

92

94

96

98

100

A
cc

ur
ac

y 
(%

)

Training Accuracy

BiP
BiP (reverse batch)
BiP (same batch)

0 20 40 60 80 100
Epoch Number

77.5

80.0

82.5

85.0

87.5

90.0

92.5

95.0

A
cc

ur
ac

y 
(%

)

Test Accuracy

BiP
BiP (reverse batch)
BiP (same batch)

Figure A17: The effect of different training batch schemes on the training dynamics of BIP. We plot the
training dynamics of different variants of BIP on (CIFAR-10, ResNet-18) with the pruning ratio of 80%.

Table A4: The sparsest winning tickets found by different methods on Tiny-ImageNet and ImageNet datasets.
Winning tickets refer to the sparse models with an average test accuracy no less than the dense model [20].
In each cell, p% (acc±std%) represents the sparsity as well as the test accuracy. The test accuracy of dense
models can be found in the header. ✗ signifies that no winning ticket is found by a pruning method. Given the
data-model setup (i.e., per column), the sparsest winning ticket is highlighted in bold.

Method
Tiny-ImageNet ImageNet

ResNet-18 ResNet-18 ResNet-50
(63.83%) (70.89%) (75.85%)

IMP 20% (64.17±0.11%) 74% (71.15±0.19%) 80% (76.05±0.13%)
OMP 20% (64.17±0.11%) ✗ ✗

GRASP ✗ ✗ ✗
HYDRA ✗ ✗ ✗

BIP 36% (64.29±0.13%) 83% (70.95±0.12%) 74% (76.09±0.11%)

C.4 Broader Impact

We do not recognize any potential negative social impacts of our work. Instead, we believe our work
can inspire many techniques for model compression. The finding of structure-aware winning ticket
also benefits the design of embedded solutions to deploying large-scale models on resource-limited
edge devices (e.g., FPGAs), providing broader impact on both scientific research and practical
applications (e.g., autonomous vehicles).

28


	Derivation of (3)
	BiP Algorithm Details
	Additional Experimental Details and Results
	Datasets and Models
	Detailed Training Settings
	Additional Experiment Results
	Broader Impact


