A D4RL Gym Locomotion Benchmarks

i
40
|

B e ———

1
i I
c »

HC-Med-V2 p-Med H

F

HC-Exp-V2 Hop-Exp-V2 Walk-Exp-V2

= cou No Ens. (N=1) MSG Multi-Head Ens. (N=4) MSG Batch Ens. (N=4) Shared-Min Deep Ens. (N=4)
F-BRC MSG Deep Ens. (N=4) MSG MIMO Ens. (N=4) Shared-LCB Deep Ens. (N=4)

Figure 4: Summary of D4RL Gym benchmark results (full results presented in Appendix @) For each method,
we report the mean across random seeds for the best hyperparameter. Numerical results for all experiments are
available in the supplementary material.

In this section we discuss results using the DARL gym (halfcheetah, hopper, walker2d)
benchmark domains. The dataset types that we consider are medium-v2, medium-replay-v2,
medium-expert-v2, and expert-v2.

A.1 Experimental Details

All policies and Q-functions are a 3 layer neural network with relu activations and hidden layer size
256. The policy output is a normal distribution that is squashed to [—1, 1] using the tanh function.
All methods were trained for 3M steps. CQL and MSG are trained with behavioral cloning (BC) for
the first 50K steps. F-BRC pretrains a behavioral cloning model for 1M steps.

MSG, CQL, and F-BRC, are tuned with an equal hyperparameter search budget of 12 hyperparameter
choices. Each hyperparameter choice for each method is trained using 2 random seeds. Each run is
evaluated for 100 episodes. We report results for all hyperparameters and all seeds. For fairness of
comparison, F-BRC is ran without adding a survival reward bonus. MSG and CQL are implemented
in our code, and for F-BRC we use the opensourced codebase. Our reported CQL results appear to be
better than or on par with values reported in prior works, which provided us with confidence to use
our own implementation. We used the following values for hyperparameter search:

MSG Be€{-4.—8},ac{0,051.,2, 4,8}
CQL « € {0.,0.45,0.9,1.36,1.81,2.27,2.32,3.18, 3.63,4.09, 4.55, 5.}

F-BRC)\ € {0.,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.1}

A.2 Baseline Comparison

We compare MSG with deep ensembles to CQL [11] and F-BRC[12], two methods that obtain
state-of-the-art results on the gym domains of the D4ARL benchmark. Figure [5] presents our results on
the gym domains. The key takeaways of our results are as follows:

e On gym domains, MSG is generally competitive with current state-of-the-art results.

e In the hopper and walker2d domains — where dynamics can be chaotic and staying close
to the data-support is beneficial — CQL and F-BRC which rely on support constraints are
more reliable w.r.t. the hyperparameter choice.

A.3 Ablations

We perform ablations w.r.t. the key components of MSG. Our key takeaways from the results in
Figures [6] and 7] for gym domains are as follows:

e Comparing MSG — which uses independent targets — to Shared-LCB and Shared-Min —
which use shared targets — clearly demonstrates the significance of our theoretical analysis
in Section 3] Despite differing in only 2 lines of code from MSG, Shared-LCB and Shared-
Min very significantly underpeform MSG. In fact, using no ensembling at all (N = 1)
outperforms Shared-LCB and is on par with Shared-Min.

16

100

e In the gym domains of D4RL — which are close to being imitation learning datasets — using
large ensemble sizes does not result in noticeable gains in MSG.

A.4 Efficient Ensembles

As discussed in Section[5.3] we evaluate whether the performance of MSG with deep ensembles
can be matched using state-of-the-art “efficient ensembles" from supervised learning literature. Our
takeaways from the results in Figure [8|for gym domains are as follows:

e From the efficient ensembling approaches considered, Batch Ensembles tend to be the most

performant [28]]. Interestingly, this follows the findings of [17] from the supervised learning
literature.

B D4RL Antmaze Benchmarks

80
60
40
20

i i
AN M | e B
antmaze-medium-play-v0 antmaze-medium-diverse-v0 antmaze-large-play-v0 antmaze-large-diverse-v0

= ocoL moiQ B MSGDeepEns. (N=64) B MSGMultiHead Ens. (N=64) B MSGMIMOEns (N=64) B MSG Batch Ens. (N=64) Shared-LCB Deep Ens. (N=64) M Shared-Min Deep Ens. (N=64)
F-BRC No Ens. (N=1) MSG Deep Ens. (N=4) MSG Multi-Head Ens. (N=4) MSG MIMO Ens. (N=4) MSG Batch Ens. (N=4) Shared-LCB Deep Ens. (N=4) Shared-Min Deep Ens. (N=4)

Figure 9: This Figure is identical to Figure Summary of D4ARL antmaze benchmark results (full results
presented in Appendix [B). For each method, we report the mean across random seeds for the best hyperparameter.
Numerical results for all experiments are available in the supplementary material.

w V,%‘
el

‘V

\

Figure 10: D4RL antmaze tasks. Figure taken from [24].

In this section we discuss results using the D4RL antmaze benchmark domains. We mainly focus our
experiments on the antmaze-medium and antmaze-large environments, with the two available
offline datasets of play-vO and diverse-vO0.

B.1 Experimental Details

The rewards in the antmaze domains (which are either 0. or 1.) were transformed
using the following equation: 4(r — 0.5). This transformation has become com-
mon practice in prior works https://github.com/aviralkumar2907/CQL/blob/
d67dbe9cf5d2b96e3b462b6146£24903d6569796/d4rl/examples/cql_antmaze_new.
py#L22.

All policies and Q-functions are a 3 layer neural network with relu activations and hidden layer size
256. The policy output is a normal distribution that is squashed to [—1, 1] using the tanh function.
All methods were trained for 2M steps. CQL and MSG are trained with behavioral cloning (BC) for
the first 50K steps. F-BRC pretrains a behavioral cloning model for 1M steps.

MSG, CQL, and F-BRC, are tuned with an equal hyperparameter search budget of 8 hyperparameter
choices. Each run is evaluated for 100 episodes. We report results for all hyperparameters and all
seeds.

17

https://github.com/aviralkumar2907/CQL/blob/d67dbe9cf5d2b96e3b462b6146f249b3d6569796/d4rl/examples/cql_antmaze_new.py#L22
https://github.com/aviralkumar2907/CQL/blob/d67dbe9cf5d2b96e3b462b6146f249b3d6569796/d4rl/examples/cql_antmaze_new.py#L22
https://github.com/aviralkumar2907/CQL/blob/d67dbe9cf5d2b96e3b462b6146f249b3d6569796/d4rl/examples/cql_antmaze_new.py#L22

For all MSG with deep ensembles experiments (that appear in Figure [2] also), and for the No
Ensembles (N = 1) baseline we ran 5 random seeds per hyperparameter choice. For all other
baselines and ablations that appear in this section we ran 2 random seeds.

For fairness of comparison, F-BRC is ran without adding a survival reward bonus. MSG and CQL
are implemented in our code, and for F-BRC we use the opensourced codebase. Our reported CQL
results appear to be better than or on par with values reported in prior works, which provided us with
confidence to use our own implementation. We used the following values for hyperparameter search:

MSG B {-4.—8}, ac{0.,0.1,051.}
CQL o € {0.,0.45,0.9,1.36,1.81,2.27,2.32,3.18, 3.63,4.09, 4.55, 5.}

F-BRC) € {0.,0.14,0.29,0.43,0.57,0.71,0.86, 1.}

B.2 Baseline Comparison

We compare MSG with deep ensembles to CQL [[11] and F-BRC[12]]. Figure [IT]presents our results
on the antmaze domains. The key takeaways of our results are as follows:

e On the D4RL antmaze domains, MSG with deep ensembles far exceeds the results of prior
state of the art result Implicit Q-Learning (IQL) [48]].

e CQL [11]] and F-BRC [12] which obtain very strong results on the D4RL Gym domains
(Appendix , completely fail on the DARL antmaze domainf] This mimics the results of
[48] that demonstrated many prior offline RL methods that perform strongly on D4ARL Gym
domains, fail on D4RL antmaze domains. We believe this highlights the importance of using
more complex offline RL benchmarks that emphasize the stiching of diverse trajectories
through dynamic programming, as opposed to offline RL datasets for Gym domains that are
qualitatively very similar to imitation learning datasets.

o1 MSG Deep Ens. (N=4) 5 MSG Deep Ens. (N=64) 5 cqQL 5 F-BRC
2 .
s
3o o . ° 013y o 075 075
.
= osle ° os{e L H 05 . 0s
& . L}
b H . . .
Bo25{® 025 025 025
E O
£ .
g 00 [] [] 00 00{ @ [] 00{® [[] [] ()
500 05000 % 00 045 09 136 161 227 232 316 363 409 455 50

e 1 1 1
T e H
Bo7s 0.75 H 0.75 0.75
T . . °

u . .
= os o5 o M 0s 0s
@ . H
N o2s ° [025 . 025 025
.8 . . ° s
£ oo 00 ooie '] '] '] ooie ° . (] .
< 8000 00 035 09 136 181 27 252 316 353 409 455 50
o1 1 1 1
3>
2 075 075 H 075 075
a . ° [}
2 .

2 05 05 05 05
v .
8

025 025 025 025
E (] [} . .
£ 00 0 (] [] 00 [] ooie '] '] '] ° ooie ° .]]

5005 o 035 09 136 151 237 252 316 389 409 455 50 D P

°
g 1 1 1
> .
Boxs 01| ® H 018 075
e .
2 os 0s 3 0s 0s
8 .
8025 025 025 025
£ o
R
<

[] [] 00{® [] 001 @ [] [] [] [] 001 @ [] [] [] []
o 005 4000 40,01 40,05 40,10 60,00 50,01 60,05 60,10 00 045 09 136 161 227 232 316 363 409 455 50 0o o1 02 03 04 05 06 07 08 09 10

Figure 11: Basline comparison on D4RL antmaze domains. The hyperparameters for MSG, CQL,
and F-BRC are (3, @), o, and) respectively. For legibility of hyperparameter values on the z-axis,
please zoom into the pdf document.

B.3 Ablations

We perform ablations w.r.t. the key components of MSG. Our key takeaways from the results in
Figures [I2] and [T3] for antmaze domains are as follows:

3Note that our implementation of CQL exceeds the reported results of the original paper on D4RL Gym
domains, providing us with confidence in our implementation. For D4RL antmaze domains we have also
experimented with the open-sourced codebase accompanying [12]], and the open-sourced codebase accompanying
the original CQL work [11], but were unable to obtain the results reported in original paper.

18

e Comparing MSG — which uses independent targets — to Shared-LCB and Shared-Min —
which use shared targets — clearly demonstrates the significance of our theoretical analysis
in Section 3] Despite differing in only 2 lines of code from MSG, Shared-LCB and Shared-
Min very significantly underpeform MSG. In fact, using no ensembling at all (N = 1)
outperforms Shared-LCB and is on par with Shared-Min.

e In the gym domains of DARL — which are close to being imitation learning datasets — using
large ensemble sizes does not result in noticeable gains in MSG.

o1 MSG Deep Ens. (N=4) 5 Shared-LCB Deep Ens. (N=4 L Shared-Min Deep Ens. (N=4) . No Ens. (N=1)

2

2o . 075 075 075

a L] .

< .

= 05 @ . . 05 05 05

&

N . H

80251 @ 0.25 025 025

E o

5 0.0 0.0 001 @ 001 @
4000 40,01 40,05 40,10 50,00 80,01 50,05 010 60,10 50,10 50,10 $0,10 $0.10 50,10 80,10 010 80,10 3010 S0 10 a0 aoto 2010 a0 10 2010

g, 1 1 1

F

Bors 075 075 075

o L]

- L]

= o0s 05 05 05

2 L]

go2si g ° ' 025 025 025

E .

£

£ 00l 8 ° 00 0ole 00l @

< 000 4001 4005 40,10 8000 50,01 3005 8010 5010 8010 50,10 8010 80,10 80,10 5010 3010 6010 3010 010 s0o adio 3010 010 2010

o1 1 1 1

2

2075 05 075 075

ﬂl L]

3

3 05 0s 05 05

o

8

£o=le] 025 025 025

& oo [] [] 0.0{ @ ']] 00{® ool ®
4000 4001 40,05 40,10 0,00 50,01 30,05 8010 50,10 50,10 5010 010 80,10 80,10 5010 3010 6010 3010 S01o s00 aoto 3010 010 2010

°

g 1 1 1

3

Bors 075 075 075

e

4 o0s 05 05 05

8 °

8 025 025 025 025

E °

€ 0.0 H 001 ® 0.0{ ®

<

40/00 40,01 40,05 40,10 80,00 80,01 80,05 80,10 50,10 50,10 50,10 50,10 50,10 50,10 50,10 80,10 50,10 50 10 50,10 5010 5010 80,10 50,10 50,10

Figure 12: Ablations on D4RL antmaze domains (N = 4). The hyperparameters for MSG, Shared-
LCB, Shared-Min, and No Ensemble are (5, «), (3,), v, o respectively. For legibility of hyperpa-
rameter values on the x-axis, please zoom into the pdf document.

o 1o MSG Deep Ens. (N=64) lShared-LCB Deep Ens. (N=64) lShared-Mln Deep Ens. (N=64) . No Ens. (N=1)

2 .

2075 015 075 075

Q]

2 05l L H 0s 0s 0s

@ [}

Nowl® .

Sozs 025 025 025

£ .

: 0.0 00l @ 0.0{ @ 00{ @
4000 4001 40,05 40,10 50,00 5001 6005 8010 80,10 50,10 50,10 50,10 60,10 50,10 50.10 0,10 5010 G010 50,10 010 5010 5010 50,10 5010

g w0 - 10 : .

> .

Bors ° 075 075 075

o (] .

2 05 M 0s 0s 05

T '] L)

8 ° .

8oz 025 025 02s

E

E L]

£ 00 00 00{® 00{®

€ 5004001 40,05 40,10 0,00 8001 50,05 5010 50,10 50,10 80,10 80,10 50,10 50,10 80,10 80,10 010 s010 50,10 010 3010 5010 50,10 rofTS

o 10 10 1 1

>

5 .

2075 H 075 075 075

llﬂ L]

3 °

3 o5 0s 0s 05

o L]

b

025 . 025 025 025

E .

€

£ oo 00 00{® 00{®
4900 40,01 40,05 40,10 50,00 80,01 80,05 5010 80,10 50,10 50,10 80,10 80,10 50,10 50,10 80,10 010 s010 50,10 010 3010 5010 50,10 2010

°

g e 10 1 1

S le °

Bors H 075 075 075

z

< 05 3 05 05 05

&

8

8025 025 025 025

E

) 00 0ole 00{®

<

40,00 40,01 40,05 40,10 60,00 60,01 60,05 50,10 50,10 50,10 50,10 50,10 60,10 60,10 60,10 50,10 50,10 80,10 50,10 50,10 80/10 50,10 50,10 50,10

Figure 13: Ablations on D4RL antmaze domains (N = 64). The hyperparameters for MSG,
Shared-LCB, Shared-Min, and No Ensemble are (3, «), (3,), «, « respectively. For legibility of
hyperparameter values on the z-axis, please zoom into the pdf document.

B.4 Efficient Ensembles
As discussed in Section[5.3] we evaluate whether the performance of MSG with deep ensembles

can be matched using state-of-the-art “efficient ensembles" from supervised learning literature. Our
takeaways from the results in Figures [T4]and [I3]for antmaze domains are as follows:

19

e Despite efficient ensembles such as Batch Ensembles performing well on the D4ARL Gym
domains (Appendix [A-4), they fail on the antmaze domains for both ensemble sizes of
N =4and N = 64.

MSG Multi-Head Ens. (N=4)

MSG MIMO Ens. (N=4) MSG Batch Ens. (N=4)

MSG Deep Ens. (N=4)
9 10 10 10 10
2 [
2o . 075 075 075
a . .
: .
= os{® . ° 05 05 05
@
N . M
Soxsi e 025 025 025
.
E .
£ 0o 0.0 0.0 (] [® 001 @)
40100 4001 40,05 40,10 50,00 80,01 60,05 50,10 40,00 40,01 40,05 40,10 50,00 80,01 80,05 80,10 40,00 40,01 40,05 40,10 50,00 80,01 80,05 80,10 40,00 40,01 40.05 4010 50,00 80,01 80,05 50,10
°
S 10 10 10 10
2 L)
8075 075 075 075
o . «
> H °
2 05 0s . 0s . 0s
] . °
§025(o .] 025 0.25 : . 0.25
£..ls o H
£ 00 ool e o . e owole . oole >
< 40,00 40,01 40,05 4.0,1.0 -8.0,0.0 80,01 -80, 05 8.0,1.0 40,00 40,01 40,05 4.0.1.0 -80,0.0 80,01 60,05 8.0,1.0 40,00 40,01 4.0,05 -40,10 8.0,0.0 -80,0.1 8.0,0.5 80,10 40,00 40,01 -4.0,0.5 40,10 -80,0.0 80,01 80,05 80,10
9 10 10 10 10
2
2075 075 075 075
a .
2 os - 0s 05 05
@
N
'E‘uzs . [] 025 025 025
£ .
& 00 (] [] 00{® °] Y 00 []] 00{®] (] (]
440,00 40,01 40,05 40,10 80,00 50,01 80,05 8010 -40.00 40,01 40,05 40.10 80,00 50,01 80,05 80,10 4000 40,01 40,05 40,10 40,00 80,01 80,05 80,10 4000 40,01 40,05 40,10 50,00 80,01 80,05 50,10
°
g 10 10 10 10
Fy
mo7s 075 075 075
3
< o0s 0s 05 05
- .
©025 025 025 0.25
E °
] . . .
£ ools e oole ° . e owole (] . . oole] . .
440,00 40,01 40,05 40,10 80,00 80,01 80,05 8010 -40.00 40,01 40,05 40.10 80,00 50,01 80,05 80,10 4000 40,01 40,05 40,10 50,00 80,01 80,05 80,10 4000 40,01 40,05 40,10 50,00 80,01 80,05 50,10

Figure 14: Efficient ensembles on D4RL antmaze domains (N = 4). The hyperparameters for MSG
are (3, «). For legibility of hyperparameter values on the z-axis, please zoom into the pdf document.

o MSG Deep Ens. (N=64) .oMSG Multi-Head Ens. (N=64) | MSG MIMO Ens. (N=64) N MSG Batch Ens. (N=64)
2 .)
T s
2o 075 075 075
Q L]
= os{e L 3 05 . 05 05
]]
o L] . 025 0.25 ° 025
£ .
£ 00 00 ooie . hd ool e °
4000 40,01 40,05 40,10 60,00 80,01 50,05 50,10 40,00 40,01 40,05 40,10 80,00 90,01 60,05 50,10 40,00 40,01 40,05 40,10 80,00 80,01 60,05 40,10 40,00 40,01 40,05 40,10 60,00 80,01 50,05 50,10
°
R — - 1 1 1
> .
Bos H 075 075 075
o
o L] H .
2 05l . 0s 0s 0s
- . .
Bo2s 025 025 025
E.le [
£ oo 00 ° 00 o 00 o
< 40000 40,01 40,05 40,10 60,00 80,01 80,05 €0, 1.0 440,00 40,01 40,05 4.0, 10 .0,0.0 -80,0.1 -80,05 60,10 40,00 40,01 40,05 40,10 80,00 60,01 60,05 80,10 40,00 40,01 40,05 40,10 60,00 80,01 -80.05 80,10
o1 1 1 1
3 °
2075 0 075 075 075
a °
3 °
2 05 05 05 0s
T .
]
025 . 025 . 025 025
E .
] °
& oo 00 » 00 o oole o
4000 40,01 40,05 40,10 60,00 80,01 80,05 8010 40,00 40,01 40,05 40,10 50,00 90,01 80,05 80,10 40,00 40,01 40,05 40,10 80,00 90,01 60,05 50,10 4000 40,01 40,05 40,10 60,00 80,01 40,05 50,10
°
g 1 1 1
5 . °
Bos H 075 075 075
3 a .
= os 05 05 0s
@ H ¢
8
8o2s 025 025 025
£
g o0 o ° ° o
4000 40,01 40,05 40,10 60,00 80,01 £0.05 8010 40,00 40,01 40,05 40 10 50,00 90,01 80,05 80,10 40,00 40,01 40,05 40,10 80,00 40,01 60,05 50,10 4000 40,01 40,05 40,10 60,00 80,01 40,05 50,10

Figure 15: Efficient ensembles on D4RL antmaze domains (N = 64). The hyperparameters for MSG
are (3, «). For legibility of hyperparameter values on the z-axis, please zoom into the pdf document.

C RL Unplugged

C.1 DM Control Suite Tasks

The networks used in [25] for DM Control Suite Tasks are very large relative to the networks we used
in the D4RL benchmark; roughly the networks contain 60x more parameters. Using a large ensemble
size with such architectures requires training using a large number of devices. Furthermore, since
in our experiments with efficient ensemble approximations we did not find a suitable alternative to
deep ensembles (section[5.3), we decided to use the same network architectures and N = 64 as in
the D4RL setting (enabling single-GPU training as before).

Our hyperparameter search procedure was similar to before, where we first performed a coarse search
using 2 random seeds and hyperparameters 8 € {—1., —2., —4. — 8.}, € {0., 0.5}, and for the best
found hyperparameter, ran final experiments with 5 new random seeds.

20

D Algorithm Box

Algorithm 1: Pseudocode for MSG Algorithm Using Deep Ensembles

Input: offline RL dataset D, QQ-function and policy architectures, ensemble size N, MSG
hyperparameters 3, «v

Create N Q-networks (Qy:, with parameters sampled from the initial weight distribution

Create target networks @, initialized as 6% «+— 6"

Create the policy network 7 with parameters 6™

Function PolicyEvaluationStep (batch):

for:=1,....,Ndo

/* Compute policy evaluation loss */
Vs, € batch,al ,, ~ (sy,)
2
L(0) = 2 X (Qor (5ms) = (7 47+ Qi (510, 1))
/* Compute support constraint regularizer loss */

Vs € batch, ar m ~ w(s),

H(0:) = ﬁ > Qoi (Smy arm) — Qoi (Sm, am)

/* Optimize the policy evaluation objective */
L(0") = L(6") + - H(0")

0 g — AdamUpdate(c(ai), 9i)

07104+ (1—71)-6;

Function MSGPolicyOptimizationStep (batch):

/* Compute LCB QQ-values */
Vs € batch, ar m ~ T(Sm)

vS'm S bat0h7 QLCB (Sm7 aﬂ',m) = meia'n [Qé)l (Sm7 aw,m)] - 5 : St;d [QO’* (Sm7 a‘n’,m)]

/* Optimize the policy objective */
ﬁ(eﬂ—) = ﬁ Z'rn, QLCB(S’N'H amm)

0™ < 0™ — AdamUpdate (ﬁ(@”), 9”)

Function Main():
/* Optional initialization of the policy using behavioral cloning
while training ()-functions */
for desired number of steps do
batch ~ D
PolicyEvaluationStep(batch)
Update 7 using behavioral cloning
for desired number of steps do
batch ~ D
PolicyEvaluationStep(batch)
MSGPolicyOptimizationStep(batch)

E Efficient Ensemble Approaches

Multi-Head [26,50,/51] Multi-Head refers to ensembles that share a “trunk"” network and have
separate “head" networks for each ensemble member. In this work, we modify the last layer of a
@-network to output N predictions instead of a single (Q-value, making the computational cost of
this ensemble on par with a single network.

Multi-Input Multi-Output (MIMO) [27] MIMO is an ensembling approach that approximately
has the same parameter and computational footprint as a single network. The MIMO approach
only modifies the input and output layers of a given network. In MIMO, to compute predictions for
a data-point z under an ensemble of size IV, x is copied N times into z1, ..., xy, which are then

21

concatenated and passed to the network. The output of the network is a vector of size IV, which is
split into N predictions y1, ..., y v representing the predictions of the ensemble members. For added
clarification, we include Figure[T6|depicting how a MIMO ensemble network functions. For further
details on how MIMO networks are trained, we refer the interested reader to the original work of
[27]].

Batch Ensembles [28] Batch Ensembles incorporate rank-1 modulations to the weights of fully-
connected layers. More specifically, let W be the weight matrix of a given fully-connected layer,
and let « be the input to the layer. The output of the layer for ensemble member ¢ is computed as
o((WT (2 or?))os’) 4 b'), where o is the element-wise product, parameters with superscript 7 are
separate for each ensemble member, and o is the activation function. While Batch Ensembles is
efficient in terms of number of parameters, in our actor-critic setup its computational cost is similar to
deep ensembles, since for policy updates we need to evaluate every ensemble member using separate
forward passes.

F Theorem Proof
In this section, following our notation and inifite-width networks setup described in Section[3.1] we
present the proof for the following Theorem.

Theorem F.1. Fora given (s,a) € Sx A, let Qé?) (s, a) denote Qgi (s, a)|i=o (value at initialization),
with 0 sampled from the initial weight distribution. After t + 1 iterations of pessimistic policy
evaluation, the LCB value estimate for (s',7(s")) € X' is given by,

Independent Targets (Method 1):

2
(@) = 0 ICI) + (1 + ... +4'C)CR - JE (14 qren@ (@) - @ ()|
(6)
Shared Targets (Method 2):

(@) = 00O + (1 + .. +7'CHCR = (1+ ... +wtct>\/mens[(czé?)<»w> -0 w))]
(N

where the square and square-root operations are applied element-wise. E]

Proof. First we will establish some additional notation.

Consider an infinite-width NTK-parameterized [45]] Q-function and let Q(*)(s, a) denote its value
prediction for state-action pair (s, a) after ¢ iterations of pessimistic policy evaluation. We will use the
notation A®) to refer to the parameters of this network after ¢ iterations, but for simplicity of notation,
when the context is clear we will omit the use of (*). Additionally, consider the linearization (Taylor
expansion) of () about its initialization:

Qlin(& a) = Q(O) (87 a) + VGQ(O) (8, a) : (glin - 0(0)) (8)
(t)

When performing pessimistic policy evaluation using linearized networks, we will use (),

(®)

lin

(s,a)to
denote the value prediction of Qy;, after ¢ iterations, and will use ¢
Note that 91(&) =0 and that ¥(s, a), Q¥ (s,a) = Ql(ion)(s, a).

In [52] (section 2.4) it is shown that when training an infinitely wide neural network to perform
regression using mean squared error, subject to technical conditions on the learning rate used,
the predictions of the trained network are equivalent to if we had trained the linearized network

instead. This means that after ¢ iterations of our policy evaluation procedure, ¥(s, a), ¢, Ql(fz (s,a) =

QW (s, a). Hereafter we study the evolution of ensembles of linearized infinite-width networks, Q1in,
across training iterations.

to refer to its learned weights.

SNote that if v||C|| > 1, policy evaluation is liable to diverge in either setting. In our discussions, we avoid
this degenerate case and assume v||C|| < 1.

22

As areminder, X', R, X' denote data matrices containing (s,a), r, and (s, w(s’)) appearing in the
offline dataset D; i.e., the k-th transition (s, a,r, s’) in D is represented by the k-th rows in X', R, X”.
Additionally, we defined C' := ©©)(x’, X) -) (x, xX)~!. Below, we will use notation such
as Q(X) to mean applying @ to each row of X and stacking the predictions into a vector. By
0O ((s,a), X) we mean to treat (s, a) as a row matrix and compute the 1 x |D| kernel matrix.

Derivation for Independent Targets When using Independent Targets, in iteration ¢ + 1 each
network uses its own temporal difference (TD) targets,

YO = R+4QW (x") 9)

Using the equations in [S2] (section 2.2, equations 9-10-11) we can derive,

@+n(x)=y® (10)

lin

s, 0, Qi (5,0) = QO (5,0) + 6 ((5,0), %) - 6 (X, 1) (¥O - (1)) ()
@) = QO + 60 (¥, 2) 60 (1, 4)7 - (YO - @O)) a2

Plugging in the expression for the targets J(*) and recursively expanding the expressions above we
obtain,

@) = QU + 6 (1, x) - 6 (x, X)* (- Q<0><X>) (3)
= QO + 60 (¥, 2)- 6 (x,2) " - (R+7Q{X) - QX)) (14)
= Q) +C - (R+7Q) - Q) (15)
= QO (X') + CR — CQ(X) +1CQP (X (16)
=... a7
= (1+...+9'C) Q) + CR - CQU(X)) + (1) QW) (8)

Per our earlier discussion above, from Equation @ we can conclude that,
QUII(A) = QI () = (14 47" (QU(X) + CR-CQO (X)) + (1O) 1 QO (X)
19)

We can now derive Q1,cp for the Independent Targets setting, by computing the expectation and
variance of Q1) () with respect to the initial weight distribution. Following [52]] we obtain,

Eens[@QTV(X)] = (1+... +7'C")CR (20)

2
Ve [QU V(X)) = Fo ((1 et (@O - O) + <vc>f+1c2<°><»c’>>]

21

= By <(1 T ytcf) (Q(O)(X’) - CQ(O)(X))> 2

+ 03¢ C)Y) (22)

‘We thus have,

(35 (X) = Eans[QUD(A)] — 3/ Vens[QUHD (A7) 23)
=0 CII") + (L +...++'CH)CR

S T ——

where the square and square-root operators are applied element-wise. Note that if v||C|| > 1, policy
evaluation is liable to diverge. Thus, in our discussions we avoid this degenerate case and assume
v|IC|| < 1, which makes the term O(+*||C||*) negligible as ¢t — oo.

23

Derivation for Shared LCB Targets When using Shared LCB Targets, in iteration ¢t + 1 each
network uses pessimistic temporal difference (TD) targets that are shared amongst ensemble members,

Y™ — LCB (R +4QW (x)) (24)
— R+ LCB(1Q)(x")) (25)
Using the equations in [52] (section 2.2, equations 9-10-11) we can derive,

Xy =y 26)
¥s,0, Q) (5,0) = QU(s,0) + 6 (5,0, %) - 6@ (X, 2) 7+ (Y0 - QO()) @7)
U () = QO(X) + 6O (X, X) - 6O (¥, x) " (y(t) _ Q(m(;()) (28)

= QU@ +C- (¥ -V W) 29)

Noting that in the Shared-LCB setting))*) is not a random variable, we can now compute the
expectation and variance of Q(t+1 (X') with respect to the initial weight distribution,

Bl (¥)] = B [@V(1) + 0+ (Y0 - @O@) [=¥ Go)
2
Vens| l(it:l)(xl)] Eene [(Q(O X' — CQ(O)(X)) } =sameVt+1>1 31
Let A:=4/V] l(lt;r 2 (X")]. Given the above equations, we can recursively compute the closed form

for Y® as follows,

YO = R+ LCB(1Q{) (")) (32)
= R+ [E[Q{)(X)] - V(X)) (33)
=R+~- {Cy(tfl) — A] (34)
= R—~A+~yCYED (35)
— ... (36)
= (14 ... 447 C" (R — ~A) +4'C1Y© (37)

= (14... 97 1C (R = vA) +4'CTR + 41 CTLCB(Q (X)) (38)

Based on this form, we can write,

Eews[Qi (X)) = YO (39)
=(1+...49'CHCR— (vC + ... +4'CHA+ 41 CTILCB(Q™ (X))
(40)

Combining our derivations, and noting from our earlier discussion that V(s, a),t, th(s, a) =
QWM (s, a), we have,

(X)) = Bang [QUHD (X)) —) Vens[QUHD (X7)] (41)
= Eens[QU (X)) — \/ Vens[QU (A7) (42)
=(1+...4+9'CHYOR — (7C + ... +7'CHA + 4T CTLCB(QO (X)) — A

(43)

=(1+...49'CHCR = (14 ... + ' CHA+ATICHILCB(QO (X)) (44)

Thus, we have our results,

24

@) = 0HIC) + (1 + ... +1'CHCR (45)

— O B (@) QP))]

where the square and square-root operators are applied element-wise. Note that if v||C|| > 1, policy
evaluation is liable to diverge. Thus, in our discussions we avoid this degenerate case and assume
v|IC|| < 1, which makes the term O(+*||C||*) negligible as ¢t — oco.

The derivations of Equations|23|and {45|conclude our proof. O

G A Pedagogical Toy MDP

Independent Ind. Double-Q Shared Mean Shared LCB Shared Min

130 130 130 130 130

120 120 120 120 120
—~110 110 110 110 110
Y 100 | _——— | 100 _—— | 100 . _—— | 100 100
= I | —
oo —1 sof % // 90 9%
D 80 80 80 80 80
(SEED 70 70 70{_ 70

60 60 60 60 60— |

50 50 50 50 50

-100 -033 033 100 -100 -0.33 033 100 -100 -033 033 100 ~-L00 -0.33 033 100 -100 -033 033 100
state state state state state

Figure 17: Verifying theoretical predictions on the toy Continuous Chain MDP. The marked interval
[—0.33,0.33] denotes the region of state-space with no data. As anticipated by Theorem when the Q-value
functions are trained independently, the derived uncertainties capture the interaction between the available data,
the structure of the MDP, and the policy being evaluated.

G.1 Qualitative Evaluation of Obtained Uncertainties

In this section we continue to study the implications of our theoretical results in Section [3| by
constructing a pedagogical toy MDP. Our simple toy MDP allows us to follow the idealized setting of
the presented theorem more closely, and allows for visualization of uncertainties obtained through
different ensembling approaches.

Continuous Chain MDP The MDP we consider has state-space S = [—1, 1], action space A € R,
deterministic transition dynamics s’ = s + a clipped to remain inside S, and reward function
r(s,a) = 1[s' € [0.75,1]].

Data Collection & Evaluation Policy The offline dataset we generate consists of 40 episodes,
each of length 30. At the beginning of each episode we initialize at a random state s € S. In each
step we take a random action sampled from Unif(—0.3,0.3), and record all transitions (s, a,r, s’).
For evaluating the uncertainties obtained from different approaches, we create regions of missing
data by removing all transitions where s or s fall in the range [—0.33,0.33]. The policy used for
policy evaluation with the different ensembling approaches is Vs, 7(s) = 0.1.

Optimal Desired Form of Uncertainty Note that the evaluation policy 7(s) = 0.1 is always
moving towards the positive direction, and there is lack of data for states in the interval [—0.33, 0.33].
Hence, what we would expect is that in the region [0.33, 1] there should not be a significant amount
of uncertainty, while in the region [—1, 0.33] there should be significantly more uncertainty about
the Q-values of 7, because the policy will be passing through [—0.33, 0.33] where there is no data.
Furthermore, as we move towards the negative axis, we would expect that in the region [—0.33, 0.33]
the uncertainty would gradually increase, while in the region [—1, —0.33] the uncertainty would not
continue to increase.

Results We visualize and compare the uncertainties obtained when the targets in the pessimistic
policy evaluation procedure are computed as:

25

Independent Targets (as used in MSG): y* = r + v - Qqi(s',7(s"))

Independent Double-Q Targets: 3° = r + ~ - min [Q})i (s',m(s")), Q2 (s, w(s’))]

Shared Mean Targets: y = r + 7 - mean |:Q011 (¢, w(s’))}

Shared LCB Targets: y = r + v -

mean |:Q9i (s, w(s’))} —2-std {Qei (s, W(SI))H

e Shared Min Targets: y = r + - - min |:Q9i(8/, w(s’))}

Note that Independent Double-Q is still an independent ensemble, where each ensemble member
has an architecture containing a min-pooling on top of two subnetworks.

In Figure[I7]we plot the mean and two standard deviations of the -values predicted by the ensemble
for the policy we evaluated, w(s) = 0.1 (additional experimental details presented in Appendix .
The first striking observation is that, Independent targets (as used in MSG) effectively match our
desired form of uncertainty: states that under the evaluation policy 7(s) = 0.1 would lead to regions
with little data have wider uncertainties than states that do not. A second observation is that, in
this toy construction, Shared LCB and Shared Min provide a seemingly good approximation to
the lower-bound of Independent predictions. However, our theoretical results show that shared
targets have critical failure cases. Furthermore, our empirical results on challenging benchmark
domains (Section [5.1I)) demonstrate that Shared LCB and Shared Min targets completely fail to
train successful policies, despite their implementation differing from Independent targets in only 2
lines of code.

G.2 NTK vs. Maximal Parameterization

The toy experiment presented in section uses a single-hidden layer finite-width neural network
architecture with tanh activations. The networks use the “standard weight parameterization" (i.e.
the weight parameterization used in practice) as opposed to the NTK parameterization [S3[], and we
optimize the networks using the Adam optimizer [54]. While this setup is close to the practical setting
and demonstrates the relevance of independent ensembles for the practical setting, an important
question posed by our reviewers is how close these results are to the theoretical predictions presented
in[3.1] To answer this question, we present the following set of results.

Using the identical MDP and offline data as before, we implement 1 hidden layer neural networks
with erf non-lineartiy. The networks are implemented using the Neural Tangents library [53], and
use the NTK parameterization. The networks in the ensemble are optimized using full-batch gradient
descent with learning rate 1 for 500 steps of Fitted @-Evaluation (FQE) [55], where in each FQE
step the networks are updated for 1000 gradient steps. We vary the width of the networks from 32
to 32768 in increments of a factor of 4, plotting the mean and standard deviation of the network
predictions. The ensemble size is set to N = 16, except for width 32768 where N = 4.

We compare the results for finite-width networks to computing results for the infinite-width setting
in closed form (using Theorem [3.1). Using the Neural Tangents library [53] we obtained the NTK
for the architecture described in the previous paragraph (1 hidden layer with erf non-linearity). We
found that the matrix inversion required in our equations results in numerical errors. Hence, we make
the modification (X, X) + O(X, X) + 1e-3 - L

Figure 8] presents our results. As the width of the networks grow larger, the shape of the uncertainties
becomes more similar to our closed-form equations (i.e. the variances become very small). While we
do not have a rigorous explanation for why finite-width networks exhibit intuitively more desirable
behaviors, we present below a strong hypothesis backed by empirical evidence. We believe rigorously
answering this question is an incredibly interesting avenue for future work.

Hypothesis: Infinite-width networks in the NTK parameterization do not learn data-dependent
features [56]. [56] present a different approach for parameterizing infinite-width networks called
the “Maximal Parameterization", which enables inifinite-width networks to learn data-dependent
features. We perform the same experiment as above, by replacing the NTK-parameterized networks
with Maximal Parameterizations. Figure|18|presents our empirical results for network widths from

26

32 to 32768. Excitingly, we observe that with Maximial Parameterization, even our widest networks
recover the intuitively desired form of uncertainty described in section [G.I]! The solutions of these
networks also appear much more accurate, particularly on the right hand side of the plot; we can
observe the correct stepped structure of the () — values up until the interval [0.75, 1] where the policy
always receives a reward of 1. Each step appears to be approximately 0.1 in width, which is size of
the action of the policy being evaluated, Vs, 7(s) = 0.1.

NTK Parameterization

Width = 32 Width = 128 Width = 512
120 180
—
110 160 100
100 140 80
% //__//- 2oy 4 60
100 F\ -
80 o 2
70 60 .
60)
-100 033 033 1.00 -100 033 033 1.00 -100 033 033 1.00
Width = 2048 Width = 8192 125 Width = 32768 Infinite Width
120 105))
110 L 100 L 120 / 8
100 95 82
%0 %0 115
80 85 80
70 80 110 7
S s 76
50 0] 105
40 65 100 “

-1.00 -0.33 033 1.00 -1.00 -0.33 033 1.00 -1.00 -0.33 033 1.00 -1.00 -0.33 033 1.00

Maximal Parameterization

Width = 32 Width = 128 Width = 512
100 100
100 o i~
80 /
ot P 80 /
2 o 0
20 60 oy
o = 60
-20 4
—Too 033 033 100 —Too ~033 033 1.00 —Too ~033 033 1.00
Width = 2048 Width = 8192 Width = 32768
100 100 100

s e

95

90 /
% 90

80 85 85 /

80)
75 Bl
o 7 70
65 65
100 033 053 100 100 033 033 100 100 033 033 100

Figure 18: Comparing results of finite-width networks to closed form equations derived in Theorem
@ In the NTK parameterization, as width — oo, the structure of the variances collapse and resemble
the infinite-width closed-form results. We believe this is due to infinite-width networks under the
NTK regime not being able to learn features [56]]. Supporting this hypothesis, we observe that
networks parameterized by the Maximal Parameterization of [56] maintain the desired uncertainty
structure as the width of the networks grows larger.

G.3 Additional Implementation Details for Figure[17]

To evaluate the quality of uncertainties obtained from different ()-function ensembling approaches,
we create N = 64 Q-function networks, each being a one hidden layer neural network with hidden
dimension 512 and tanh activation. The initial weight distribution is a fan-in truncated normal
distribution with scale 10.0, and the initial bias distribution is fan-in truncated normal distribution
with scale 0.05. We did not find results with other activation functions and choices of initial weight
and bias distribution to be qualitatively different. We use discount v = 0.99 and the networks are
optimized using the Adam [54] optimizer with learning rate 1e-4. In each iteration, we first compute
the TD targets using the desired approach (e.g. independent vs. shared targets) and then fit the
Q-functions to their respective targets with 2000 steps of full batch gradient descent. We train the
networks for 1000 such iterations (for a total of 2000 x 1000 gradient steps). Note that we do not use
target networks. Given the small size of networks and data, these experiments can be done within a

few minutes using a single GPU in a Google Colaboratory notebook which we have included in
the supplementary material.

27

H Practical Workflow for Applying MSG to New Offline RL Datasets

Throughout this work, we have reported the results for every method, domain, hyperparameter choice,
and random seed. Based on our experience, in this section we outline a practical workflow for
applying MSG to new offline RL environments and datasets.

In addition to the the key take-aways from our discussion of Figure [2| in Section here we
include practical advice on hyperparameter tuning when applying MSG to a new domain. Aside
from the choice of neural network architectures, the main hyperparameters in MSG are /3, i.e.
the hyperparameter controlling the amount of pessimism in Qrcp (Equation [, and «, i.e. the
hyperparameter controlling the contribution of the CQL-style regularizer (Equation[5). Intuitively,
as described in Section [4.2] larger values of o become necessary when the offline dataset has a
narrow distribution (e.g. imitation learning datasets), or in MDPs with more chaotic dynamics,
where small deviations can be very costly and thus we must stay close to the provided data support.
Equipped with this intuition, for a new offline RL task and dataset, we would first use low /3 values
(e.g. B € {—4, —8} or lower), and search for an appropriate range of o (which may be 0, as in our
reported antmaze-large results in Table[I). For further hyperparameter tuning from this starting point,
we would investigate if reducing pessimism by increasing 8 — and potentially modifying oo — would
lead to improved policies. Generally, we find MSG to be fairly robust, as evidenced by our results in

Appendices[A]and[B] and Figure

I Statistical Model

(a) Q-function generative process: the graphical model .

above represents the induced distribution over Q-

functions when conditioning on a particular policy eval-

uation algorithm, policy, offline dataset, and Q-function (b) An example of an interesting extension
network architecture.

&0

An interesting question posed by reviewers of our work was “[W]hatever formal reasoning system
we’d like to use, what is the ideal answer, given access to arbitrary computational resources, so that
approximations are unnecessary? l.e., how do we quantify our uncertainty about the MDP and value
function before seeing data, and how do we quantify it after seeing data?"

It is important to begin by clarifying what is the mathematical object we are trying to obtain
uncertainties over. In this work, we do not quantify uncertainties about any aspects of the MDP
itself (although this is an interesting question which comes up in model-based methods as well
as other settings such as Meta-Learning [57) 158]). Our goal in this work is to directly estimate
Q™ (s,a) =71(s,a) + v - Eymppa~=|Q(s',a’)], for a ~ m(s), and to obtain uncertainties about

Q™ (s,a).

Let Q(s,a) be a predictor S x A — R that needs to be evaluated on — and hopefully generalize well
to— (s,a) ¢ D, where D is the offline dataset. When we choose to represent (s, a) using neural
networks, Gaussian Processes, or K-nearest-neighbours, we are not just making approximations for
computational reasons, but are actually choosing a function class which we believe will generalize
well to unseen (s, a).

One practical example of learning ()-functions is to use Fitted Q-Evaluation (FQE) [S5] on the
provided data using gradient descent with a desired neural network architecutre. Due to the random
weight initialization, this procedure induces a distribution on the ()-functions which is captured by
the probabilistic graphical model (PGM) in Figure In other words, by conditionining on the
policy, data, architecture, and policy evaluation algorithm, we are imposing a belief over ()-functions.
Note that this is effectively the same justification as using ensembles in supervised deep learning,

28

where ensembles are state-of-the-art for accuracy and calibration [17]. For the sake of theoretical
analysis (Section E]), we studied this belief distribution under the infinite-width NTK [45] 52] network
setting, in which case the distribution over ()-functions is a Gaussian Process.

The focus of this work is to ask the question: “Under this imposed belief, what should the policy
update be?". Our proposed answer is to optimize the policy with respect to the lower-confidence
bound of our beliefs: In the standard actor-critic setup, the policy optimization objective takes the form
max, g5 [Q(s, 7(s))], where d(s) is some distribution over states (e.g. the initial state distribution,
a uniform distribution over states in the offline dataset D, etc.). For the pessimistic offline RL settting,

our proposed policy optimization objective takes the form max, LCB (Ed(s) [Q(s, 77(3))]) . In MSG,

for practical reasons, we convert this to max, q(s) {LCB (Q(s, Tr(s))ﬂ (which is a lower-bound of
the latter objective).

The graphical model in Figure [I9b] also highlights an example of interesting future directions:
Consider an offline RL setup where we keep track of the various policies generating the data and
their Q-functions (approximated through Monte-Carlo estimation). Then, we can impose a prior
distribution over architectures, and using the available QQ-functions, infer a posterior distribution over
architectures (for a probabilistic interpretation, we could treat the output of a (Q-function as the mean
of a standard normal distribution). Subsequently, given a new policy, we can learn its (J-function
under the posterior neural network architecture distribution.

J Runtime Comparison Table

Method Runtime
No Ens. (N =1) (o > 0) 1x
CQL 0.27x%
F-BRC 0.22x
MSG Deep Ens. (N = 4) 0.64x
MSG Multi-Head Ens. (N = 4) 0.92x
MSG MIMO Ens. (N = 4) 0.90x
MSG Batch Ens. (N = 4) 0.72x
MSG Deep Ens. (N = 64) 0.11x
MSG Multi-Head Ens. (N = 64) 0.88x
MSG MIMO Ens. (N = 64) 0.61x
MSG Batch Ens. (N = 64) 0.29x

Table 2: Runtime comparison of various approaches. We report training iterations per second, relative to no
ensembling while using the CQL-style regularizer described in Section[f.2] All methods were trained on an
Nvidia P100 GPU.

K MSG-LCB vs. MSG-Min

In the deep offline RL literature, ensembles are typically employed using the Shared-Min Targets
formulation [9} 3| |8 4]]. Under the NTK setting of Theorem @], using the min formulation is
mathematically infeasible, since the distribution of (J-values under the ensemble is Gaussian, leading
to infens Q(s,a) = —oo for all (s,a). Additionally, using the LCB formulation provides the g
hyperparameter as a knob for tuning the extent of pessimism. Nonetheless, in practical settings with
finite ensemble sizes, using MSG with a min formulation is feasible. Figure 20| presents our empirical
results comparing MSG-LCB and MSG-Min on the D4RL antmaze domains. We observe that on
the antmaze-medium domains MSG-Min may be more robust, while on the antmaze-large domain,
MSG-LCB may lead to better results.

29

MSG-Min Deep Ens

. (N=64)

MSG-LCB Deep Ens. (N=64)
|

e 10 1.0
2 °
> °
Fors 0.75
. ° °
= 05 ° 0.5
8
8 0.5 o 025
£ .
<=t 0.0 0.0
-8.0,0.0 -8.0,0.1 -8.0,0.5 -8.0,1.0 -4.0,0.0 -4.0,0.1 -4.0,0.5 -4.0, 1.0 0.0 0.1 0.5 1.0
S 10 1.0
d [] .
> [] []
B o075 0751 o
2 [
E 0.5 z 0.5
N
Roxs]® 0.25
£
£ []
€ 0.0 0.0
< -8.0,0.0 -8.0,0.1 -8.0,0.5 -8.0,1.0 -4.0,0.0 -4.0,0.1 -4.0,0.5 -4.0, 1.0 0.0 0.1 0.5 1.0
© 10 1.0
T e
2075 e] 0.75
=] [}
< os . L 0.5
; .
) []
b
025{ @ 0.25
£ °
H]
& oo 0.0
-8.0,0.0 -8.0,0.1 -8.0,0.5 -8.0,1.0 -4.0,0.0 -4.0,0.1 -4.0,0.5 -4.0,1.0 0.0 0.1 0.5 1.0
°
S 1.0 1.0
> [4 °
Bo75{ @ 0.75
o °
= 05 ’ 05
P $
N
€ 0.25 0.25
£
£ oo () 00l @
go .

-8.0,0.0 -8.0,0.1 -8.0,0.5 -8.0,1.0 -4.0,0.0 -4.0,0.1 -4.0,0.5

Figure 20: Comparison of LCB and Min formulation of MSG on the D4RL antmaze domains. The
hyperparameters for MSG-LCB, and MSG-Min are (3, &) and « respectively. For legibility of
hyperparameter values on the z-axis, please zoom into the pdf document.

L Definition of Deep Ensembles

In the deep learning literature, deep ensembles refers to the setting where an ensemble of neural
networks with identical network architectures are trained using the same data and objective func-
tions, with the only difference in ensemble members being the random weight initialization of the

networks [[43}[17]].

-4.0,1.0

30

0.0

0.1

0.5

1.0

MSG Deep Ens. (N=4) MSG Deep Ens. (N=64) CQL F-BRC

o 1000 1000 1000 1000
2 70 750 750 750
Y (]] e e . . .
2 s00 . . 50.0 . . 500 @ v e e s00] ®
= ° e ° e L] o ° ° °
g 20 250 250 250
00 00 00{ @ 00
S 1000 1000 1000 1000
5 750 750 750 750
; . . ° .
B 500 50.0 50.0 L] . 3 500
9 (] Y . ° L] . o ° e L4 * . e ° o .
5 2.0 250 250{ ® 250
T oo 00 00 ° 00] ® i
o
100.0 1000 1000 . ° ° 100.0
i . . . ° . . (] ° ° . (] L] (] o L4 [] L]
£ 750{ @ 750{ ® 750{ @ 750
o
E 5001 ® 50.0 50.0 50.0
5 2.0 250 250 250{ ®
T oo 0.0 00{ @ 00] @
.] . .
1000 . 1000 . . 1000 1000
~ . . ° s ° ° 0 . . .
2 750 750 750 750
& .
& s0o 500 ° 500 500
o
I 250 25.0 25.0 25.0
0ol @ 0oi 8 wle e 00
g0 1000 1000 1000
3 750 L4 75.0 75.0 75.0
1
£ 500] s 0y 500 00 . N s00 e i 00 05 e 500 Sl geret g,
T .]
0 250 L] 25.0 25.0 25.0
T []
00 00 00{ ® 00
o
S 1000 100 o 1000 e 00 ecveane wole o o o @
&
& 70 e . e . 750 N . 750 750
B s00 o L] . 50.0 L] : 50.0 50.0 .
= . . . 0
g =0] 250 . 2501 8 250 e o8 oe
T oo 00 00 00
o 0
S 1000 1000 ° 1000 .] L4 . 1000 L] L] L])
3 . . . e A4
X 750 75.0] L] 75.0 75.0
oy L] . (]
B s00 . 500 . . 500 o 50.0
= . . [}
3 o 0l g . 250 250
I o0{® 00 00{ ® 00
e e LR LR B]
o 1000 e . . 1000 . . 1000] 1000 °
% o . . . R
8 O ° . - H
W o500 500 . 500 500
&
g 0 . 250{ 8
T ' ' °
0.0 00 ® 00{ ® 0.0
g w00 1000 1000 1000
> . e ° °
3 10] ° 750] P 750 750 8783808,
]
5 500 N L 500 500 500
g 250 250 250 250
.
ool 8 4 00{ ® 00{ ® ° 00{ ® .
I
7 w00 1000 1000 1000 .
L] [}
& 150 . R 750 LI 01, 750 LI 750 e S oo
- .
g 50.0 . . 50.0 ° 50.0 50.0 °
.
v [
3 . s o 0] 8 s 20 . 250
s]]
E 00 0o{ 8 00{ ® A
o L O °
° L] L] L] L]
2 100 3 ° L 1000 ° e ° e 1000 1000] @ ° ° °
& 750 750 750 750
E]
g 50.0 50.0 50.0 5001 @
% 20 20 . 250 250
s .
S oo 8 L] 00| ® 0of ® ° ° 00
. . ° 0 o ° . .
o 1000 e ° . L] 1000 L] L 1000 1000 ° ® °
>
B 750 750 750 750
X
$ soo 500 500 500
5 25.0 25.0 25.0 250
00l ® [] 0o0{ ® ¢ 00l ® 00{ ®

Figure 5: Basline comparison on D4RL Gym domains. The hyperparameters for MSG, CQL, and
F-BRC are (3, @), v, and) respectively. For legibility of hyperparameter values on the z-axis, please
zoom into the pdf document.

31

MSG Deep Ens. (N=4) Shared-LCB Deep Ens. (N=4) Shared-Min Deep Ens. (N=4 No Ens. (N=1)

o 1000 1000 1000 1000
>
2 750 750 750 750
K [] °
500 . . 500 5001 ® . 500 .
5 . . ° ° . . .
£ 20 250 250 250
00 00{ ® o ° 00{ @ 0ol ®
S 1000 1000 1000 1000
g 750 750 5.0 750
% . °
B s00 500 500 500
H e 0 g . H ° ° . .
. . . .
= 20 250]/® 0 ® % @ 250 250
13
T oo 0.0 ° 0.0 00{ @ °
S 1000 . 1000 1000 1000
> . ° .
g ss0{ e * 750 750 ° 750 ° .
&
S o
B s00{ ® 500 500 500
g © o o L] °
> 250 250 250 250
13
T oo 0ol @ . [0wle 001 @ .
1000 1000 1000 1000
~ [] ° [] ° L4 o .
2 150 75.0 75.0 75.0
&
& s00 500 500 500
o
T 250 ° 250 250 250
0ol ® ° w{® 6 8o 8 08000 0ol e 0ol @ °
g0 1000 1000 1000
5 750 . 75.0 75.0 75.0
T
2 [}
= s00 . s . s 500 500 ° 500 s
g .
250 250 250 250
T L] .
00{ ® 0wl @ . . [. 00l ® 00{ ® .
o
> 1000 1000 1000 1000
&
) o . e . 750 750 H 750
B so0 . . o 500 500 s 50.0 N H
=
T 50{® H . 250 508 250
3 [
I oo 0wl e s . . 00 00
I
S 1000 1000 1000 . 1000
g . ° o Ld
& 70 . 750 750 . . 750 .
%S00 2o 00 500 500
= o [
% 250 ° 250 250 250 .
e
T oof® . w{@ o 000000000 0o{® 0of ® ©
1000 1000 1000 1000 .
o H . L .
3 750 . 750 750] 750
2 L] L] ° . L]
W os00 500 500 500 .
g
2 20 : 250 250 250
0.0 3 00{ ® [[. ° [00 ® 00{ ®
g w00 1000 1000 1000
B 750 s Ll 750 750 . 750 .
1
= s00 L 500 500 500 .
X [] .]
5 25.0 250 25.0 250
. . .
0ol 8 A 0o{ @ . . ° . oo{® 00l ® .
I
7 100 1000 1000 1000
& 750 . ° 750 750 . 750
E]
g 50.0 L4 . 50.0 50.0 ° 50.0
0 [}
& 250 . 250 250 250
% °] ° L]
2 oofe 00 . . o ° ° 00{ ® 0.0 o
o
7 w00 § 0o ® o 1000 1000 ° o 1000 .
& 750 750 750 750
E]
2 s00 50.0 50.0 50.0 :
4
& 250 250 250 250
]
2 oo 3 i 0ol ® J 001 ® 00{ ®
o 1000 . ° . L} 1000 1000 ° . 1000 °
k4]
& 750 750 750 750
5 L]
4 w00 500 500 500
8 =0 250 ° 250 250
0ol ® [} 0{e ° . [. . 00{ ® 00{ ®

Figure 6: Ablations on D4RL Gym domains. The hyperparameters for MSG, Shared-LCB, Shared-
Min, and No Ensemble are (3, @), (8, a), o, a respectively. For legibility of hyperparameter values
on the z-axis, please zoom into the pdf document.

32

MSG Deep Ens. (N=4) MSG Deep Ens. (N=64) Shared-Min Deep Ens. (N=4) in Deep Ens. (N=64)

1000 1000 1000 1000
o
2 10 0] o 750 750
H [] °] .
50.0 L] 50.0 L) 50.0 L] 50.0
z . ® o . Y ° ° ° .
Q 20 20 20 250
00 00 0ol e 00
S 1000 1000 1000 1000
o
8 o 750 750 750
0 [° [] °
% s00 s0.0 500 50,0
e L L] L) L]
& s LI . . $. ° °
= 20 250 250 250
%]
T oo 0.0 0.0 0.0
S 1000 1000 1000 1000
: e L) Creel e . .
£ 750{ @ 50| ® 750 750
L L]
5 (3
e s00f @ H s0.0 500 s0.0
3 . . ° .
= 250 250 250 250
%]
T o0 0.0 00 @ 0.0
1000 1000 1000 1000
“ ® oo 00, o0 g LI . .
2 150 75.0 75.0 75.0
e L]
& s00 s0.0 ° 500 s0.0
o °
£ 20 250 250 250 .
: [[} .
00l ® 00 0ole 00
o 1000 1000 1000 1000
2 L]
5 750 75.0 750 75.0
o [] L]
= 500 'Y s . . 500 L] ° H 500 . 50.0
: .
ry . L] . .
Q 20 250 250 250
T . ' (]
00l ® 0.0 00]1 ® 0.0
o
3 1000 1000 1000 1000{ ®
a L]
& 50 o e . 750 ' 750 e 750
& L]
T soo L] . . 500 L] 500 s 500
=
T 50{® H . 250] ® 3 . 50| @ 250
°
T o0 0.0 0.0 0.0 LJ LJ
o
S 1000 1000 ° 1000 . 1000
& ') * L] ° e L] L]
g o : 70] 750 N . 750
B s00 H L] 500 O 3 500 500
= e ° . °
B 250 ° 5018 - 250 25.0
g
T 00| 0 ° 00 0w{e 00{ ®
1000 ° . 1000 . 1000 1000 ° °
[H . e °
2 150 . 70 . . 70 s _
2 L] L] 4 o .
w500 500 ° 50.0 50.0
g 0
2 250 25.0 25.0 25.0
I ‘ 3 °
00 00 ® 0ol e 00{ ®
g 100 1000 1000 1000
% 750 s . 750] P 750 L] 750{ ®
H . 8 ®
= 500 500 50,0 50,0
x] s .
5 25.0 25.0 25.0 25.0 'Y
L]
00l 8 hd 00{ ® 0w{e 00
o
>|';“m° 100.0 100.0 100.0
& 150 ° ° 5.0 . .] . 750 . 5.0
5
9 500 L4 . 50.0 ° 50.0 ° 50.0
o . . H N
T] s °
2 oofe 00 00] @ 0o ® o o
o
3 1000 § 0o e o 1000 LA e e 1000 ° o 1000
& 750 750 750 750
5
9 500 50.0 50.0 50.0
z
20 250 - 250 250
8 . ° [} °
2 oo] ¢ 00| ® 00] ® 0.0 .
L]
1000 800 LR | 1000] e e 1000 ° o 1000 ° o
>
3 750 750 750 750
%
&
g w00 s0.0 s00 001 o
8 =0 250 250 250
00| ® [oof® . ool @ 00

Figure 7: Comparison of MSG and Shared-Min on D4RL Gym domains, for two ensemble sizes of
N =4 and N = 64. The hyperparameters for MSG and Shared-Min are ({3,) and « respectively.
For legibility of hyperparameter values on the z-axis, please zoom into the pdf document.

33

MSG Deep Ens. (N=4) MSG Multi-Head Ens. (N=4) MSG MIMO Ens. (N=4) MSG Batch Ens. (N=4)

1000 1000 1000 1000
g
> 750 750 750 750
H L] e (] °
£ s00 . ° . - 500 . ° . ° 500 . . o . 500 ° . ° .
g 20 250 250 250
00 00{ @ . 0o{ ® o . 00
< 1000 1000 1000 1000
5‘ 750 750 750 750
x ° . H o
g 500 ° ° ° 50.0 ° ° e ° 50.0 o ° o ° 50.0 L) ° ° °
= o 3
> 250 250 250 250
=3
T oo 0ol ® ° . o 0ol @ 00
&
imoo . . . R 1000 . . 1000 1000 e . o s
£ 750{ @ 750 L}] 750 750
w L) L]
3 s00{ @ 500 500 5001 ® .
= 20 250 250 2501 ¢
=3
T o0 0ol @ ° ° 0ol ® ° ° e ° ° 00
1000 1000 1000 1000
~ 0 ° ° ° . s :) [L)
2 750 750 750 750
&
& 500 50.0 500 500
o
I 250 Y 25.0 25.0 25.0

0o{ ® ° 0o{ @ . e 0o{ ® . . ° ° ° 00{ @ °

o 1000 1000 1000 1000
s
3 750 L4 75.0 75.0 75.0 'Y
(7] . [} L]
zé. 500 (] [] I 50.0 H ° ° " 50.0 ° ° [50.0 L) °
S 20 . 250 250 250
T L) L]
0ol ® ool ® . ool ® . e o 0ol 8
o
3 1000 1000 1000 1000 . .
g. L]
g o ° - . 750 750 s . 750 . .
B s0o [[50.0 H . Y 500 ' 50.0 °
= ° . ° ° s
T »0] 250 . . = 250]
e
2 oo ool ® . 00 s 00
o
£ 1000 1000 1000 1000 -
g L] . . . o e
X 150 . 750 . 750 . 750 .
HEY H . 500 500 ° 500 .
= L)) L] L]
) . 20 . 20 sofy, 80 .
2 . . . s
T o0 00 ® L] L) L] 00] ® L) L] L] 0.0
0 L] ° °
s 1000 ° LY 1000 4 1000 . 1000 P
T 750 ° 750 ° 75.0 75.0 .
x o L]
W s00 50.0 . 500 50.0
5 .
3 .
2 20 : 250 . 250 250 .
00 s 0ol ® . 00| ® . o e 0o{®
o w00 1000 1000 1000
: [}
750] 750 750 750
'B [] L L] ‘
Z 500 o 500 500 ° 500
& L] s]
5o 250 250 250
0of & e 00l ® . . e 00{ ® [o . 00{ ® .
&
2 1000 1000 1000 1000
&
& 750 . . 750 750 750 . .
5 o
HE . ° 500 500 500 ° .
L] L
% 20 L s o 250 . 250 o . 250
3 . ° . [] $ e
3 oofe 00 @ [] [L 001 ® [] [3 0.0
o
0
Z 1000 g 0o . 1000 . s 1000 . 1000 o * @ e
& L) L] L
& 750 750 . 750 750 .
3
& w0 500 . 500 . 500
< 20 20 250 250
]
2 o8 . 0of ® . e o e 0of ® . e o 00{ ® s o

LI LA] 1000 CRCI] ° 1000 H oo

;JGUD H Y 100.0 L]
2 750 750 . . 750 750
d H
W 500 50.0 500 500 L]
X °
8 =0 250 250 250

00l ® [} 00{ ® [00{ ® [w8 [

Figure 8: Efficient ensembles on D4RL Gym domains. The hyperparameters for MSG are (5, «v).
For legibility of hyperparameter values on the z-axis, please zoom into the pdf document.

34

71]
: Network D
®

[ZN]

Figure 16: Visual depiction of MIMO Ensemble

9

YN

(Nxjeoeo|ly)
< -

(NA]s e[18]

35

