
A Datasets

Sample Frame Textured
FG

Textured
BG

Static
Objects

Camera
Motion Natural

CATER
(Girdhar & Ramanan, 2020) No No Yes Yes No

CATERTex Yes Yes Yes No No

MOVi-Solid No Yes No No No

MOVi-Tex Yes Yes No No No

MOVi-D
(Greff et al., 2022) Yes Yes Yes No No

MOVi-E
(Greff et al., 2022) Yes Yes Yes Yes No

YT-Traffic Yes Yes Yes No Yes

YT-Aquarium Yes Yes No No Yes

Table 1: Characteristics of the video datasets used in our evaluation.

17

Dataset Descriptions. We generated MOVi-Solid dataset using Kubric (Greff et al., 2022) which
introduces textured background and more complex shapes to the MOVi dataset Kipf et al. (2021). For
this, we used 100 HDR backgrounds and Kubric’s KuBasic shapes. We also generate two test sets:
one which has the same number of objects as the training set (3-10 objects) and other which has higher
out-of-distribution number of objects (11-12 objects). Similarly to MOVi-Solid, for MOVi-Tex, we
use Kubric to generate the dataset. In MOVi-Tex, we modify our MOVi-Solid dataset to have complex
textures applied to the objects taken from the Describable Textures dataset Cimpoi et al. (2014).
Describable Textures dataset provides several categories of textures. We used 240 textures each for
generating the training set. For this, we used 120 textures that are from the banded category and 120
textures that are from the chequered category. We also generated two out-of-distribution test sets:
one which has the same number of objects as the training set (3-10 objects) but never-before-seen
textures and the other which as the same textures but higher number of objects (11-12 objects). For
the out-of-distribution test set with never-before-seen textures, 120 textures were taken from the grid
category and 120 were taken from the grooved category of the Describable Textures dataset. For
CATER, MOVi-D and MOVi-E, we used the standard training and test splits provided in the respective
releases of CATER (with masks) and MOVi datasets. We generated CATERTex by integrating the
codes for CATER and CLEVRTex (Girdhar & Ramanan, 2020; Karazija et al., 2021). We generated
two sets: the training and the IID test sets which contain 3-8 objects and an out-of-distribution test
set which contains 9-10 objects. We collected the Youtube datasets by downloading a 6-hour long
video streams, center-cropping and resizing them. The Youtube-Traffic dataset was generated from a
video feed collected by a traffic camera that watches a fixed intersection. The camera does not move
during the video. The lighting conditions change slightly over time and this has a slight effect on the
background and the overall scene from one clip to another. The vehicles appear to show diversity in
size, color, and type. The Youtube-Aquarium dataset was generated from a video collected by a static
camera mounted inside a fish exhibit. The background, lighting conditions, and other characteristics
remain stationary throughout the video. The size, color, and types of fish show some diversity. As
these were collected from Youtube and did not have ground truth masks, we manually annotated 50
videos of the test set. We will release the training and the test splits of all the datasets.

B STEVE: Architecture Details

Recurrent Slot Encoder. The design of our slot-based recurrent encoder f slot-rnn
ϕ is inspired by Kipf

et al. (2021). At the start of an episode, we provide initial slots s0 by randomly sampling from a
Gaussian distribution with learned mean and variance.

s0,n ∼ N (µ,σ), ∀n ∈ {1, . . . , N}

where µ and σ are learned parameters. For each input frame xt, we compute an encoding in the form
of a feature map using a backbone CNN. The architecture of this CNN is described in Table 2. The
resulting feature map has size Henc×Wenc×Denc. It is then flattened on spatial dimensions to obtain

Layer Kernel Size Stride Padding Channels Activation

Conv 5× 5 1 (2) 2 32 (64) ReLU
Conv 5× 5 1 2 32 (64) ReLU
Conv 5× 5 1 2 32 (64) ReLU
Conv 5× 5 1 2 32 (64) None

Table 2: Configuration of the CNN encoder used in our model. The values in parentheses are
applicable for image size 128.

a set of Henc ·Wenc features. A positional embedding p is added to these followed by a 2-layer MLP.
With these, we obtain a set of input features et = {et,1, et,2, . . . , et,HW }. The positional embedding
is computed by applying a linear map to the 4-dimensional spatial position as introduced by Locatello
et al. (2020) and Kipf et al. (2021). Next, the slots of the previous time-step st−1 perform attention
on the features et and use the attention result to update the slots to st. For this, the slots in st−1 first
compute the attention weights At = {At,1, . . . ,At,N} over the input features. Using the attention
weights, the attention result rt,n is computed for each slot via an attention-weighted sum of input

18

https://github.com/deepmind/multi_object_datasets
https://github.com/google-research/kubric/tree/main/challenges/movi

features.

At = softmax
(
q(st−1) · k(et)T√

D
, dim = slots

)
rt,n =

∑HW
i=1 At,n,i · v(et,i)∑HW

j=1 At,n,j

.

where q, k and v are linear projections and D is the output size of the projections. The attention result
rt,n is then used to update the respective slot: s̃t,n ← fRNN(rt,n, st−1,n) where the update function
fRNN is implemented as a GRU (Cho et al., 2014). For additional expressiveness, a 2-layer MLP
(with residual connection) and LayerNorm is applied on the output of the GRU. In practice, these
attention and update steps can be executed multiple times per frame. We use 2 iterations per frame in
our experiments. Lastly, the slots are made to interact using an interaction function st ← f interact

ϕ (s̃t)
implemented using a 1-layer transformer with 4 heads. Following Kipf et al. (2021), we use the
slots s̃t before the interaction step for reconstruction. For fairness of comparison between our model
STEVE and SAVi, we use the same implementation of this backbone recurrent slot encoder in both
models.

Discrete VAE. The implementation of our discrete VAE is based on that proposed by (Singh et al.,
2022). It consists of an encoder network f dVAE

ϕ and a decoder network gdVAE
θ .

The encoder network essentially divides the whole image xt into patches of size 4× 4 and encodes
each patch as one discrete token belonging to a vocabulary V . We take the size of the vocabulary
to be 4096 in our experiments. This is achieved in parallel for all patches applying a convolutional
neural network on the image of size H ×W × 3 as follows.

Layer Kernel Size Stride Padding Channels Activation

Conv 4× 4 4 0 64 ReLU
Conv 1× 1 1 0 64 ReLU
Conv 1× 1 1 0 64 ReLU
Conv 1× 1 1 0 64 ReLU
Conv 1× 1 1 0 64 ReLU
Conv 1× 1 1 0 64 ReLU
Conv 1× 1 1 0 64 ReLU
Conv 1× 1 1 0 |V| None

Table 3: Configuration of discrete VAE encoder used in our model.

This results in a feature map of size (H/4) × (W/4) × |V|. Each cell i ∈ 1, . . . , L (where
L = HW/16) of this feature map can be seen as a vector odVAE

t,i containing log-probabilities over
|V| vocabulary tokens. For each cell i, a discrete token is sampled by constructing a categorical
distribution using these log-probabilities.

zt,i ∼ Categorical(odVAE
t,i).

In the discrete VAE decoder, the input is a discrete feature map of size (H/4)× (W/4)× |V| whose
each cell is a one-hot vector zi and the decoder tries to reconstruct the original image from this
discrete feature map input. This mapping is implemented using a convolutional neural network as
described below, finally outputting an image of size H×W ×3. Finally, the whole network is trained
by minimizing a image reconstruction loss implemented using squared-error.

LdVAE =

T∑
t=1

∥x̂t − xt∥22, zt,1, . . . zt,L = f dVAE
ϕ (xt), x̂t = gdVAE

θ (zt,1, . . . zt,L).

As there is a discrete sampling step required, we use the Gumbel-Softmax relaxation during training
while we use hard sampling for generating discrete targets for the transformer, following Singh et al.
(2022). The temperature parameter for the Gumbel-Softmax is decayed from 1.0 to 0.1 in the first
30K iterations of training as prescribed by Singh et al. (2022).

Transformer Decoder. We use the standard design of transformer as introduced by Vaswani et al.
(2017) and adopted by Singh et al. (2022). Like SLATE, we use learned positional embeddings for
each position i ∈ {1, . . . , L} in the sequence.

19

Layer Kernel Size Stride Padding Channels Activation

Conv 1× 1 1 0 64 ReLU
Conv 3× 3 1 1 64 ReLU
Conv 1× 1 1 0 64 ReLU
Conv 1× 1 1 0 64 ReLU
Conv 1× 1 1 0 256 ReLU

PixelShuffle (upscale_factor=2) - - - - -
Conv 3× 3 1 1 64 ReLU
Conv 1× 1 1 0 64 ReLU
Conv 1× 1 1 0 64 ReLU
Conv 1× 1 1 0 256 ReLU

PixelShuffle (upscale_factor=2) - - - - -
Conv 1× 1 1 0 3 None

Table 4: Configuration of discrete VAE decoder used in our model.

During training, the transformer decoder takes the slots and the dVAE tokens as input and learns
to predict the next token. We learn to do this next-token prediction for all tokens in parallel by
applying causal masking in the style of GPT. In further detail, the dVAE tokens given as input to
the transformer are obtained via argmax on the logits output by the dVAE encoder. That is, we
take the dVAE logits odVAE

t,i and first perform argmax. For this argmax index, we retrieve a learned
embedding from a codebook. To these retrieved embeddings, we add learned positional encodings
and the resulting embeddings are then given as input to the transformer decoder. Similarly to SLATE,
we do not let gradient be propagated across the argmax operation. The prediction targets are the
argmax indices of the next dVAE token which we learn to predict using a cross-entropy loss.

Difference between SLATE and STEVE. The key difference between STEVE and SLATE is that
STEVE temporally extends SLATE by adopting a recurrent slot encoder. In doing this, STEVE
retains the same decoder architecture as that of SLATE.

Training. We trained all models upto a maximum of 200K training iterations (except for CATERTex
for which we trained all models to 400K iterations). These amounted to training time of approximately
2 days. Similarly to SLATE, we applied a learning rate warmup from 0 to the peak learning rate in
the first 30K training iterations. After that we decay the learning rate exponentially with a half-life of
250K training iterations.

The loss function is LSTEVE = LCE + LdVAE as described in Section 3. The gradients from the LdVAE
loss are only used to train the dVAE encoder and the dVAE decoder. The gradients from the LCE
cross-entropy loss are only used for training the slot encoder and the transformer decoder. This is due
to the fact that we do not let the gradients be propagated accross the argmax operation used to obtain
the discrete representation of the input frame. All 3 components i.e. the dVAE, the slot encoder, and
the transformer are trained simultaneously in a single training run.

B.1 Computational Requirements

In Table 6, we empirically compare the computational requirements of STEVE and SAVi. We
assess by how much the computational requirement change in going from the mixture-based to the
transformer-based approach. We find that in videos with image size 64× 64, STEVE requires similar
resources as SAVi and about twice for image size 128×128. Given the quadratic memory complexity
of transformers, the larger memory demand of STEVE is not surprising. However, one should also
consider that the mixture-based baselines fail almost completely on datasets like CATERTex, MOVi-
Tex, MOVi-D, and MOVi-E, unlike ours. Another feature of our method is that the memory demand
of transformer decoder is approximately constant in the number of slots but linear for mixture-based
decoders.

GPU Resources. We performed our experiments on Quadro RTX 8000 GPUs. We used 2 GPUs per
each training seed, each of which took approximately 2-3 days to complete training.

20

Image Size

Module Hyperparameter 64 128

General Batch Size 24 24
Episode Length 3 3
Training Steps 200000 200000

Encoder Corrector Iterations 2 2
Slot Size 192 192
MLP hidden size 192 192
Predictor Blocks 1 1
Predictor Heads 4 4
Learning Rate 0.0001 0.0001

Transformer Decoder # Decoder Blocks 4 8
Decoder Heads 4 4
Hidden Size 192 192
Dropout 0.1 0.1
Learning Rate 0.0003 0.0003

DVAE Learning Rate 0.0003 0.0003
Patch Size 4× 4 pixels 4× 4 pixels
Vocabulary Size 4096 4096
Temperature Start 1.0 1.0
Temperature End 0.1 0.1
Temperature Decay Steps 30000 30000

Table 5: Hyperparameters of STEVE used in our experiments.

Memory (GB) Seconds per iteration

Image Size SAVi STEVE SAVi STEVE

64 9.8 10.7 0.24 0.20
128 29.8 57.8 0.53 0.74

Table 6: Computational requirements of STEVE and SAVi. The configurations of STEVE are as
described in Tables 5 and 2. The configurations of SAVi are matched with STEVE except for the
its decoder which is a 4-layer spatial broadcast network (as described in the original SAVi paper).
Here, all values are computed using same the batch size and episode length (taken to be 24 and 3,
respectively) for an informative comparison.

Big-O Analysis. The memory complexity of the transformer decoder is dependent on the cost of
self-attention between all the dVAE tokens and the cross-attention between the dVAE tokens and
the slots. Let the number of dVAE tokens be L and the number of slots be N . Then the number of
dVAE tokens is L = HW/K2 where H and W are image height and width, respectively; and K is
the dVAE patch size. To perform self-attention among all L tokens requires a memory complexity
of O(L2). Furthermore, the L tokens also perform cross-attention on the N slots which leads to
an attention matrix with memory cost O(LN). Adding these attention costs leads to a total cost
of ≈ O(L2) + O(LN). But since it is common to have just a few slots N (e.g. N = 11 slots for
CATER) and a much larger number of tokens (e.g. L = 256 tokens for CATER), the first term O(L2)
is typically the dominant one in comparison to the other term O(LN). Replacing L = HW/K2

gives an approximate cost of O((HW)2/K4). This can be contrasted with the memory cost of
mixture decoder. Each object component can be decoded using a CNN with a cost of O(HW) and
there are N such components. Thus, the total cost is approximately O(HWN). These suggest that
as we continue of scale up the image size H and W (keeping everything else same), the memory
needs of the transformer decoder would significantly surpass that of the mixture decoder.

21

B.2 Mixture-based Decoding without Spatial Broadcast

In Section 5.3, we performed an ablation of SAVi where we replaced its original Spatial Broadcast
decoder with a more flexible CNN implemented entirely using transposed convolutions. In Tables
7 and 8, we describe these two CNN architectures in detail. We note that the decoder used in

Layer Kernel Size Stride Channels Activation

Spatial Broadcast - - slot_size -
Positional Encodings - - slot_size -

ConvTranspose 5× 5 2 64 ReLU
ConvTranspose 5× 5 2 64 ReLU
ConvTranspose 5× 5 2 64 ReLU
ConvTranspose 5× 5 1 (2) 64 ReLU

Table 7: Configuration of the CNN of the Spatial Broadcast decoder used in SAVi (Kipf et al., 2021).
The values in parentheses are applicable for image size 128.

Layer Kernel Size Stride Channels Activation

ConvTranspose 5× 5 2 64 ReLU
ConvTranspose 5× 5 2 64 ReLU
ConvTranspose 5× 5 2 64 ReLU
ConvTranspose 5× 5 2 64 ReLU
ConvTranspose 5× 5 2 64 ReLU
ConvTranspose 5× 5 2 64 ReLU
ConvTranspose 5× 5 1 (2) 64 ReLU

Table 8: Configuration of the CNN decoder implemented only using transposed convolutions which
is used in our ablation of SAVi in Section 5.3. The values in parentheses are applicable for image size
128.

the ablation of SAVi has more layers and is therefore more expressive. It applies 7 transposed
convolution layers while the original decoder had 4. Furthermore, unlike the original decoder that
uses a Spatial Broadcast in the first layer which is intended to lower its flexibility, our ablation of
SAVi uses transposed convolutions in all the layers of the CNN decoder.

22

C Additional Results.

In this section, we provide additional evaluation results for our model.

STEVE SAVi OP3

CATER 0.911 ± 0.015 0.818 ± 0.025 0.682 ± 0.045
CATERTex 0.755 ± 0.024 0.224 ± 0.051 0.299 ± 0.055
MOVi-Solid 0.848 ± 0.034 0.875 ± 0.005 0.568 ± 0.042
MOVi-Tex 0.741 ± 0.011 -3.085 ± 0.236 0.040 ± 0.036
MOVi-D 0.589 ± 0.008 0.391 ± 0.12 0.316 ± 0.028
MOVi-E 0.567 ± 0.032 0.436 ± 0.113 0.216 ± 0.017

Table 9: Comparison of property prediction performance with the baselines. Given a frozen
slot, we predict the 2D position coordinates of the object using linear regression. For training the
regressors, we match the slots with the ground truth position labels via Hungarian matching using
IoU score between the true and the predicted masks. We report the R2 score, similarly to Kabra et al.
(2021). We note that our model outperforms the baselines significantly, except in MOVi-Solid where
our performance is comparable to that of SAVi.

CATER MOVi-Solid MOVi-E
0

20

40

60

80

100

Effect of Number of Transformer Layers

Default Default +4 Layers

Figure 7: Effect of number of layers in the transformer decoder. The aim of this experiment is to test
how susceptible is our performance to the flexibility of the transformer decoder. We compare our
default transformer decoder configuration with a transformer decoder which has 4 additional layers
in it. As this introduces more parameters to the decoder, it makes the decoder more flexible. We
report the FG-ARI (in %) on videos of length 6. We find that the performances are comparable in
both configurations. This shows that a careful tuning of decoder strength is not needed and this can
be seen as a benefit of our model.

CATERTex MOVi-Solid MOVi-Tex
0

20

40

60

80

V
id
eo

F
G
-A

R
I
(i
n
%
)

(a) Unseen Number of Objects

MOVi-Tex MOVi-D MOVi-E
0

20

40

60

80

V
id
eo

F
G
-A

R
I
(i
n
%
)

(b) Unseen Materials

IID Test Set OOD Test Set

Figure 8: Out-of-distribution generalization to unseen number of objects and unseen materials in
SAVi. We report the FG-ARI (in %) on videos of length 6.

23

Figure 9: Unsupervised Video Segmentation in MOVi-D. We qualitatively compare video seg-
mentation of STEVE with the baselines SAVi and OP3. The rows show the input video, the true
segmentation, followed by the predicted segments of STEVE and the baselines.

24

Figure 10: Additional Samples of Unsupervised Video Segmentation in MOVi-E.

25

Figure 11: Additional Samples of Unsupervised Video Segmentation in MOVi-Tex.

26

Figure 12: Additional Samples of Unsupervised Video Segmentation in CATERTex.

27

Figure 13: Additional Samples of Unsupervised Video Segmentation in MOVi-D.

28

Figure 14: Additional Samples of Unsupervised Video Segmentation in MOVi-Solid.

29

Figure 15: Additional Samples of Unsupervised Video Segmentation in Youtube Traffic.

30

Figure 16: Additional Samples of Unsupervised Video Segmentation in Youtube Aquarium.

31

D Additional Related Work

Unsupervised Video Object Segmentation using Motion Cues. When objects in the video are
moving independently, optical flow provides a strong signal of objectness as pixels with similar
flow can be treated as an object. Therefore, several works pursue estimating optical flow in an fully
unsupervised way (Ren et al., 2017; Janai et al., 2018; Wang et al., 2018; Jonschkowski et al., 2020;
Stone et al., 2021). Leveraging flow, several methods have shown success in visually complex videos
(Brox & Malik, 2010; Bideau & Learned-Miller, 2016; Yang et al., 2019; Tangemann et al., 2021;
Yang et al., 2021). However, these can require access to optical flow even during deployment which
can be challenging to obtain. In response, recent methods aim to infer objects via RGB-only input,
but by using optical flow to supervise the training (Kipf et al., 2021; Bao et al., 2022). Even though
these can handle naturalistic videos, their learning depends primarily on the flow information. If flow
is absent e.g. in scenes with static objects, these can suffer (Greff et al., 2022). In comparison, our
model is trained given only RGB video frames and we consider the use of motion information as
orthogonal to our approach.

Unsupervised Segmentation Propagation. Several methods learn to propagate mask from one frame
to another via unsupervised training and are shown to handle natural videos (Lai et al., 2020; Vondrick
et al., 2018; Lai & Xie, 2019; Zhu et al., 2020; Oh et al., 2019; Wang et al., 2019a,b). However
these methods only learn how to propagate the masks, and still require ground truth segmentation or
bounding boxes in the first frame to actually perform tracking. Therefore, these methods are not fully
unsupervised like ours.

E Additional Experiment Details

Evaluating the Effect of Number of Past Frames on Image Segmentation. We randomly take
a video clip from the test set having T frames: x1, . . . ,xT . We would like to measure how the
segmentation of the T -th frame xT would change as a function of the number of past frames k shown
to the model. For this, we predict the object masksMk

T for the frame xT given that the model has
seen k frames xT−k, . . . ,xT−1 in the past. We compute the Image FG-ARI for the masksMk

T by
varying the value of k ∈ {0, . . . , T − 1} and make the plot in Figure 2. We take T = 7.

Evaluation of Out-of-Distribution Generalization to More Objects. In this experiment, a model is
tested on more objects than it was trained on. For this experiment, during testing, we increase the
number of slots by an amount equal to the difference in maximum number of objects between the test
and the training set.

F Limitations

We now describe the main limitations of STEVE and the future directions. First, there is some
opportunity to improve the performance further within the proposed framework by adopting more
advanced architectures than the minimal architecture we choose in this work. We would say that this
is more of a future work than a limitation of this framework. Second, more computational efficiency
is required in the future to handle images of higher resolution because the transformer decoder has a
quadratic memory complexity and also because token-by-token generation can be slow. Third, the
potential to scale the model to internet-scale datasets is discussed in this work but not investigated.
Our current datasets typically contain about 200K video frames with an image resolution of 128. For
scaling this up, we may also need to develop a new model in this framework. Fourth, although our
focus in this paper is not on synthetic image generation, we found that the quality of image generation
in naturalistic datasets has some room for further improvement. We believe that this could not only
provide the ability to synthesize images and videos but also improve object decomposition as well.
Fifth, even if our model outperforms previous works in general, we also observe some failure modes
in MOVi-E such as splitting of large objects or merging of very small objects. To resolve this, we
believe that it’s worth investigating a much larger data on a bigger model or with a more sophisticated
architecture. Lastly, the CNN backbone of our slot encoder is rather lightweight, having just 4-layers
and a feature-size 64. For scaling this model to more complex natural images, it is likely that this
lightweight CNN will not be enough.

32

G Impact Statement

There are no imminent negative societal consequences of our current work, however, future applica-
tions should be mindful to avoid malicious uses such as in surveillance and to minimize environmental
impact when training larger transformers. At the same time, benign applications in scene understand-
ing, robotics and autonomous navigation would benefit positively from our work.

33

