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Abstract

The number of states in a dynamic process is exponential in the number of objects,
making reinforcement learning (RL) difficult in complex, multi-object domains.
For agents to scale to the real world, they will need to react to and reason about
unseen combinations of objects. We argue that the ability to recognize and use
local factorization in transition dynamics is a key element in unlocking the power
of multi-object reasoning. To this end, we show that (1) known local structure in
the environment transitions is sufficient for an exponential reduction in the sample
complexity of training a dynamics model, and (2) a locally factored dynamics
model provably generalizes out-of-distribution to unseen states and actions. Know-
ing the local structure also allows us to predict which unseen states and actions this
dynamics model will generalize to. We propose to leverage these observations in a
novel Model-based Counterfactual Data Augmentation (MOCODA) framework.
MOCODA applies a learned locally factored dynamics model to an augmented
distribution of states and actions to generate counterfactual transitions for RL.
MOCODA works with a broader set of local structures than prior work and al-
lows for direct control over the augmented training distribution. We show that
MOCODA enables RL agents to learn policies that generalize to unseen states
and actions. We use MOCODA to train an offline RL agent to solve an out-of-
distribution robotics manipulation task on which standard offline RL algorithms
fail.1

1 Introduction

Modern reinforcement learning (RL) algorithms have demonstrated remarkable success in several
different domains such as games [42, 53] and robotic manipulation [23, 4]. By repeatedly attempting
a single task through trial-and-error, these algorithms can learn to collect useful experience and
eventually solve the task of interest. However, designing agents that can generalize in off-task and
multi-task settings remains an open and challenging research question. This is especially true in the
offline and zero-shot settings, in which the training data might be unrelated to the target task, and
may lack sufficient coverage over possible states.

One way to enable generalization in such cases is through structured representations of states,
transition dynamics, or task spaces. These representations can be directly learned, sourced from
known or learned abstractions over the state space, or derived from causal knowledge of the world.
Symmetries present in such representations enable compositional generalization to new configurations
of states or tasks, either by building the structure into the function approximator or algorithm
[28, 58, 15, 43], or by using the structure for data augmentation [3, 33, 51].

In this paper, we extend past work on structure-driven data augmentation by using a locally factored
model of the transition dynamics to generate counterfactual training distributions. This enables
agents to generalize beyond the support of their original training distribution, including to novel
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Figure 1: Out-of-Distribution Generalization using MOCODA: A US driver can use MOCODA to quickly
adapt to driving in the left lane during a UK trip. Their prior experience PEMP(τ) (top left) contains mostly
right-driving experience (e.g. 1 , 2 ) and a limited amount of left-driving experience after renting the car in the
UK (e.g. 3 ). A locally factored model that captures the transition structure (bottom left) allows the agent to
accurately sample counterfactual experience from PMOCODA(τ) (bottom center), including novel left-lane city
driving maneuvers (e.g. 4 ). This enables fast adaptation when learning an optimal policy for the new task (UK
driving). Our framework MOCODA draws single-step transition samples from PMOCODA(τ) given PEMP(τ) and
knowledge of the causal structure; several realizations of this framework are described in Section 4.

tasks where learning the optimal policy requires access to states never seen in the experience buffer.
Our key insight is that a learned dynamics model that accurately captures local causal structure (a
“locally factored” dynamics model) will predictably exhibit good generalization performance outside
the empirical training distribution. We propose Model-based Counterfactual Data Augmentation
(MOCODA), which generates an augmented state-action distribution where its locally factored
dynamics model is likely to perform well, then applies its dynamics model to generate new transition
data. By training the agent’s policy and value modules on this augmented dataset, they too learn to
generalize well out-of-distribution. To ground this in an example, we consider how a US driver might
use MOCODA to adapt to driving on the left side of the road while on vacation in the UK (Figure 1).
Given knowledge of the target task, we can even focus the augmented distribution on relevant areas
of the state-action space (e.g., states with the car on the left side of the road).

Our main contributions are:

A. Our proposed method, MOCODA, leverages a masked dynamics model for data-augmentation
in locally-factored settings, which relaxes strong assumptions made by prior work on factored
MDPs and counterfactual data augmentation.

B. MOCODA allows for direct control of the state-action distribution on which the agent trains; we
show that controlling this distribution in a task relevant way can lead to improved performance.

C. We demonstrate “zero-shot” generalization of a policy trained with MOCODA to states that the
agent has never seen. With MOCODA, we train an offline RL agent to solve an out-of-distribution
robotics manipulation task on which standard offline RL algorithms fail.

2 Preliminaries

2.1 Background

We model the environment as an infinite-horizon, reward-free Markov Decision Process (MDP),
described by tuple ⟨S,A, P, γ⟩ consisting of the state space, action space, transition function, and
discount factor, respectively [52, 57]. We use lowercase for generic instances and uppercase for
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Figure 2: Locally Factored Dynamics: The state-action space S ×A is divided into local subsets, L1,L2,L3,
which each have their own factored causal structure, GL. The local transition model PL is factored according to
GL; e.g., in the example shown, PL(xt, yt, at) = [Px(xt), Py(yt, at)].

variables (e.g., s ∈ range(S) ⊆ S, though we also abuse notation and write S ∈ S). A task is
defined as a tuple ⟨r, P0⟩, where r : S ×A → R is a reward function and P0 is an initial distribution
over S. The goal of the agent given a task is to learn a policy π : S → A that maximizes value
EP,π

∑
t γ

tr(st, at). Model-based RL is one approach to solving this problem, in which the agent
learns a model Pϕ of the transition dynamics P . The model is “rolled out” to generate “imagined”
trajectories, which are used either for direct planning [11, 8], or as training data for the agent’s policy
and value functions [56, 20].

Factored MDPs. A factored MDP (FMDP) is a type of MDP that assumes a globally factored
transition model, which can be used to exponentially improve the sample complexity of RL [16,
24, 45]. In an FMDP, states and actions are described by a set of variables {Xi}, so that S×A =
X 1×X 2× . . .×Xn, and each state variable Xi ∈ X i (X i is a subspace of S) is dependent on
a subset of state-action variables (its “parents” Pa(Xi)) at the prior timestep, Xi ∼ Pi(Pa(Xi)).
We call a set {Xj} of state-action variables a “parent set” if there exists a state variable Xi such
that {Xj} = Pa(Xi). We say that Xi is a “child” of its parent set Pa(Xi). We refer to the tuple
⟨Xi,Pa(Xi), Pi(·)⟩ as a “causal mechanism”.

Local Causal Models. Because the strict global factorization assumed by FMDPs is rare, recent
work on data augmentation for RL and object-oriented RL suggests that transition dynamics might be
better understood in a local sense, where all objects may interact with each other over time, but in a
locally sparse manner [15, 28, 39]. Our work uses an abridged version of the Local Causal Model
(LCM) framework [51], as follows: We assume the state-action space decomposes into a disjoint
union of local neighborhoods: S×A = L1 ⊔ L2 ⊔ · · · ⊔ Ln. A neighborhood L is associated with
its own transition function PL, which is factored according to its graphical model GL [29]. We
assume no two graphical models share the same structure2 (i.e., the structure of GL uniquely identifies
L). Then, analogously to FMDPs, if (st, at) ∈ L, each state variable Xi

t+1 at the next time step is
dependent on its parents PaL(Xi

t+1) at the prior timestep, Xi
t+1 ∼ PL

i (PaL(Xi
t+1)). We define mask

function M : S ×A → {Li} that maps (s, a) ∈ L to the adjacency matrix of GL. This formalism is
summarized in Figure 2, and differs from FMDPs in that each L has its own factorization.

Given knowledge of M , the Counterfactual Data Augmentation (CoDA) framework [51] allowed
agents to stitch together empirical samples from disconnected causal mechanisms to derive novel
transitions. It did this by swapping compatible components between the observed transitions to
create new ones, arguing that this procedure can generate exponentially more data samples as the
number of disconnected causal components grows. CoDA was shown to significantly improve sample
complexity in several settings, including the offline RL setting and a goal-conditioned robotics control
setting. Because CoDA relied on empirical samples of the causal mechanisms to generate data in
a model-free fashion, however, it required that the causal mechanisms be completely disentangled.
The proposed MOCODA leverages a dynamics model to improve upon model-free CoDA in several
respects: (a) by using a learned dynamics model, MOCODA works with overlapping parent sets, (b)
by explicitly modeling the parent distribution, MOCODA allows the agent to control the overall data
distribution, (c) MOCODA demonstrates zero-shot generalization to new areas of the state space,
allowing the agent to solve tasks that are entirely outside the original data distribution.

2This assumption is a matter of convenience that makes counting local subspaces in Section 3 slightly easier
and simplifies our implementation of the locally factored dynamics model in Section 4. To accommodate cases
where subspaces with different dynamics share the same causal structure, one could identify local subspaces
using a latent variable rather than the mask itself, which we leave for future work.
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2.2 Related Work

RL with Structured Dynamics. A growing literature recognizes the advantages that structure can
provide in RL, including both improved sample efficiency [37, 5, 19] and generalization performance
[62, 59, 54]. Some of these works involve sparse interactions whose structure changes over time
[15, 28], which is similar to and inspires the locally factored setup assumed by this paper. Most
existing work focuses on leveraging structure to improve the architecture and generalization capability
of the function approximator [62]. Although MOCODA also uses the structure for purposes of
improving the dynamics model, our proposed method is among the few existing works that also use
the structure for data augmentation [38, 40, 51].

Several past and concurrent works aim to tackle unsupervised object detection [36, 12] (i.e., learning
an entity-oriented representation of states, which is a prerequisite for learning the dynamics factor-
ization) and learning the dynamics factorization [27, 60]. These are both open problems that run
orthogonal to MOCODA. We expect that as solutions for unsupervised object detection and factored
dynamics discovery improve, MOCODA will find broader applicability.

RL with Causal Dynamics. Adopting this formalism allows one to cast several important problems
within RL as questions of causal inference, such as off-policy evaluation [7, 44], learning baselines
for model-free RL [41], and policy transfer [25]. Lu et al. [38] applied SCM dynamics to data
augmentation in continuous sample spaces, and discussed the conditions under which the generated
transitions are uniquely identifiable counterfactual samples. This approach models state and action
variables as unstructured vectors, emphasizing benefit in modeling action interventions for settings
such as clinical healthcare where exploratory policies cannot be directly deployed. We take a com-
plementary approach by modeling structure within state and action variables, and our augmentation
scheme involves sampling entire causal mechanisms (over multiple state or action dimensions) rather
than action vectors only. See Appendix F for a more detailed discussion of how MOCODA sampling
relates to causal inference and counterfactual reasoning.

3 Generalization Properties of Locally Factored Models

3.1 Sample Complexity of Training a Locally Factored Dynamics Model

In this subsection, we provide an original adaptation of an elementary result from model-based RL to
the locally factored setting, to show that factorization can exponentially improve sample complexity.
We note that several theoretical works have shown that the FMDP structure can be exploited to obtain
similarly strong sample complexity bounds in the FMDP setting. Our goal here is not to improve
upon these results, but to adapt a small part (model-based generalization) to the significantly more
general locally factored setting and show that local factorization is enough for (1) exponential gains
in sample complexity and (2) out-of-distribution generalization with respect to the empirical joint,
to a set of states and actions that may be exponentially larger than the empirical set. Note that the
following discussion applies to tabular RL, but we apply our method to continuous domains.

Notation. We work with finite state and action spaces (|S|, |A| < ∞) and assume that there are m
local subspaces L of size |L|, such that m|L| = |S||A|. For each subspace L, we assume transitions
factor into k causal mechanisms {Pi}, each with the same number of possible children, |ci|, and the
same number of possible parents, |Pai|. Note mΠi|ci| = |S| (child sets are mutually exclusive) but
mΠi|Pai| ≥ |S||A| (parent sets may overlap).
Theorem 1. Let n be the number of empirical samples used to train the model of each local causal
mechanism, PL

i,θ at each configuration of parents Pai = x. There exists constant c such that, if

n ≥ ck2|ci| log(|S||A|/δ)
ϵ2

,

then, with probability at least 1− δ, we have:

max
(s,a)

∥P (s, a)− Pθ(s, a)∥1 ≤ ϵ.

Sketch of Proof. We apply a concentration inequality to bound the ℓ1 error for fixed parents and
extend this to a bound on the ℓ1 error for a fixed (s, a) pair. The conclusion follows by a union bound
across all states and actions. See Appendix A for details.
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To compare to full-state dynamics modeling, we can translate the sample complexity from the per-
parent count n to a total count N . Recall mΠi|ci| = |S|, so that |ci| = (|S|/m)1/k, and mΠi|Pai| ≥
|S||A|. We assume a small constant overlap factor v ≥ 1, so that |Pai| = v(|S||A|/m)1/k. We need
the total number of component visits to be n|Pai|km, for a total of nv(|S||A|/m)1/km state-action
visits, assuming that parent set visits are allocated evenly, and noting that each state-action visit
provides k parent set visits. This gives:
Corollary 1. To bound the error as above, we need to have

N ≥ cmk2(|S|2|A|/m2)1/k log(|S||A|/δ)
ϵ2

,

total train samples, where we have absorbed the overlap factor v into constant c.

Comparing this to the analogous bound for full-state model learning (Agarwal et al. [1], Prop. 2.1):

N ≥ c|S|2|A| log(|S||A|/δ)
ϵ2

,

we see that we have gone from super-linear O(|S|2|A| log(|S||A|)) sample complexity in terms of
|S||A|, to the exponentially smaller O(mk2(|S|2|A|/m2)1/k log(|S||A|)).
This result implies that for large enough |S||A| our model must generalize to unseen states and
actions, since the number of samples needed (N ) is exponentially smaller than the size of the
state-action space (|S||A|). In contrast, if it did not, then sample complexity would be Ω(|S||A|).
Remark 3.1. The global factorization property of FMDPs is a strict assumption that rarely holds in
reality. Although local factorization is broadly applicable and significantly more realistic than the
FMDP setting, it is not without cost. In FMDPs, we have a single subspace (m = 1). In the locally
factored case, the number of subspaces m is likely to grow exponentially with the number of factors
k, as there are exponentially many ways that k factors can interact. To be more precise, there are k2k
possible bipartite graphs from k nodes to k nodes. Nevertheless, by comparing bases (2 ≪ |S||A|),
we see that we still obtain exponential gains in sample complexity from the locally factored approach.

3.2 Training Value Functions and Policies for Out-of-Distribution Generalization

In the previous subsection, we saw that a locally factored dynamics model provably generalizes
outside of the empirical joint distribution. A natural question is whether such local factorization can
be leveraged to obtain similar results for value functions and policies?

We will show that the answer is yes, but perhaps counter-intuitively, it is not achieved by directly
training the value function and policy on the empirical distribution, as is the case for the dynamics
model. The difference arises because learned value functions, and consequently learned policies,
involve the long horizon prediction EP,π

∑∞
t=0 γ

tr(st, at), which may not benefit from the local
sparsity of GL. When compounded over time, sparse local structures can quickly produce an entangled
long horizon structure (cf. the “butterfly effect”). Intuitively, even if several pool balls are far apart
and locally disentangled, future collisions are central to planning and the optimal policy depends on
the relative positions of all balls. This applies even if rewards are factored (e.g., rewards in most pool
variants) [54].

We note that, although temporal entanglement may be exponential in the branching factor of the
unrolled causal graph, it’s possible for the long horizon structure to stay sparse (e.g., k independent
factors that never interact, or long-horizon disentanglement between descision relevant and decision
irrelevant variables [19]). It’s also possible that other regularities in the data will allow for good
out-of-distribution generalization. Thus, we cannot claim that value functions and policies will
never generalize well out-of-distribution (see Veerapaneni et al. [58] for an example when they do).
Nevertheless, we hypothesize that exponentially fast entanglement does occur in complex natural
systems, making direct generalization of long horizon predictions difficult.

Out-of-distribution generalization of the policy and value function can be achieved, however, by
leveraging the generalization properties of a locally factored dynamics model. We propose to do this
by generating out-of-distribution states and actions (the “augmented parent distribution”), and then
applying our learned dynamics model to generate transitions that are used to train the policy and
value function. We call this process Model-based Counterfactual Data Augmentation (MOCODA).
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Figure 3: RL training with MOCODA: We use the empirical dataset to train parent distribution model Pθ(s, a)
and locally factored dynamics model Pϕ(s

′ | s, a), both informed by the local structure. The dynamics model is
applied to the augmented parent distribution P̃θ(s, a) to produce augmented dataset P̃θPϕ. The augmented &
empirical datasets are labeled with the target task reward, r(s, a) and fed into the RL algorithm as training data.

4 Model-based Counterfactual Data Augmentation

In the previous section, we discussed how locally factored dynamics model can generalize beyond
the empirical dataset to provide accurate predictions on an augmented state-action distribution
we call the “parent distribution”. We now seek to leverage this out-of-distribution generalization
in the dynamics model to bootstrap the training of an RL agent. Our approach is to control the
agent’s training distribution P (s, a, s′) via the locally factored dynamics Pϕ(s

′|s, a) and the parent
distribution Pθ(s, a) (both trained using experience data). This allows us to sample augmented
transitions (perhaps unseen in the experience data) for consumption by a downstream RL agent. We
call this framework MOCODA, and summarize it using the following three-step process:

Step 1 Given known parent sets, model the parent distribution Pθ(s, a) and generate an appropriate
augmented parent distribution P̃θ(s, a).

Step 2 Apply a learned dynamics model Pϕ(s
′|s, a) to augmented parent distribution to generate

“augmented dataset” of transitions (s, a, s′).

Step 3 Use augmented dataset s, a, s′ ∼ P̃θPϕ (alongside experience data, if desired) to train an
off-policy RL agent on the (perhaps novel) target task.

Figure 3 illustrates this framework in a block diagram. An instance of MOCODA is realized by
specific choices at each step. For example, the original CoDA method [51] is an instance of MOCODA,
which (1) generates the augmented parent distribution by uniformly swapping non-overlapping parent
sets, and (2) uses subsamples of empirical transitions as a locally factored dynamics model. CoDA
works when local graphs have non-overlapping parent sets, but it does not allow for control over the
parent distribution and does not work in cases where parent sets overlap. MOCODA generalizes
CoDA, alleviating these restrictions and allowing for significantly more design choices.

4.1 Augmenting the Parent Distribution

How should the parent distribution be augmented (Step 1) to generate the augmented dataset? In
other words, after fitting Pθ(s, a) to experience, how should we realize P̃θ(s, a)? We describe some
options below, noting that our proposals (MOCODA, MOCODA-U, MOCODA-P) rely on knowledge
of (possibly local) parent sets—i.e., they require the state to be decomposed into objects.

Baseline Distributions. If we restrict ourselves to states and actions in the empirical dataset (EMP)
or short-horizon rollouts that start in the empirical state-action distribution (DYNA), as is typical in
Dyna-style approaches [57, 20], we limit ourselves to a small neighborhood of the empirical state-
action distribution. This forgoes the opportunity to train our off-policy RL agent on out-of-distribution
data that may be necessary for learning the target task.
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Another option is to sample random state-actions from S ×A (RAND). While this provides coverage
of all (s, a) relevant to the target task, there is no guarantee that our locally factorized model
generalizes well in RAND. The proof of Theorem 1 shows that our model only generalizes well to
a particular (s, a) if each component generalizes well on the configurations of each parent set in
that (s, a). In context of Theorem 1, this occurs only if the empirical data used to train our model
contained at least n samples for each set of parents in (s, a). This suggests focusing on data whose
parent sets have sufficient support in the empirical dataset.

The MOCODA distribution. We do this by constraining the marginal distribution of each parent
set (within local neighborhood L) in the augmented distribution to match the corresponding marginal
in the empirical dataset. As there are many such distributions, in absence of additional information, it
is sensible to choose the one with maximum entropy [21]. We call this maximum entropy, marginal
matching distribution the MOCODA augmented distribution. Figure 1 provides an illustrative example
of going from EMP (driving primarily on the right side) to MOCODA (driving on both right and left).
We propose an efficient way to generate the MOCODA distribution using a set of Gaussian Mixture
Models, one for each parent set distribution. We sample parent sets one at a time, conditioning on any
previous partial samples due to overlap between parent sets. This process is detailed in Appendix B.

Weaknesses of the MOCODA distribution. Although our locally factored dynamics model
is likely to generalize well on MOCODA, there are a few reasons why training our RL agent on
MOCODA in Step 3 may yield poor results. First, if there are empirical imbalances within parent sets
(some parent configurations more common than others), these imbalances will appear in MOCODA.
Moreover, multiple such imbalances will compound exponentially, so that (s, a) tuples with rare
parent combinations will be extremely rare in MOCODA, even if the model generalizes well to
them. Second, Support(MOCODA) may be so large that it makes training the RL algorithm in Step
3 inefficient. Finally, the cost function used in RL algorithms is typically an expectation over the
training distribution, and optimizing the agent in irrelevant areas of the state-action space may hurt
performance. The above limitations suggest that rebalancing MOCODA might improve results.

MOCODA-U and MOCODA-P. To mitigate the first weakness of MOCODA we might skew
MOCODA toward the uniform distribution over its support, U(Support(MOCODA)). Although this
is possible to implement using rejection sampling when k is small, exponential imbalance makes
it impractical when k is large. A more efficient implementation reweights the GMM components
used in our MOCODA sampler. We call this approach (regardless of implementation) MOCODA-U.
To mitigate the second and third weaknesses of MOCODA, we need additional knowledge about the
target task—e.g., domain knowledge or expert trajectories. We can use such information to define a
prioritized parent distribution MOCODA-P with support in Support(MOCODA), which can also be
obtained via rejection sampling (perhaps on MOCODA-U to also relieve the initial imbalance).

4.2 The Choice of Dynamics Model and RL Algorithm

Once we have an augmented parent distribution, P̃θ(s, a), we generate our augmented dataset by
applying dynamics model Pϕ(s

′ | s, a). The natural choice in light of the discussion in Section 3 is a
locally factored model. This requires knowledge of the local factorization, which is more involved
than the parent set knowledge used to generate the MOCODA distribution and its reweighted variants.
We note, however, that a locally factored model may not be strictly necessary for MOCODA, so
long as the underlying dynamics are factored. Although unfactored models do not perform well
in our experiments, we hypothesize that a good model with enough in-distribution data and the
right regularization might learn to implicitly respect the local factorization. The choice of model
architecture is not core to our work, and we leave exploration of this possibility to future work.

Masked Dynamics Model. In our experiments, we assume access to a mask function M : S×A →
{0, 1}(|S|+|A|)×|S| (perhaps learned [27, 51]), which maps states and actions to the adjacency map
of the local graph GL. Given this mask function, we design a dynamics model Pϕ that accepts
M(s, a) as an additional input and respects the causal relations in the mask (i.e., mutual information
I(Xi

t ;X
j
t+1 | (St, At) \Xi

t) = 0 if M(st, at)ij = 0). There are many architectures that enforce this
constraint. In our experiments we opt for a simple one, which first embeds each of the k parent
sets: f = [fi(Pai)]ki=1, and then computes the j-th child as a function of the sum of the masked
embeddings, gj(M(s, a)·,j · f). See Appendix B for further implementation details.

The RL Algorithm. After generating an augmented dataset by applying our dynamics model to the
augmented distribution, we label the data with our target task reward and use the result to train an RL
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agent. MOCODA works with a wide range of algorithms, and the choice of algorithm will depend on
the task setting. For example, our experiments are done in an offline setup, where the agent is given a
buffer of empirical data, with no opportunity to explore. For this reason, it makes sense to use offline
RL algorithms, as this setting has proven challenging for standard online algorithms [34].

Remark 4.1. The rationales for (1) regularizing the policy toward the empirical distribution in
offline RL algorithms, and (2) training on the MOCODA distribution, are compatible: in each case,
we want to restrict ourselves to state-actions where our models generalize well. By using MOCODA
we expand this set beyond the empirical distribution. Thus, when we apply offline RL algorithms in
our experiments, we train their offline component (e.g., the action sampler in BCQ [14] or the BC
constraint in TD3-BC [13]) on the expanded MOCODA training distribution.

5 Experiments

Hypotheses Our experiments are aimed at finding support for two critical hypotheses:

H1 Dynamics models, especially ones sensitive to the local factorization, are able to generalize
well in the MOCODA distribution.

H2 This out-of-distribution generalization can be leveraged via data augmentation to train an
RL agent to solve out-of-distribution tasks.

Note that support for H2 provides implicit support for H1.

Domains We test MOCODA on two continuous control domains. First is a simple, but controlled,
2D Navigation domain, where the agent must travel from one point in a square arena to another.
States are 2D (x, y) coordinates and actions are 2D (∆x,∆y) vectors. In most of the state space, the
sub-actions ∆x and ∆y affect only their respective coordinate. In the top right quadrant, however,
the ∆x and ∆y sub-actions each affect both x and y coordinates, so that the environment is locally
factored. The agent has access to empirical training data consisting of left-to-right and bottom-to-top
trajectories that are restricted to a ⌟ shape of the state space (see the EMP distribution in Figure 4).
We consider a target task where the agent must move from the bottom left to the top right. In this task
there is sufficient empirical data to solve the task by following the ⌟ shape of the data, but learning
the optimal policy of going directly via the diagonal requires out-of-distribution generalization.

Second, we test MOCODA in a challenging HookSweep2 robotics domain
based on Hook-Sweep [32], in which a Fetch robot must use a long hook
to sweep two boxes to one side of the table (either toward or away from
the agent). The boxes are initialized near the center of the table, and the
empirical data contains trajectories of the agent sweeping exactly one box to
one side of the table, leaving the other in the center. The target task requires
the agent to generalize to states that it has never seen before (both boxes
together on one side of the table). This is particularly challenging because the setup is entirely offline
(no exploration), where poor out-of-distribution generalization typically requires special offline RL
algorithms that constrain the agent’s policy to the empirical distribution [34, 2, 31, 13].

Directly comparing model generalization error. In the 2D Navigation domain we have access
to the ground truth dynamics, which allows us to directly compare generalization error on variety of

EMP DYNA MOCODA MOCODA-U RAND

Figure 4: 2D Navigation Visualization. (Best viewed with 2x zoom) Blue arrows represent transition samples
as a vector from (xt, yt) to (xt+1, yt+1). Shaded red areas mark the edges of the initial states of empirical
trajectories and the center of the square. We see that 5-step rollouts (DYNA) do not fill in the center (needed for
optimal policy), and fail to constrain actions to those that the model generalizes well on. For MOCODA, we see
the effect of compounding dataset imbalance discussed in Subsection 4.1, which is resolved by MOCODA-U.
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Table 1: 2D Navigation Dynamics Modeling Results: Mean squared error ± std. dev. over 5 seeds, scaled by
1e2 for clarity (best model boldfaced). The locally factored model experienced less performance degradation
out-of-distribution, and performed better on all distributions, except for the empirical distribution (EMP) itself.

Generalization Error (MSE ×1e2) (lower is better)
Model Architecture EMP DYNA RAND MOCODA MOCODA-U

Not Factored 0.14 ± 0.04 2.41 ± 0.29 4.4 ± 0.31 0.95 ± 0.06 1.29 ± 0.15
Globally Factored 0.36 ± 0.01 2.09 ± 0.28 3.17 ± 0.3 0.41 ± 0.02 0.51 ± 0.02
Locally Factored 0.23 ± 0.1 1.47 ± 0.27 2.03 ± 0.19 0.33 ± 0.11 0.46 ± 0.11

Table 2: 2D Navigation Offline RL Results: Average steps to completion ± std. dev. over 5 seeds for various
RL algorithms (best distribution in each row boldfaced), where average steps was computed over the last 50
training epochs. Training on MOCODA and MOCODA-U improved performance in all cases. Interestingly, even
using RAND improves performance, indicating the importance of training on out-of-distribution data. Note that
this is an offline RL task, and so SAC (an algorithm designed for online RL) is not expected to perform well.

Average Steps to Completion (lower is better)
RL Algorithm EMP RAND MOCODA MOCODA-U CODA [51]

SAC (online RL) 53.1 ± 9.8 27.6 ± 1.1 38.8 ± 18.3 41.3 ± 17.7 35.1 ± 18.1
BCQ 58.5 ± 10.1 31.7 ± 2.4 22.8 ± 0.4 24.8 ± 4.2 25.0 ± 0.4
CQL 45.8 ± 4.0 27.6 ± 1.3 22.8 ± 0.2 22.7 ± 0.3 23.6 ± 0.5

TD3-BC 40.0 ± 16.1 26.1 ± 0.8 21.0 ± 0.7 20.7 ± 0.8 21.4 ± 0.6

distributions, visualized in Figure 4. We compare three different model architectures: unfactored,
globally factored (assuming that the (x,∆x) and (y,∆y) causal mechanisms are independent ev-
erywhere, which is not true in the top right quadrant), and locally factored. The models are each
trained on a empirical dataset of 35000 transitions for up to 600 epochs, which is early stopped using
a validation set of 5000 transitions. The results are shown in Table 1. We find strong support for H1:
even given the simple dynamics of 2d Navigation, it is clear that the locally factored model is able
to generalize better than a fully connected model, particularly on the MOCODA distribution, where
performance degradation is minimal. We note that the DYNA distribution was formed by starting in
EMP and doing 5-step rollouts with random actions. The random actions produce out-of-distribution
data to which no model (not even the locally factored model) can generalize well to.

Solving out-of-distribution tasks. We apply the trained dynamics models to several base distribu-
tions and compare the performance of RL agents trained on each dataset. To ensure improvements
are due to the augmented dataset and not agent architecture, we train several different algorithms,
including: SAC [17], BCQ [14] (with DDPG [35]), CQL [31] and TD3-BC [13].

The results on 2D Navigation are shown in Table 2. We see that for all algorithms, the use of the
MOCODA and MOCODA-U augmented datasets greatly improve the average step count, providing
support for H2 and suggesting that using these datasets allows the agents to learn to traverse the
diagonal of the state space, even though it is out-of-distribution with respect to EMP. This is
consistent with a qualitative assessment of the learned policies, which confirms that agents trained on
the ⌟-shaped EMP distribution learn a ⌟-shaped policy, whereas agents trained on MOCODA and
MOCODA-U learn the optimal (diagonal) policy.

The results on the more complex HookSweep2 environment, shown in Table 3, provide further support
for H2. On this environment, only results for BCQ and TD3-BC are shown, as the other algorithms
failed on all datasets. For HookSweep2 we used a prioritized MOCODA-P parent distribution, as
follows: knowing that the target task involves placing two blocks, we applied rejection sampling to
MOCODA to make the marginal distribution of the joint block positions approximately uniform over
its support. The effect is to have good representation in all areas of the most important state features
for the target task (the block positions). The visualization in Figure 5 makes clear why training on
MOCODA or MOCODA-P was necessary in order to solve this task: the base EMP distribution simply
does not have sufficient coverage of the goal space.
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Figure 5: HookSweep2 Visualization: Stylized visualization of the distributions EMP (left), MOCODA (center),
and MOCODA-P (right). Each figure can be understood as a top down view of the table, where a point is a
plotted if the two blocks are close together on the table. The distribution EMP does not overlap with the green
goal areas on the left and right, and so the agent is unable to learn. In the MOCODA distribution, the agent gets
some success examples. In the MOCODA-P distribution, state-actions are reweighted so that the joint distribution
of the two block positions is approximately uniform, leading to more evenly distributed coverage of the table.

Table 3: HookSweep2 Offline RL Results: Average success percentage (± std. dev. over 3 seeds), where
the average was computed over the last 50 training epochs. SAC and CQL (omitted) were unsuccessful with all
datasets. We see that MOCODA was necessary for learning, and that results improve drastically with MOCODA-P,
which re-balances MOCODA toward a uniform distribution in the box coordinates (see Figure 5). Additionally,
we show results from an ablation, which generates the MoCoDA datasets using a fully connected dynamics
model. While this still achieves some success, it demonstrates that using a locally-factored model is important
for OOD generalization. In this case the more OOD MoCoDA-P distribution does not help, suggesting that the
fully connected model is failing to produce useful OOD transitions.

Average Success Rate (higher is better)
RLAlgorithm

EMP MOCODA MOCODA-P
MOCODA

(not factored)
MOCODA-P
(not factored)

BCQ 2.0 ± 1.6 20.7 ± 4.1 64.7 ± 4.1 14.0 ± 3.3 15.3 ± 4.1
TD3-BC 0.7 ± 0.9 38.7 ± 7.5 84.0 ± 2.8 29.3 ± 3.8 26.0 ± 1.6

6 Conclusion

In this paper, we tackled the challenging yet common setting where the available empirical data
provides insufficient coverage of critical parts of the state space. Starting with the insight that
locally factored transition models are capable of generalizing outside of the empirical distribution,
we proposed MOCODA, a framework for augmenting available data using a controllable “parent
distribution” and locally factored dynamics model. We find that adding augmented samples from
MOCODA allows RL agents to learn policies that traverse states and actions never before seen in
the experience buffer. Although our data augmentation is “model-based”, the transition samples it
produces are compatible with any downstream RL algorithm that consumes single-step transitions.

Future work might (1) explore methods for learning locally factorized representations, especially
in environments with high-dimensional inputs (e.g., pixels) [22, 28], and consider how MOCODA
might integrate with latent representations, (2) combine the insights presented here with learned
predictors of out-of-distribution generalization (e.g., uncertainty-based prediction) [46], (3) create
benchmark environments for entity-based RL [61] so that object-oriented methods and models can
be better evaluated, and (4) explore different approaches to re-balancing the training distribution for
learning on downstream tasks. With regards to direction (1), we note that asserting (or not) certain
independence relationships may have fairness implications for datasets [47, 9] that should be kept in
mind or explored. This is relevant also in regards to direction 4, as dataset re-balancing may result in
(or fix) biases in the data [30]. Re-balancing schemes should be sensitive to this.
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