
A Proofs

This appendix collects all proofs omitted from the main text due to space limitation.

A.1 Proofs about Orbit Averaging

In this section, we prove Proposition 2.3 and the feasibility of the projected mechanisms. For
simplicity, we use the notations σn(i) and σm(j) to present the ranks of the bidder i and the item j
after bidder-permutation σn and item-permutation σm, respectively.

Proof of Proposition 2.3. By the definition of orbit averaging Q, we have

Qf ◦ ρg(x) =
1

|G|
∑
h∈G

ψ−1
h f(ρhρgx) = ψg ◦

1

|G|
∑
h∈G

ψ−1
hg f(ρhgx) = ψg ◦ Qf(x).

In addition, if f is equivariant, then we have

Qf =
1

|G|
∑
g∈G

ψ−1
g ◦ f ◦ ρg =

1

|G|
∑
g∈G

ψ−1
g ◦ ψg ◦ f =

1

|G|
∑
g∈G

f = f.

Thus, orbit averaging is a projection to equivariant function space and fixes all equivariant functions.
In addition, orbit averaging fixes all equivariant functions. That means, every equivariant function
can be obtained by orbit averaging. In this sense, every equivariant models are contained in the orbit
averaging framework.

Proof of the feasibility of projected mechanisms. We verify all feasibility conditions for the
projected mechanisms as follows.

Firstly, for the allocation rule, we have
n∑

i=1

(Q1g)ij(v, x, y) =
1

n!

n∑
i=1

∑
σn∈Sn

gσ−1
n (i)j(σnv, σnx, y)

=
1

n!

∑
σn∈Sn

[ n∑
i=1

gσ−1
n (i)j(σnv, σnx, y)

]
≤ 1

n!

∑
σn∈Sn

1 = 1,

n∑
i=1

(Q2g)ij(v, x, y) =
1

m!

n∑
i=1

∑
σm∈Sm

giσ−1
m (j)(vσm, x, yσm)

=
1

m!

∑
σm∈Sm

[ n∑
i=1

giσ−1
m (j)(vσm, x, yσm)

]
≤ 1

m!

∑
σm∈Sm

1 = 1,

and
n∑

i=1

(Q3g)ij(v, x, y) =
1

n!m!

n∑
i=1

∑
σn∈Sn

∑
σm∈Sm

gσ−1
n (i)σ−1

m (j)(σnvσm, σnx, yσm)

=
1

n!m!

∑
σn∈Sn

∑
σm∈Sm

[ n∑
i=1

gσ−1
n (i)σ−1

m (j)(σnvσm, σnx, yσm)

]
≤ 1

n!m!

∑
σn∈Sn

∑
σm∈Sm

1 = 1,

thus we know the projected allocation rule is also feasible, which will never allocate one item more
than once.

In addition, for the payment rule, we have

(Q1p)i(v, x, y) =
1

n!

∑
σn∈Sn

pσ−1
n (i)(σnv, σnx, y)

≤ 1

n!

∑
σn∈Sn

[ m∑
j=1

gσ−1
n (i)j(σnv, σnx, y)(σnv)σ−1

n (i)j

]

=

m∑
j=1

[
1

n!

∑
σn∈Sn

gσ−1
n (i)j(σnv, σnx, y)vij

]
≤

m∑
j=1

(Q1g)ij(v, x, y)vij ,
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(Q2p)i(v, x, y) =
1

m!

∑
σm∈Sm

pi(vσm, x, yσm)

≤ 1

m!

∑
σm∈Sm

[ m∑
j=1

gij(vσm, x, yσm)(vσm)ij

]

=

m∑
j=1

[
1

m!

∑
σm∈Sm

giσ−1
m (j)(vσm, x, yσm)vij

]
≤

m∑
j=1

(Q2g)ij(v, x, y)vij ,

and

(Q3p)i(v, x, y) =
1

n!m!

∑
σn∈Sn

∑
σm∈Sm

pσ−1
n (i)(σnvσm, σnx, yσm)

≤ 1

n!m!

∑
σn∈Sn

∑
σm∈Sm

[ m∑
j=1

gσ−1
n (i)j(σnvσm, σnx, yσm)(σnvσm)σ−1

n (i)j

]

=

m∑
j=1

[
1

n!m!

∑
σn∈Sn

∑
σm∈Sm

gσ−1
n (i)σ−1

m (j)(σnvσm, σnx, yσm)vij

]
≤

m∑
j=1

(Q3g)ij(v, x, y)vij ,

thus, we have completed this proof.

A.2 Proof of Theorem 3.1

In this section, we proves Theorem 3.1.

Proof of Theorem 3.1. We first study the part in the condition of bidder-symmetry; i.e., the orbit
averaging Q· is the bidder averaging Q1, acting on the allocation rule g and the payment rule p as
below,

Q1g(v, x, y) =
1

n!

∑
σn∈Sn

σ−1
n g(σnv, σnx, y),

and
Q1p(v, x, y) =

1

n!

∑
σn∈Sn

σ−1
n p(σnv, σnx, y).

Step 1: We first prove that the auction mechanism has the same expected revenue after projection,
i.e.,

E
(v,x,y)

[ n∑
i=1

[Q1p]i(v, x, y)

]
= E

(v,x,y)

[ n∑
i=1

pi(v, x, y)

]
.

Given that for all permutation π,
n∑

i=1

pi =

n∑
i=1

pπ(i),

we have the following equation,

E
(v,x,y)

[ n∑
i=1

Q1pi(v, x, y)

]
= E

(v,x,y)

[
1

n!

n∑
i=1

∑
σn∈Sn

pσ−1
n (i)(σnv, σnx, y)

]

= E
(v,x,y)

[
1

n!

n∑
i=1

∑
σn∈Sn

pi(σnv, σnx, y)

]
=

1

n!

n∑
i=1

∑
σn∈Sn

E
(v,x,y)

[
pi(σnv, σnx, y)

]

=
1

n!

n∑
i=1

∑
σn∈Sn

E
(v,x,y)

[
pi(v, x, y)

]
=

n∑
i=1

E
(v,x,y)

[
pi(v, x, y)

]
.

Thus, we complete the first step.
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Step 2: We then prove that the sum of all bidders’ utilities remains the same after projection, i.e.,

E
(v,x,y)

[ n∑
i=1

[Q1u]i(vi, v, x, y)

]
= E

(v,x,y)

[ n∑
i=1

ui(vi, v, x, y)

]
.

Given that

n∑
i=1

gπ(i)jvπ(i)j =

n∑
i=1

gijvij ,

we have the following equation,

E
(v,x,y)

[ n∑
i=1

[Q1u]i(vi, v, x, y)

]

= E
(v,x,y)

[ n∑
i=1

[ m∑
j=1

[Q1g]ij(v, x, y)vij − [Q1p]i(v, x, y)
]]

= E
(v,x,y)

[ n∑
i=1

m∑
j=1

[Q1g]ij(v, x, y)vij

]
− E

(v,x,y)

[ n∑
i=1

pi(v, x, y)

]

= E
(v,x,y)

[
1

n!

n∑
i=1

m∑
j=1

∑
σn∈Sn

gσ−1
n (i)j(σnv, σnx, y)vij

]
− E

(v,x,y)

[ n∑
i=1

pi(v, x, y)

]

=
1

n!

∑
σn∈Sn

E
(v,x,y)

[ n∑
i=1

m∑
j=1

gσ−1
n (i)j(σnv, σnx, y)[σnv]σ−1

n (i)j

]
− E

(v,x,y)

[ n∑
i=1

pi(v, x, y)

]

=
1

n!

∑
σn∈Sn

E
(v,x,y)

[ n∑
i=1

m∑
j=1

gij(σnv, σnx, y)[σnv]ij

]
− E

(v,x,y)

[ n∑
i=1

pi(v, x, y)

]

=
1

n!

∑
σn∈Sn

E
(v,x,y)

[ n∑
i=1

m∑
j=1

gij(v, x, y)vij

]
− E

(v,x,y)

[ n∑
i=1

pi(v, x, y)

]

= E
(v,x,y)

[ n∑
i=1

m∑
j=1

gij(v, x, y)vij

]
− E

(v,x,y)

[ n∑
i=1

pi(v, x, y)

]

= E
(v,x,y)

[ n∑
i=1

ui(vi, v, x, y)

]
.

Thus, we have completed the second step.

Step 3: We lastly prove that the auction mechanism has a smaller ex-post regret after projection,
i.e.,

E
[

max
v′∈Vn×m

n∑
i=1

[Q1u]i(vi, (v
′
i, v−i), x, y)

]
≤ E

[
max

v′∈Vn×m

n∑
i=1

u(vi, (v
′
i, v−i), x, y)

]
.
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For the simplicity, we denote
m∑
j=1

gijvij by ⟨gi, vi⟩. Then, we have,

E
(v,x,y)

[
max

v′∈Vn×m

n∑
i=1

[Q1u]i
(
vi, (v

′
i, v−i), x, y

)]

= E
(v,x,y)

[
max

v′∈Vn×m

n∑
i=1

m∑
j=1

[Q1g]ij
(
(v′i, v−i), x, y

)
vij − [Q1p]i

(
(v′i, v−i), x, y

)]

= E
(v,x,y)

[
max

v′∈Vn×m

n∑
i=1

〈
[Q1g]i

(
(v′i, v−i), x, y

)
, vi

〉
− [Q1p]i

(
(v′i, v−i), x, y

)]

= E
(v,x,y)

[
max

v′∈Vn×m

n∑
i=1

1

n!

∑
σn∈Sn

〈
gσ−1

n (i)

(
σn(v

′
i, v−i), σnx, y

)
, vi

〉
− pσ−1

n (i)

(
σn(v

′
i, v−i), σnx, y

)]
.

Combining the following inequality,

max
z

K∑
k=1

fk(z) ≤
K∑

k=1

max
z

fk(z),

we have that

E
(v,x,y)

[
max

v′∈Vn×m

n∑
i=1

1

n!

∑
σn∈Sn

〈
gσ−1

n (i)

(
σn(v

′
i, v−i), σnx, y

)
, vi

〉
− pσ−1

n (i)

(
σn(v

′
i, v−i), σnx, y

)]

≤ E
(v,x,y)

[
1

n!

∑
σn∈Sn

max
v′∈Vn×m

n∑
i=1

〈
gσ−1

n (i)

(
σn(v

′
i, v−i), σnx, y

)
, vi

〉
− pσ−1

n (i)

(
σn(v

′
i, v−i), σnx, y

)]

=
1

n!

∑
σn∈Sn

E
(v,x,y)

[
max

v′∈Vn×m

n∑
i=1

〈
gσ−1

n (i)

(
σn(v

′
i, v−i), σnx, y

)
, vi

〉
− pσ−1

n (i)

(
σn(v

′
i, v−i), σnx, y

)]

=
1

n!

∑
σn∈Sn

E
(v,x,y)

[
max

v′∈Vn×m

n∑
i=1

ui
(
vi, (v

′
i, v−i), x, y

)]

= E
(v,x,y)

[
max

v′∈Vn×m

n∑
i=1

ui
(
vi, (v

′
i, v−i), x, y

)]
.

We thus have completed the proof of eqs. (1) and (2) when the orbit averaging Q· is the condition of
bidder-symmetry.

Then, we prove this theorem in the condition of item-symmetry; i.e., the orbit averaging Q· is the
item averaging Q2, acting on the allocation rule g and the payment rule p as shown below,

Q2g(v, x, y) =
1

m!

∑
σm∈Sm

g(vσm, x, yσm)σ−1
m ,

and,

Q2p(v, x, y) =
1

m!

∑
σm∈Sm

p(vσm, x, yσm).

Step 1: We first prove that the auction mechanism has the same expected revenue after projection,
i.e.,

E
(v,x,y)

[ n∑
i=1

[Q2p]i(v, x, y)

]
= E

(v,x,y)

[ n∑
i=1

pi(v, x, y)

]
.
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Since the valuation joint distribution is invariant under bidder permutation, we have
E(v,x,y)[f(vσm, x, yσm)] = E(v,x,y)[f(v, x, y)]. Then, we have

E
(v,x,y)

[ n∑
i=1

[Q2p]i(v, x, y)

]

= E
(v,x,y)

[
1

m!

n∑
i=1

∑
σm∈Sm

pi(vσm, x, yσm)

]

=
1

m!

n∑
i=1

∑
σm∈Sm

E
(v,x,y)

[
pi(vσm, x, yσm)

]

=
1

m!

n∑
i=1

∑
σm∈Sm

E
(v,x,y)

[
pi(v, x, y)

]
=

n∑
i=1

E
(v,x,y)

[
pi(v, x, y)

]
.

We have thus completed the first step.

Step 2: We then prove that the sum of all bidders’ utilities remains same after projection, i.e.,

E
(v,x,y)

[ n∑
i=1

[Q2u]i(vi, v, x, y)

]
= E

(v,x,y)

[ n∑
i=1

ui(vi, v, x, y)

]
.

Given that for all permutation π,
m∑
j=1

giπ(j)viπ(j) =

m∑
j=1

gijvij ,

we have the following equation,

E
(v,x,y)

[ n∑
i=1

[Q2u]i(vi, v, x, y)

]

= E
(v,x,y)

[ n∑
i=1

[ m∑
j=1

[Q2g]ij(v, x, y)vij − [Q2p]i(v, x, y)
]]

= E
(v,x,y)

[ n∑
i=1

m∑
j=1

[Q2g]ij(v, x, y)vij

]
− E

(v,x,y)

[ n∑
i=1

pi(v, x, y)

]

= E
(v,x,y)

[
1

m!

n∑
i=1

m∑
j=1

∑
σm∈Sm

giσ−1
m (j)(vσm, x, yσm)vij

]
− E

(v,x,y)

[ n∑
i=1

pi(v, x, y)

]

=
1

m!

∑
σm∈Sm

E
(v,x,y)

[ n∑
i=1

m∑
j=1

giσ−1
m (j)(vσm, x, yσm)[vσm]iσ−1

m (j)

]
− E

(v,x,y)

[ n∑
i=1

pi(v, x, y)

]

=
1

m!

∑
σm∈Sm

E
(v,x,y)

[ n∑
i=1

m∑
j=1

gij(vσm, x, yσm)[vσm]ij

]
− E

(v,x,y)

[ n∑
i=1

pi(v, x, y)

]

=
1

m!

∑
σm∈Sm

E
(v,x,y)

[ n∑
i=1

m∑
j=1

gij(v, x, y)vij

]
− E

(v,x,y)

[ n∑
i=1

pi(v, x, y)

]

= E
(v,x,y)

[ n∑
i=1

m∑
j=1

gij(v, x, y)vij

]
− E

(v,x,y)

[ n∑
i=1

pi(v, x, y)

]

= E
(v,x,y)

[ n∑
i=1

ui(vi, v, x, y)

]
.

Thus, we have completed the second step.
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Step 3: We lastly prove that the auction mechanism have a smaller ex-post regret after projection,
i.e.,

E
[

max
v′∈Vn×m

n∑
i=1

[Q2u]i(vi, (v
′
i, v−i), x, y)

]
≤ E

[
max

v′∈Vn×m

n∑
i=1

u(vi, (v
′
i, v−i), x, y)

]
.

By the definition of the utility u and the item averaging Q2, we have

E
(v,x,y)

[
max

v′∈Vn×m

n∑
i=1

[Q2u]i
(
vi, (v

′
i, v−i), x, y

)]

= E
(v,x,y)

[
max

v′∈Vn×m

n∑
i=1

m∑
j=1

[Q2g]ij
(
(v′i, v−i), x, y

)
vij − [Q2p]i

(
(v′i, v−i), x, y

)]

= E
(v,x,y)

[
max

v′∈Vn×m

n∑
i=1

〈
[Q2g]i

(
(v′i, v−i), x, y

)
, vi

〉
− [Q2p]i

(
(v′i, v−i), x, y

)]

= E
(v,x,y)

[
max

v′∈Vn×m

n∑
i=1

1

m!

∑
σm∈Sm

〈
gi
(
(v′i, v−i)σm, x, yσm

)
σ−1
m , vi

〉
− pi

(
(v′i, v−i)σm, x, yσm

)]
.

Combining the following inequality

max
z

K∑
k=1

fk(z) ≤
K∑

k=1

max
z

fk(z),

we have

E
(v,x,y)

[
max

v′∈Vn×m

n∑
i=1

1

m!

∑
σm∈Sm

〈
gi
(
(v′i, v−i)σm, x, yσm

)
σ−1
m , vi

〉
− pi

(
(v′i, v−i)σm, x, yσm

)]

≤ E
(v,x,y)

[
1

m!

∑
σm∈Sm

n∑
i=1

max
v′∈Vn×m

〈
gi
(
(v′i, v−i)σm, x, yσm

)
σ−1
m , vi

〉
− pi

(
(v′i, v−i)σm, x, yσm

)]

=
1

m!

∑
σm∈Sm

E
(v,x,y)

[
max

v′∈Vn×m

n∑
i=1

〈
gi
(
(v′i, v−i)σm, x, yσm

)
, viσm

〉
− pi

(
(v′i, v−i)σm, x, yσm

)]

=
1

m!

∑
σm∈Sm

E
(v,x,y)

[
max

v′∈Vn×m

n∑
i=1

ui
(
vi, (v

′
i, v−i), x, y

)]

= E
(v,x,y)

[
max

v′∈Vn×m

n∑
i=1

ui
(
vi, (v

′
i, v−i), x, y

)]
.

We thus have proved this theorem in the condition of item-symmetry.

The proofs are completed.

A.3 Proof of Lemma 3.3

In this section, we present the proof of Lemma 3.3.
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Proof of Lemma 3.3. Both the bidder averaging and the item averaging are linear. Thus, we have the
following results,

Q1 ◦ Q2f(v, x, y)

=Q1

[
1

m!

∑
σm∈Sm

f(vσm, x, yσm)σ−1
m

]
=

1

n!

∑
σn∈Sn

σ−1
n

[
1

m!

∑
σm∈Sm

f(σnvσm, σnx, yσm)σ−1
m

]
=

1

n!m!

∑
σn∈Sn

∑
σm∈Sm

σ−1
n f(σnvσm, σnx, yσm)σ−1

m = Q3f(v, x, y),

and

Q2 ◦ Q1f(v, x, y)

=Q2

[
1

n!

∑
σn∈Sn

σ−1
n f(σnv, σnx, y)

]
=

1

m!

∑
σm∈Sm

[
1

n!

∑
σn∈Sn

σ−1
n f(σnvσm, σnx, yσm)

]
σ−1
m

=
1

m!n!

∑
σn∈Sn

∑
σm∈Sm

σ−1
n f(σnvσm, σnx, yσm)σ−1

m = Q3f(v, x, y).

The above two equations hold for any f . Then, we may prove that

Q3 = Q1 ◦ Q2 = Q2 ◦ Q1,

which is exactly the claim of this theorem.

The proof is completed.

A.4 Proof of Theorem 3.4

In this section, we apply our Lemma 3.3 and Theorem 3.1 to prove Theorem 3.4.

Proof of Theorem 3.4. For the simplicity, we rewrite Q3p and Q3reg as Q2(Q1p) and Q2(Q1reg),
respectively. Then, for a payment rule p, we have that,

E
(v,x,y)

[ n∑
i=1

[Q3p]i(v, x, y)

]

= E
(v,x,y)

[ n∑
i=1

[Q2(Q1p)]i(v, x, y)

]
= E

(v,x,y)

[ n∑
i=1

[Q1p]i(v, x, y)

]

= E
(v,x,y)

[ n∑
i=1

pi(v, x, y)

]
.

Also, we have the following result,

E
(v,x,y)

[ n∑
i=1

[Q3reg]i(v, x, y)

]

= E
(v,x,y)

[ n∑
i=1

[Q2(Q1reg)]i(v, x, y)

]
≤ E

(v,x,y)

[ n∑
i=1

[Q1reg]i(v, x, y)

]

≤ E
(v,x,y)

[ n∑
i=1

regi(v, x, y)

]
.
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Moreover, we have the following result on the regret gap ∆3,

E
(v,x,y)

[∆3(g, p; v, x, y)] = E
(v,x,y)

[∆1(g, p; v, x, y)] + E
(v,x,y)

[∆2(Q1g,Q1p; v, x, y)] ≥ 0.

This proof is completed.

A.5 Proof of Theorem 3.5

In this section, we present the proof of Theorem 3.5.

We start with the definitions or notations necessary for our proof. We define the allocation rule space
and the payment rule space as follows,

G = {gω : ω ∈ Ω} and P = {pω : ω ∈ Ω},

where ω is the auction mechanism parameter and Ω is the set of all feasible parameters. We then
define the induced utility and ex-post regret spaces as follows,

U =
{
uω : uωi (v

′
i, v, x, y) =

m∑
j=1

gωij(v, x, y)v
′
ij − pωi (v, x, y)

}
,

and

R =
{
regω : regωi (v, x, y) = max

v′
i

uω(vi, (v
′
i, v−i), x, y)− uω(vi, v, x, y)

}
.

Then, the l∞,1-distance on U and P is defined as below,

l∞,1(u, u
′) = max

(v,v′
i,x,y)

( n∑
i=1

|ui(vi, (v′i, v−i), x, y)− u′i(vi, (v′i, v−i), x, y)|
)
,

and

l∞,1(p, p
′) = max

(v,x,y)

( n∑
i=1

|pi(v, x, y)− p′i(v, x, y)|
)
.

We now present the proof of Theorem 3.5.

Proof of Theorem 3.5. We prove Theorem 3.5 in two steps: (1) we first prove that the distance
between any two mechanisms is smaller when we project them to be permutation-equivariant; (2)
then, we prove that the smaller distance implies a smaller covering number.

Step 1: We prove that the distance between two mechanisms becomes smaller after projection, i.e.,

l∞,1(Q·p,Q·p
′) ≤ l∞,1(p, p

′),

and

l∞,1(Q·u,Q·u
′) ≤ l∞,1(u, u

′),

where u, u′ ∈ U , p, p′ ∈ P , and Q· = Q1 or Q2.
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When Q· is Q1, we have that

l∞,1(Q1p,Q1p
′)

= max
(v,x,y)

n∑
i=1

|Q1pi(v, x, y)−Q1p
′
i(v, x, y)|

= max
(v,x,y)

n∑
i=1

∣∣∣∣ 1n! ∑
σn∈Sn

[
pσ−1

n (i)(σnv, σnx, y)− p
′
σ−1
n (i)

(σnv, σnx, y)
]∣∣∣∣

≤ max
(v,x,y)

n∑
i=1

1

n!

∑
σn∈Sn

∣∣pσ−1
n (i)(σnv, σnx, y)− p

′
σ−1
n (i)

(σnv, σnx, y)
∣∣

≤
∑

σn∈Sn

1

n!
max
(v,x,y)

n∑
i=1

∣∣pσ−1
n (i)(σnv, σnx, y)− p

′
σ−1
n (i)

(σnv, σnx, y)
∣∣

=
∑

σn∈Sn

1

n!
max
(v,x,y)

n∑
i=1

∣∣pi(σnv, σnx, y)− p′i(σnv, σnx, y)∣∣
=

∑
σn∈Sn

1

n!
max
(v,x,y)

n∑
i=1

∣∣pi(v, x, y)− p′i(v, x, y)∣∣
= max

(v,x,y)

n∑
i=1

∣∣pi(v, x, y)− p′i(v, x, y)∣∣
=l∞,1(p, p

′),

and

l∞,1(Q1u,Q1u
′)

= max
v,v′,x,y

n∑
i=1

|[Q1u]i(vi, (v
′
i, v−i), x, y)− [Q1u

′]i(vi, (v
′
i, v−i), x, y)|

= max
v,v′,x,y

n∑
i=1

∣∣∣∣ 1n! ∑
σn∈Sn

uσ−1
n (i)(vi, σn(v

′
i, v−i), σnx, y)− u′σ−1

n (i)
(vi, σn(v

′
i, v−i), σnx, y)

∣∣∣∣
≤ max

v,v′,x,y

n∑
i=1

1

n!

∑
σn∈Sn

|uσ−1
n (i)(vi, σn(v

′
i, v−i), σnx, y)− u′σ−1

n (i)
(vi, σn(v

′
i, v−i), σnx, y)|

≤ 1

n!

∑
σn∈Sn

max
v,v′,x,y

n∑
i=1

|uσ−1
n (i)(vi, σn(v

′
i, v−i), σnx, y)− u′σ−1

n (i)
(vi, σn(v

′
i, v−i), σnx, y)|

=
1

n!

∑
σn∈Sn

max
v,v′,x,y

n∑
i=1

|ui(vi, (v′i, v−i), x, y)− u′i(vi, (v′i, v−i), x, y)|

= max
v,v′,x,y

n∑
i=1

|ui(vi, (v′i, v−i), x, y)− u′i(vi, (v′i, v−i), x, y)|

=l∞,1(u, u
′).
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Then, when Q· is Q2, we prove the result as below,
l∞,1(Q2p,Q2p

′)

= max
(v,x,y)

n∑
i=1

|Q2pi(v, x, y)−Q2p
′
i(v, x, y)|

= max
(v,x,y)

n∑
i=1

∣∣∣∣ 1

m!

∑
σm∈Sm

[
pi(vσm, x, yσm)− p′i(vσm, x, yσm)

]∣∣∣∣
≤ max

(v,x,y)

n∑
i=1

1

m!

∑
σm∈Sm

∣∣pi(vσm, x, yσm)− p′i(vσm, x, yσm)
∣∣

≤
∑

σm∈Sm

1

m!
max
(v,x,y)

n∑
i=1

∣∣pi(vσm, x, yσm)− p′i(vσm, x, yσm)
∣∣

=
∑

σm∈Sm

1

m!
max
(v,x,y)

n∑
i=1

∣∣pi(v, x, y)− p′i(v, x, y)∣∣
= max

(v,x,y)

n∑
i=1

∣∣pi(v, x, y)− p′i(v, x, y)∣∣
=l∞,1(p, p

′),

and
l∞,1(Q2u,Q2u

′)

= max
v,v′,x,y

n∑
i=1

|[Q2u]i(vi, (v
′
i, v−i), x, y)− [Q2u

′]i(vi, (v
′
i, v−i), x, y)|

= max
v,v′,x,y

n∑
i=1

∣∣∣∣ 1

m!

∑
σm∈Sm

|ui(viσm, (v′i, v−i)σm, x, yσm)− u′i(viσm, (v′i, v−i)σm, x, yσm)

∣∣∣∣
≤ max

v,v′,x,y

n∑
i=1

1

m!

∑
σm∈Sm

|ui(viσm, (v′i, v−i)σm, x, yσm)− u′i(viσm, (v′i, v−i)σm, x, yσm)|

≤ 1

m!

∑
σm∈Sm

max
v,v′,x,y

n∑
i=1

|ui(viσm, (v′i, v−i)σm, x, yσm)− u′i(viσm, (v′i, v−i)σm, x, yσm)|

=
1

m!

∑
σm∈Sm

max
v,v′,x,y

n∑
i=1

|ui(vi, (v′i, v−i), x, y)− u′i(vi, (v′i, v−i), x, y)|

= max
v,v′,x,y

n∑
i=1

|ui(vi, (v′i, v−i), x, y)− u′i(vi, (v′i, v−i), x, y)|

=l∞,1(u, u
′).

Thus, we have completed Step 1.

Step 2: We prove that a smaller distance implies a smaller covering number.

Let X and Y be two metric spaces with two different distances l1 and l2, respectively. There exists
a surjective mapping f from Y to X , such that l1(f(x), f(y)) ≤ l2(x, y) for all x, y ∈ Y . The
covering numbersN1(X , r) andN2(Y, r) are defined as the minimum numbers of balls with radius r
that can cover X and Y under l1 and l2, respectively.

By the definition of the covering number N2(Y, r), there exists a set A of scale N2(Y, r), such that
l2(x,A) = inf

y∈A
l2(x, y) < r,∀x ∈ Y.

Then, f(A) is also a r-cover for X under distance l1, i.e., for any x ∈ Y , we have
l1(f(x), f(A)) = inf

y∈A
l1(f(x), f(y)) ≤ inf

y∈A
l2(x, y) = l2(x,A) < r.
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Because f is surjective, for any x′ ∈ X , there exists an x ∈ Y , such that x′ = f(x). Then, for any
x′ ∈ X , we have that

l1(x
′, f(A)) = l1(f(x), f(A)) < r.

By the definition of N1(X , r), we have
N1(X , r) ≤ |f(A)| ≤ |A| = N2(Y, r).

Eventually, combining the results in Step 1 and in Step 2, we have that
N∞,1(Q·U , r) ≤ N∞,1(U , r),

and
N∞,1(Q·P, r) ≤ N∞,1(P, r),

for both the bidder averaging Q1 and the item averaging Q2.

A.6 Proof of Theorem 3.6 and Corollary 3.7

We first introduce two lemmas. The first lemma gives a concentration inequality via the covering
number. This result can be used to bound the gap between expected revenue/ex-post regret and
empirical revenue/ex-post regret. The second lemma bounds the covering number N∞,1(R, 2r) by
the covering number N∞,1(U , r). Both lemmas has been proved by [10]. We recall them here to
make our paper completed.
Lemma A.1 (cf. Lemma E.1, [10]). Let S = {z1, . . . , zL} be a set of i.i.d. sample points drawn
from a distribution D over Z . Suppose F is a set of functions from Z to R such that f(z) ∈ [a, b] for
all f ∈ F and z ∈ Z . We define l∞ on F as

l∞(f, f ′) = max
z∈Z
|f(z)− f ′(z)|,

and N∞(F , r) as the minimum number of balls with radius r that can cover F under l∞-distance.
Then, we have the following concentration inequality,

P
[
∃f ∈ F :

∣∣∣ 1
L

L∑
i=1

f(zi)− E[f(z)]
∣∣∣ > ϵ

]
≤ 2N∞

(
F , ϵ

3

)
exp

(
− 2Lϵ2

9(b− a)2
)
.

Proof. By the definition of N∞(F , r), for any f ∈ F , there exists an fr ∈ Fr such that Fr is an
r-cover for F and l∞(f, fr) < r. Denote 1

L

∑L
i=1 f(zi) by ES [f(z)]. Then, we have

P
[
∃f ∈ F :

∣∣∣ES [f(z)]− E[f(z)]
∣∣∣ > ϵ

]
=P

[
∃f ∈ F :

∣∣∣ES [f(z)]− ES [fr(z)] + ES [fr(z)]− E[fr(z)] + E[fr(z)]− E[f(z)]
∣∣∣ > ϵ

]
≤P

[
∃f ∈ F :

∣∣∣ES [f(z)]− ES [fr(z)]
∣∣∣+ ∣∣∣ES [fr(z)]− E[fr(z)]

∣∣∣+ ∣∣∣E[fr(z)]− E[f(z)]
∣∣∣ > ϵ

]
≤P

[
∃fr ∈ F ϵ

3
:
∣∣∣ES [fr(z)]− E[fr(z)]

∣∣∣ > ϵ

3

]
≤N∞

(
F , ϵ

3

)
P
[∣∣∣ES [f(z)]− E[f(z)]

∣∣∣ > ϵ

3

]
≤2N∞

(
F , ϵ

3

)
exp

(
− 2Lϵ2

9(b− a)2
)
.

The third inequality follows from the fact that when r = ϵ
3 , we have

|f(z)− fr(z)| <
ϵ

3
,

for all z ∈ Z and f ∈ F . Then, from the Hoeffding’s inequality, we have∣∣∣ 1
L

L∑
i=1

f(zi)−
1

L

L∑
i=1

fr(zi)
∣∣∣ < ϵ

3
and

∣∣∣E[f(z)]− E[fr(z)]
∣∣∣ < ϵ

3
.

The proof is completed.
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The following lemma bounds the covering numberN∞,1(R, 2r) by the covering numberN∞,1(U , r).
Then the gap between expected ex-post regret and empirical ex-post regret can be bounded by the
covering number N∞,1(U , r).
Lemma A.2 (cf. Lemma E.3, [10]). We defineN∞,1(R, r) andN∞,1(U , r) as the minimum numbers
of balls with radius r that can cover spaces R and U under distance l∞,1, respectively. Then, we
have that

N∞,1(R, 2r) ≤ N∞,1(U , r)

Proof. By the definition ofN∞,1(U , r), there exists an r-cover Ur for U , such that |Ur| = N∞,1(U , r)
and for any u ∈ U ,

l∞,1(u,Ur) = inf
u′∈Ur

l∞,1(u, u
′) < r.

We defineRr as

{reg ∈ R : regi(v, x, y) = max
v′
i

ui(vi, (v
′
i, v−i), x, y)− ui(vi, v, x, y) for some ui ∈ Ur}.

Then, we can prove thatRr is a 2r-cover for the spaceR, i.e.,

l∞,1(reg,Rr)

= inf
reg′∈Rr

l∞,1(reg, reg
′)

= inf
reg′∈Rr

max
v,x,y

n∑
i=1

|regi(v, x, y)− reg′i(v, x, y)|

= inf
u′∈Ur

max
v,x,y

n∑
i=1

∣∣∣[max
v′
i

ui(vi, (v
′
i, v−i), x, y)− ui(vi, v, x, y)]

− [max
v′
i

u′i(vi, (v
′
i, v−i), x, y)− u′i(vi, v, x, y)]

∣∣∣
≤ inf

u′∈Ur

max
v,x,y

[ n∑
i=1

∣∣∣max
v′
i

ui(vi, (v
′
i, v−i), x, y)−max

v′
i

u′i(vi, (v
′
i, v−i), x, y)

∣∣∣
+
∣∣∣ui(vi, v, x, y)− u′i(vi, v, x, y)∣∣∣]

≤max
v,x,y

[ n∑
i=1

∣∣∣max
v′
i

ui(vi, (v
′
i, v−i), x, y)−max

v′
i

u∗i (vi, (v
′
i, v−i), x, y)

∣∣∣
+
∣∣∣ui(vi, v, x, y)− u∗i (vi, v, x, y)∣∣∣] (where l∞,1(u, u

∗) < r)

≤max
v,x,y

n∑
i=1

∣∣∣max
v′
i

ui(vi, (v
′
i, v−i), x, y)−max

v′
i

u∗i (vi, (v
′
i, v−i), x, y)

∣∣∣+ r

≤max
v,x,y

n∑
i=1

max
v′
i

|ui(vi, (v′i, v−i), x, y)− u∗i (vi, (v′i, v−i), x, y)|+ r

= max
v,v′

i,x,y

n∑
i=1

|ui(vi, (v′i, v−i), x, y)− u∗i (vi, (v′i, v−i), x, y)|+ r < 2r.

Eventually, we have
N∞,1(R, 2r) ≤ |Rr| ≤ |Ur| = N∞,1(U , r).

The proof is completed.

We now prove Theorem 3.6 and Corollary 3.7.
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Proof of Theorem 3.6 and Corollary 3.7. Applying Lemma A.1 to the spaces P and U , we have that

P
[
∃ω ∈ Ω :

∣∣∣∣ E
(v,x,y)

[ n∑
i=1

pωi (v, x, y)

]
− 1

L

L∑
l=1

n∑
i=1

pωi (v
(l), x(l), y(l))

∣∣∣∣ > ϵ

]
≤2N∞,1

(
P, ϵ

3

)
exp

(
− 2Lϵ2

9n2

)
,

and

P
[
∃ω ∈ Ω :

∣∣∣∣ E
(v,x,y)

[ n∑
i=1

regωi (v, x, y)

]
− 1

L

L∑
l=1

n∑
i=1

regωi (v
(l), x(l), y(l))

∣∣∣∣ > ϵ

]
≤2N∞,1

(
R, ϵ

3

)
exp

(
− 2Lϵ2

9n2

)
≤2N∞,1

(
U , ϵ

6

)
exp

(
− 2Lϵ2

9n2

)
,

where the last inequality follows from Lemma A.2.

Further, we assume that

ϵ ≥

√
9n2

2L

(
log

4

δ
+max

{
logN∞,1

(
P, ϵ

3

)
, logN∞,1

(
U , ϵ

6

)})
.

Then, we have the following inequalities,

P
[
∃ω ∈ Ω :

∣∣∣∣ E
(v,x,y)

[ n∑
i=1

pωi (v, x, y)

]
− 1

L

L∑
l=1

n∑
i=1

pωi (v
(l), x(l), y(l))

∣∣∣∣ > ϵ

]
≤ δ

2
,

and

P
[
∃ω ∈ Ω :

∣∣∣∣ E
(v,x,y)

[ n∑
i=1

regωi (v, x, y)

]
− 1

L

L∑
l=1

n∑
i=1

regωi (v
(l), x(l), y(l))

∣∣∣∣ > ϵ

]
≤ δ

2
.

Thus, with probability at least 1− δ, for any ω ∈ Ω, we have that∣∣∣∣ E
(v,x,y)

[ n∑
i=1

pωi (v, x, y)

]
− 1

L

L∑
l=1

n∑
i=1

pωi (v
(l), x(l), y(l))

∣∣∣∣ < ϵ, (5)

and ∣∣∣∣ E
(v,x,y)

[ n∑
i=1

regωi (v, x, y)

]
− 1

L

L∑
l=1

n∑
i=1

regωi (v
(l), x(l), y(l))

∣∣∣∣ < ϵ. (6)

Equivalently, when the number of samples L is large enough, i.e.,

L ≥ 9n2

2ϵ2

(
log

4

δ
+max

{
logN∞,1

(
P, ϵ

3

)
, logN∞,1

(
U , ϵ

6

)})
,

then, the eqs. (5) and (6) both hold with probability at least 1− δ.

The proof is completed.

A.7 Proof of the Generalization Bound for Myerson Auctions

Denote rev(v, x, y) as
∑n

i=1 pi(v, x, y), then we have the following theorem,
Theorem A.3. Assume the item valuation for each bidder is not larger than 1. When the sample
complexity satisfies L ≥ 1

2ϵ2 log
2
δ , with probability at least 1− δ, we have∣∣∣∣ 1L

L∑
ℓ=1

rev(v(ℓ), x(ℓ), y(ℓ))− E(v,x,y)

[
rev(v, x, y)

]∣∣∣∣ ≤ ϵ.
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Proof. Since vi ≤ 1, we have

rev(v, x, y) =

n∑
i=1

pi(v, x, y) ≤
n∑

i=1

bi(v, x, y)vi ≤
n∑

i=1

bi(v, x, y) ≤ 1.

According to the Hoeffding’s inequality, we have

P
[∣∣∣∣ 1L

L∑
ℓ=1

rev(v(ℓ), x(ℓ), y(ℓ))− E(v,x,y)

[
rev(v, x, y)

]∣∣∣∣ ≥ ϵ] ≤ 2 exp(−2Lϵ2).

Let 2 exp(−2Lϵ2) ≤ δ, then we obtain what we need. The proof is completed.

A.8 Orbit Averaging over Subsets of Bidders/Items

In addition, we can extended our theory to orbit averaging over the subset of the bidders/items.
Theorem A.4. Let Q be the orbit averaging over any subset of bidders and items, and (g, p) be any
mechanism. Then we have

E(v,x,y)

[ n∑
i=1

[Qp]i(v, x, y)
]
= E(v,x,y)

[ n∑
i=1

pi(v, x, y)

]
,

and

E(v,x,y)

[ n∑
i=1

regi(v, x, y)

]
≥ E(v,x,y)

[ n∑
i=1

[Qreg]i(v, x, y)
]
,

where regi is the ex-post regret of bidder i.

Proof. Without loss of generality, we assume that Q1 takes average over the first ñ bidders, Q2 takes
average over the first m̃ items and Q3 takes average over the first ñ bidders and m̃ items. Denote Z1

as (vij , xi : i > ñ, j ∈ [m]) and Z2 as (vij , yj : i ∈ [n], j > m̃). Following Theorem 3.1, we have

E
[ n∑

i=1

[Q1p]i(v, x, y)

∣∣∣∣Z1

]
= E

[ n∑
i=1

pi(v, x, y)

∣∣∣∣Z1

]
,

and

E
[ n∑

i=1

regi(v, x, y)

∣∣∣∣Z1

]
≥ E

[ n∑
i=1

[Q1reg]i(v, x, y)

∣∣∣∣Z1

]
.

Then, combining the fact that E[E[X|Y ]] = E[X], we have

E
[ n∑

i=1

[Q1p]i(v, x, y)

]
= E

[ n∑
i=1

pi(v, x, y)

]
,

and

E
[ n∑

i=1

regi(v, x, y)

]
≥ E

[ n∑
i=1

[Q1reg]i(v, x, y)

]
.

Similarly, replace Z1 by Z2, we can obtain the equations all hold for Q2.

Finally, we prove that Q3 = Q1Q2 = Q2Q1. The proof is same with the proof of Lemma 3.3. Only
replace n and m by ñ and m̃ respectively, and we obtain the result.

The proof is completed.

Theorem A.5. Let Q be the orbit averaging over any subset of bidders and items, and U = {uω :
ω ∈ Ω} and P = {pω : ω ∈ Ω} the sets of all possible utilities and payment rules. Then we have

N∞,1(QU , r) ≤ N∞,1(U , r) and N∞,1(QP, r) ≤ N∞,1(P, r),

where N∞,1(U , r) and N∞,1(P, r) are the minimum numbers of balls with radius r that can cover
U and P under l∞,1-distance, respectively.
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Proof. Without loss of generality, we assume that Q1 takes average over the first ñ bidders, Q2 takes
average over the first m̃ items and Q3 takes average over the first ñ bidders and m̃ items.

We can prove the distance between two mechanisms becomes smaller after orbit averaging, i.e.,

l∞,1(Qp,Qp′) ≤ l∞,1(p, p
′) and l∞,1(Qu,Qu′) ≤ l∞,1(u, u

′).

Only replace n and m by ñ and m̃ in the proof of Theorem 3.5, and we obtain the results.

The proof is completed.

A.9 Average over Subgroups

It is worth noting that our proof only replies one assumption that the valuation joint distribution
is invariant under the bidder/item permutation. Consequently, we may adopt orbit averaging over
any subgroup of Sn × Sm, while the benefits on revenue and ex-post regret still hold. Hence, there
is a trade-off between the auction mechanism performance (revenue and ex-post regret) and the
computational complexity: better performance requires more computation. In addition, the choice of
the subgroup can also depend on the input feature x [28], which could be more flexible.

B Additional Experimental Details

This section presents additional experimental details and results omitted from the main text due to
space limitation.

B.1 Additional Experimental Settings

In this section, we present detailed experimental settings.

B.1.1 Network Architectures

We first describe the RegretNet’s architecture [12]. A RegretNet consists of two parts: the allocation
network gω : Rnm → [0, 1]nm and the payment network pω : Rnm → Rn

≥0, both of which are
modeled as three-layer fully-connected networks with tanh activations. Every layer in the two
networks includes 100 nodes.

For each item j, the payment network outputs a probability vector (gω1j(b), . . . , g
ω
nj(b))

T , where
gωij(b) is the probability of allocating the item j to the bidder i. To avoid allocating one item over
once, a feasible allocation network needs to satisfy

∑n
i=1 g

ω
ij(b) ≤ 1 for all j ∈ [m], ω ∈ Ω, and

b ∈ Vnm. Therefore, we compute the allocation via a softmax activation function. In addition, to
present the probability that the item is reserved, an extra dummy node is included in the softmax
computation.

To ensure the individual rational condition, the payment network pω is required to output a payment
vector pω(b), such that pωi (b) ≤

∑m
j=1 g

ω
ij(b)bij for all i ∈ [n]. Therefore, the payment network first

computes a fractional payment pωi (b) ∈ [0, 1] for each bidder i using a sigmoidal unit. Then, the final
payment of the bidder i is

pωi (b) = pωi (b)

m∑
j=1

gωij(b)bij ≤
m∑
j=1

gωij(b)bij .

An overview of the RegretNet’s architecture is illustrated in the following Figure 1.

RegretNet-PE is designed by modifying RegretNet. We adopt the allocation rule as g̃ω = Q3g
ω

and the payment rule as p̃ω = Q3p
ω , respectively. In this way, we may guarantee that in RegretNet-

PE, the allocation is feasible and the mechanism is individual rational, i.e.,
∑n

i=1 g̃
ω
ij(b) ≤ 1, and

p̃ωi (b) ≤
∑m

j=1 g̃
ω
ij(b)bij . We may also show that the RegretNet-PE is always permutation-equivariant

and has the same number of coefficients as the RegretNet. The proof can be found in Appendix A.1.
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Figure 1: The allocation network gω and the payment network pω of the RegretNet with the overall
mechanism parameter ω = (ωg, ωp).

B.1.2 Training Procedures

We adopt the augmented Lagrangian method to minimize the following object function with a
quadratic penalty term for violating the constraints,

Lρ(ω, λ) = −
1

L

L∑
l=1

n∑
i=1

pωi (v
(l)) +

n∑
i=1

λir̂egi(ω) +
ρ

2

( n∑
i=1

r̂egi

)2

,

where L is the number of samples, λ is a vector of Lagrange multipliers, and ρ > 0 is a parameter to
control the weight of the quadratic penalty. We alternately update the overall mechanism parameter
ω and the Lagrange multiplier λ as follows:

(a) ωnew ∈ argminω Lρ(ω
old, λold) (every iteration);

(b) λnewi = λoldi + ρ · r̂egi(ωnew), ∀i ∈ [n] (every Tλ iterations).

The training procedure is described in the following Algorithm 1.

We divide all training samples S into T batches S1, . . . ,ST of size B. At iteration t, we use the batch
St = {v(1), . . . , v(B)}.
The update (a) is computed via Adam. The gradient of Lρ w.r.t. ω for a fixed λt is as below,

∇ωLρ(ω, λ
t) = − 1

B

B∑
l=1

n∑
i=1

∇ωp
ω
i (v

(l)) +

B∑
l=1

n∑
i=1

λtig
t
l,i + ρ

B∑
l=1

n∑
i=1

r̂egi(ω)g
t
l,i,

where

r̂egi(ω) =
1

B

B∑
l=1

max
v′
i∈Vm

uωi (v
(l)
i , (v′i, v

(l)
−i))− u

ω
i (v

(l)
i , v(l)),

and

gtl,i = ∇ω

[
max
v′
i∈Vm

uωi (v
(l)
i , (v′i, v

(l)
−i))− u

ω
i (v

(l)
i , v(l))

]∣∣∣
ω=ωt

.

Because r̂egi(ω) and gtl,i both contain a “max” over misreports2, we use another Adam to compute

the approximated best biddings v′(l). In each update on ωt, we perform R updates to compute a
best bidding v′(l)i for each i ∈ [n]. In particular, we maintain the misreports v′(l) for each sample l
as the initial value in the next iteration. Then, we use these biddings v′(l) to compute the gradient
∇ωLρ(ω, λ

t) and then, update ωt as ωt+1 = ωt − η∇ωLρ(ω
t, λt). After every Tλ iterations, we

update λt as λt+1
i = λti + ρr̂egi(ω

t+1). In addition, we increase the value of ρ every a certain
number of iterations, where we set the value of ρt in each iteration t prior to training.

2The misreport refers to an arbitrary bid, rather than restricted to be a truthful bid [12].
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Algorithm 1: RegretNet and RegretNet-PE Training
Input: Batches S1, . . . ,ST of size B
Parameters: ∀t ∈ [T ], ρt > 0, γ > 0, η > 0, T ∈ N, R ∈ N, Tλ ∈ N
Initialize: ω0 ∈ Rd, λ0 ∈ Rn

for t = 0 to T do
Receive batch St = {v(1), . . . , v(B)}
Initialize misreports v′

(l)
i ∈ Vm, ∀l ∈ [B], i ∈ [n]

for r = 0 to R do
∀l ∈ [B], i ∈ [n]:
v′

(l)
i ← v′

(l)
i + γ∇v′

i
uωi

(
v
(l)
i , (v′

(l)
i , v

(l)
−i)

)
end
Compute ex-post regret gradient : ∀l ∈ [B], i ∈ [n]:
gtl,i ← ∇ω

[
uωi

(
v
(l)
i , (v′

(l)
i , v

(l)
−i)

)
− uωi

(
v
(l)
i , v(l)

)]∣∣∣
ω=ωt

Compute Lagrangian gradient using Equation 4 and update ωt:
ωt+1 ← ωt − η∇ωLρt

(ωt, λt)
Update Lagrange multipliers λ once in Tλ iterations:
if t is a multiple of Tλ then

λt+1
i = λti + ρtr̂egi(ω

t+1), ∀i ∈ [n]
else

λt+1 = λt

end
end

Table 3: Additional experimental results. "n ×m Normal" refers that there are n bidders and m
items, and the valuation is drawn from the truncated normal distribution N (0.3, 0.1) in [0,1]. The
true values of the ex-post regret and the generalization error (GE) are the products of the values in the
table and a factor of 10−5.

Method
2× 1 Normal 3× 1 Normal .

Revenue Regret GE Revenue Regret GE

Optimal 0.304 0 - 0.391 0 -

RegretNet 0.275 97.0 8.50 0.321 84.0 45.5

RegretNet-Test 0.275 95.2 - 0.321 75.0 -
RegretNet-PE 0.276 85.4 8.40 0.382 69.7 27.6

Method
2× 2 Normal 5× 3 Normal

Revenue Regret GE Revenue Regret GE

RegretNet 0.577 343 246 1.05 114 77.0

RegretNet-Test 0.577 327 - 1.05 32.0 -
RegretNet-PE 0.577 318 77.0 1.09 75.0 70.0

B.1.3 Test Settings

To verify our Theorem 3.1 and Theorem 3.4, we first train a RegretNet and then project the will-trained
RegretNet to be permutation-equivariant through bidder-item aggregated averaging Q3, denoted as
“RegretNet-Test”. To meet the symmetric valuation condition in Theorem 3.1 and Theorem 3.4, we
sample a set of valuations from the distribution, which is denoted by S, and then, induce a set of
symmetric samples S̃ = {σnvσm : σn ∈ Sn, v ∈ S, σm ∈ Sm} for test.
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Table 4: Additional experimental result, where "n×m Compound" refers that there are n bidders
and m items, and the valuations are i.i.d. sampled from the compound distributions.

Method
3× 1 Compound 5× 1 Compound

Revenue Regret Revenue Regret

RegretNet 0.516 < 0.001 0.329 < 0.001

EquivariantNet 0.498 < 0.001 0.311 < 0.001

RegretNet-PE 0.539 < 0.001 0.356 < 0.001

Table 5: Additional experimental result, where "n×m Uniform" refers that there are n bidders and
m items, and the valuations are i.i.d. sampled from the uniform distribution U [0, 1].

Method
2× 5 Uniform 5× 3 Uniform

Revenue Regret GE Revenue Regret GE

RegretNet 2.24 104 86.4 1.56 28.4 19.4

RegretNet-Test 2.24 74.0 - 1.56 8.60 -
RegretNet-PE 2.38 89.9 24.9 1.85 20.1 11.8

For a RegretNet-PE, there is no difference between test on S̃ and on S, because

1

n!m!L

L∑
l=1

∑
σn∈Sn

∑
σm∈Sm

f(σnviσm) =
1

n!m!L

L∑
l=1

∑
σn∈Sn

∑
σm∈Sm

f(vi) =
1

L

L∑
l=1

f(vi),

for any permutation-equivariant function f and a RegretNet-PE is always permutation-equivariant.

To compute the best bidding v′i for each bidder i, we first randomly initialize 1, 000 misreports in
all settings, and then, perform 2, 000 updates on each misreport via Adam with the same settings.
Finally, we choose the best one (which induces a maximal utility of the bidder i) as the approximated
best bidding v′i.

B.1.4 Implementation Details

We train the models (RegretNet and RegretNet-PE) for up to 150 epochs with a batch size of 128
(B = 128) and report the early-stop results for RegretNet-PE to obtain a comparable ex-post regret.
The terminal iteration numbers for RegretNet-PE are 10, 000 in the 2× 1 setting, 17, 000 in the 3× 1
setting, 18, 000 in the 5× 1 setting, 300, 000 in the 1× 2 setting, and 600, 000 in the 2× 2 setting.
Our insight is that the larger terminal iteration number required in the 2× 2 setting is because of the
small model size, i.e., where the networks have three layers (each of 100 nodes). The value of ρ
is initialized as 1.0 and increased by 5 every 200 batches. For each update on ωt, we initialize one
misreport and update the misreport by Adam for each bidder with 25 steps (R = 25) and learning rate
0.1 (γ = 0.1). The final optimal misreports will be used to initialize the misreports for the same batch
in the next epoch. We update ωt via Adam for every batch with a learning rate of 0.001. Besides, we
update λt every 200 batches.

B.2 Additional Experiment Results

We present additional experimental results. Each valuation vij is sampled independently from (1) a
truncated normal distributionN (0.3, 0.1) in [0, 1]; (2) a compound distribution N (xi

6 , 0.1) truncated
in [0, 1], where xi is sampled independently and uniformly from {1, 2, 3, 4, 5} (cf. Setting A, [10]);
and (3) a compound distribution U [0, Sigmoid(xTi yj)], where xi and yj are sampled independently
and uniformly from [−1, 1] (Setting C, [10]). All results are shown in Table 3 and Table 4. The
revenue and ex-post regret of RegretNet and EquivariantNet in Table 4 come from the previous work
[10]. In Table 4, we report the ex-post regret as “< 0.001” following the previous works.

Moreover, we extend our experiments to more complex settings, including two-bidder five-item and
five-bidder three-item settings. Due to the computation limitations, we sample {3840, 1280} data
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Figure 2: Allocation rule learned by RegretNet (up) and RegretNet-PE (down) for two-bidder and
one-item setting. The solid regions describe the probability to allocating the item to bidder 1 (left)
and bidder 2 (right). The optimal auction mechanism is described by the regions separated by the
dashed black lines, where the number 0 or 1 is the probability of optimal allocation rule in the region.

points and initialize {150, 120} misreports for test. Each valuation is sampled from the uniform
distribution U [0, 1] and the truncated normal distribution N (0.3, 0.1) in [0, 1]. The results are shown
in Tables 3 and 5.

B.3 Allocation Rules Learned by RegretNet and RegretNet-PE

In this section, we show the allocation rules learned by RegretNet and RegretNet-PE in two-bidder,
one-item setting and one-bidder, two-item setting, where the valuation is drawn from the uniform
distribution U [0, 1]. The optimal auction mechanisms are both known.

B.3.1 Two-bidder and One-item Setting

For the two-bidder, one-item setting, the optimal mechanism is well-known as Myerson auction [23],
which allocates the item to the highest bidder with receiving a payment of the maximum of the second
price and the reserve price, if the highest bid is higher than the reserve price. The allocation rules
learned by RegretNet and RegretNet-PE are shown in Figure 2. From Figure 2. We can find that the
two learned allocation rules are both almost the same as the optimal mechanism.
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Figure 3: Allocation rule learned by RegretNet (up) and RegretNet-PE (down) for one-bidder and
two-item setting. The solid regions describe the probability of allocating the first item (left) and the
second item (right). The optimal auction mechanism is described by the regions separated by the
dashed black lines, where the number 0 or 1 is the probability of optimal allocation rule in the region.

B.3.2 One-bidder and Two-item Setting

The optimal mechanism is given by [20]. Same with the above, we show the allocation rules learned
by RegretNet and that learned by RegretNet-PE in Figure 3. The improvement is significant. when one
item’s valuation is close to 0 and another item’s is close to 1, the mechanism learned by RegretNet has
a positive probability to allocate the item with the lower valuation to the bidder, while RegretNet-PE
and the optimal mechanisms would not.
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