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Abstract

Learning the distribution of a continuous or categorical response variable y given
its covariates x is a fundamental problem in statistics and machine learning. Deep
neural network-based supervised learning algorithms have made great progress in
predicting the mean of y given x, but they are often criticized for their ability to
accurately capture the uncertainty of their predictions. In this paper, we introduce
classification and regression diffusion (CARD) models, which combine a denoising
diffusion-based conditional generative model and a pre-trained conditional mean
estimator, to accurately predict the distribution of y given x. We demonstrate the
outstanding ability of CARD in conditional distribution prediction with both toy
examples and real-world datasets, the experimental results on which show that
CARD in general outperforms state-of-the-art methods, including Bayesian neural
network-based ones that are designed for uncertainty estimation, especially when
the conditional distribution of y given x is multi-modal. In addition, we utilize
the stochastic nature of the generative model outputs to obtain a finer granularity
in model confidence assessment at the instance level for classification tasks. Our
implementation is publicly available at https://github.com/XzwHan/CARD.

1 Introduction

A fundamental problem in statistics and machine learning is to predict the response variable y given
a set of covariates x. Generally speaking, y is a continuous variable for regression analysis and a
categorical variable for classification. Denote f(x) ∈ RC as a deterministic function that transforms
x into a C dimensional output. Denote fc(x) as the c-th dimension of f(x). Existing methods
typically assume an additive noise model: for regression analysis with y ∈ RC , one often assumes
y = f(x) + ϵ, ϵ ∼ N (0,Σ), while for classification with y ∈ {1, . . . , C}, one often assumes
y = argmax

(
f1(x) + ϵ1, . . . , fC(x) + ϵC

)
, where ϵc

iid∼ EV1(0, 1), a standard type-1 extreme
value distribution. Thus we have the expected value of y given x as E[y |x] = f(x) in regression
and P (y = c |x) = E[y = c |x] = softmaxc

(
f(x)

)
= exp(fc(x))∑C

c′=1
exp(fc′ (x))

in classification.

These additive-noise models are primarily focusing on accurately estimating the conditional mean
E[y |x], while paying less attention to whether the noise distribution can accurately capture the
uncertainty of y given x. For this reason, they may not work well if the distribution of y given
x clearly deviates from the additive-noise assumption. For example, if p(y |x) is multi-modal,
which commonly happens when there are missing categorical covariates in x, then E[y |x] may
not be close to any possible true values of y given that specific x. More specifically, consider a
person whose weight, height, blood pressure, and age are known but gender is unknown, then the
testosterone or estrogen level of this person is likely to follow a bi-modal distribution and the chance
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of developing breast cancer is also likely to follow a bi-modal distribution. Therefore, these widely
used additive-noise models, which use a deterministic function f(x) to characterize the conditional
mean of y, are inherently restrictive in their ability for uncertainty estimation.

In this paper, our goal is to accurately recover the full distribution of y conditioning on x given a
set of N training data points, denoted as D = {(xi,yi)}1,N . To realize this goal, we consider the
diffusion-based (a.k.a. score-based) generative models (Sohl-Dickstein et al., 2015; Song and Ermon,
2019; Ho et al., 2020; Song and Ermon, 2020; Song et al., 2021c) and inject covariate-dependence
into both the forward and reverse diffusion chains. Our method can model the conditional distribution
of both continuous and categorical y variables, and the algorithms developed under this method will
be collectively referred to as Classification And Regression Diffusion (CARD) models.

Diffusion-based generative models have received significant recent attention due to not only their
ability to generate high-dimensional data, such as high-resolution photo-realistic images, but also
their training stability. They can be understood from the perspective of score matching (Hyvärinen
and Dayan, 2005; Vincent, 2011; Kadkhodaie and Simoncelli, 2021) and Langevin dynamics (Neal,
2011; Welling and Teh, 2011), as pioneered by Song and Ermon (2019). They can also be understood
from the perspective of diffusion probabilistic models (Sohl-Dickstein et al., 2015; Ho et al., 2020),
which first define a forward diffusion to transform the data into noise and then a reverse diffusion to
regenerate the data from noise.

These previous methods mainly focus on unconditional generative modeling. While there exist
guided-diffusion models (Song and Ermon, 2019; Song et al., 2021c; Dhariwal and Nichol, 2021;
Nichol et al., 2022; Ramesh et al., 2022) that target on generating high-resolution photo-realistic
images that match the semantic meanings or content of the label, text, or corrupted-images, we
focus on studying diffusion-based conditional generative modeling at a more fundamental level.
In particular, our goal is to thoroughly investigate whether CARD can help accurately recover
p(y |x,D), the predictive distribution of y given x after observing data D = {(xi,yi)}i=1,N . In
other words, our focus is on regression analysis of continuous or categorical response variables given
their corresponding covariates.

We summarize our main contributions as follows: 1) We show CARD, which injects covariate-
dependence and a pre-trained conditional mean estimator into both the forward and reverse diffusion
chains to construct a denoising diffusion probabilistic model, provides an accurate estimation of
p(y |x,D). 2) We provide a new metric to better evaluate how well a regression model captures the
full distribution p(y |x,D). 3) Experiments on standard benchmarks for regression analysis show
that CARD achieves state-of-the-art results, using both existing metrics and the new one. 4) For
classification tasks, we push the assessment of model confidence in its predictions towards the level
of individual instances, a finer granularity than the previous methods.

2 Methods and Algorithms for CARD

Given the ground-truth response variable y0 and its covariates x, and assuming a sequence of
intermediate predictions y1:T made by the diffusion model, the goal of supervised learning is to learn
a model such that the log-likelihood is maximized by optimizing the following ELBO:

log pθ(y0 |x) = log

∫
pθ(y0:T |x)dy1;T ≥ Eq(y1:T |y0,x)

[
log

pθ(y0:T |x)
q(y1:T |y0,x)

]
, (1)

where q(y1:T |y0,x) is called the forward process or diffusion process in the concept of diffusion
models (Sohl-Dickstein et al., 2015; Ho et al., 2020). Denote DKL(q || p) as the Kullback–Leibler
(KL) divergence from distribution p to distribution q. The above objective can be rewritten as

LELBO(y0,x) := L0(y0,x) +

T∑
t=2

Lt−1(y0,x) + LT (y0,x), (2)

L0(y0,x) := Eq [− log pθ(y0 |y1,x)] , (3)

Lt−1(y0,x) := Eq

[
DKL

(
q(yt−1 |yt,y0,x)

∥∥ pθ(yt−1 |yt,x)
)]

, (4)

LT (y0,x) := Eq

[
DKL

(
q(yT |y0,x)

∥∥ p(yT |x)
)]

. (5)

Here we follow the convention to assume LT does not depend on any parameter and it will be close
to zero by carefully diffusing the observed response variable y0 towards a pre-assumed distribution
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p(yT |x). The remaining terms will make the model pθ(yt−1 |yt,x) approximate the corresponding
tractable ground-truth denoising transition step q(yt−1 |yt,y0,x) for all timesteps. Different from
the vanilla diffusion models, we assume the endpoint of our diffusion process to be

p(yT |x) = N (fϕ(x), I), (6)

where fϕ(x) is the prior knowledge of the relation between x and y0, e.g., a network pre-trained
with D to approximate E[y |x], or 0 if we assume the relation is unknown. With a diffusion schedule
{βt}t=1:T ∈ (0, 1)T , we specify the forward process conditional distributions in a similar fashion as
Pandey et al. (2022), but for all timesteps including t = 1:

q
(
yt |yt−1, fϕ(x)

)
= N

(
yt;
√
1− βtyt−1 + (1−

√
1− βt)fϕ(x), βtI

)
, (7)

which admits a closed-form sampling distribution with an arbitrary timestep t:

q
(
yt |y0, fϕ(x)

)
= N

(
yt;

√
ᾱty0 + (1−

√
ᾱt)fϕ(x), (1− ᾱt)I

)
, (8)

where αt := 1 − βt and ᾱt :=
∏

t αt. Note that the mean term in Eq. (7) can be viewed as an
interpolation between true data y0 and the predicted conditional expectation fϕ(x), which gradually
changes from the former to the latter throughout the forward process.

Such formulation corresponds to a tractable forward process posterior:

q(yt−1 |yt,y0,x) = q
(
yt−1 |yt,y0, fϕ(x)

)
= N

(
yt−1; µ̃

(
yt,y0, fϕ(x)

)
, β̃tI

)
, (9)

where

µ̃ :=
βt
√
ᾱt−1

1− ᾱt︸ ︷︷ ︸
γ0

y0 +
(1− ᾱt−1)

√
αt

1− ᾱt︸ ︷︷ ︸
γ1

yt +

(
1 +

(
√
ᾱt − 1)(

√
αt +

√
ᾱt−1)

1− ᾱt

)
︸ ︷︷ ︸

γ2

fϕ(x),

β̃t :=
1− ᾱt−1

1− ᾱt
βt.

We provide the derivation in Appendix A.1. The labels under the terms are used in Algorithm 2.

2.1 CARD for Regression

For regression problems, the goal of the reverse diffusion process is to gradually recover the distribu-
tion of the noise term, the aleatoric or local uncertainty inherent in the observations (Kendall and
Gal, 2017; Wang and Zhou, 2020), enabling us to generate samples that match the true conditional
p(y |x).
Following the reparameterization introduced by denoising diffusion probabilistic models (DDPM)
(Ho et al., 2020), we construct ϵθ

(
x,yt, fϕ(x), t

)
, which is a function approximator parameterized

by a deep neural network that predicts the forward diffusion noise ϵ sampled for yt. The training and
inference procedure can be carried out in a standard DDPM manner.

Algorithm 1 Training (Regression)
1: Pre-train fϕ(x) that predicts E(y |x) with MSE
2: repeat
3: Draw y0 ∼ q(y0 |x)
4: Draw t ∼ Uniform({1 . . . T})
5: Draw ϵ ∼ N (0, I)
6: Compute noise estimation loss

Lϵ =
∣∣∣∣ϵ− ϵθ

(
x,

√
ᾱty0 +

√
1− ᾱtϵ+ (1−

√
ᾱt)fϕ(x), fϕ(x), t

)∣∣∣∣2
7: Take numerical optimization step on:

∇θLϵ

8: until Convergence
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Algorithm 2 Inference (Regression)
1: yT ∼ N (fϕ(x), I)
2: for t = T to 1 do
3: Draw z ∼ N (0, I)if t > 1

4: Calculate reparameterized ŷ0 = 1√
ᾱt

(
yt − (1−

√
ᾱt)fϕ(x)−

√
1− ᾱtϵθ

(
x,yt, fϕ(x), t

))
5: Let yt−1 = γ0ŷ0 + γ1yt + γ2fϕ(x) +

√
β̃tz if t > 1, else set yt−1 = ŷ0

6: end for
7: return y0

2.2 CARD for Classification

We formulate the classification tasks in a similar fashion as in Section 2.1, where we:

1. Replace the continuous response variable with a one-hot encoded label vector for y0;

2. Replace the mean estimator with a pre-trained classifier that outputs softmax probabilities
of the class labels for fϕ(x).

This construction no longer assumes y0 to be drawn from a categorical distribution, but instead
treats each one-hot label as a class prototype, i.e., we assume a continuous data and state space,
which enables us to keep the Gaussian diffusion model framework. The sampling procedure would
output reconstructed y0 in the range of real numbers for each dimension, instead of a vector in the
probability simplex. Denoting C as the number of classes and 1C as a C-dimensional vector of 1s, we
convert such output to a probability vector in a softmax form of a temperature-weighted Brier score
(Brier, 1950), which computes the squared error between the prediction and 1C . Mathematically, the
probability of predicting the kth class and the final point prediction ŷ can be expressed as

Pr(y = k) =
exp(−(y0 − 1C)

2
k/τ
)∑C

i=1 exp(−(y0 − 1C)2i /τ
) ; ŷ = argmax

k

(
− (y0 − 1C)

2
k

)
. (10)

where τ > 0 is the temperature parameter, and (y0 − 1C)
2
k indicates the kth dimension of the vector

of element-wise square error between y0 and 1C , i.e., (y0 − 1C)
2
k = ∥y0k − 1∥2. Intuitively, this

construction would assign the class whose raw output in the sampled y0 is closest to the true class,
encoded by the value of 1 in the one-hot label, with the highest probability.

Conditional on the same covariates x, the stochasticity of the generative model would give us a
different class prototype reconstruction after each reverse process sampling, which enables us to
construct predicted probability intervals for all class labels. Such stochastic reconstruction is in a
similar fashion as DALL-E 2 (Ramesh et al., 2022) that applies a diffusion prior to reconstruct the
image embedding by conditioning on the text embedding during the reverse diffusion process, which
is a key step in the diversity of generated images.

3 Related Work

Under the supervised learning settings, to model the conditional distribution p(y |x) besides just
the conditional mean E[y |x] through deep neural networks, existing works have been focusing
on quantifying predictive uncertainty, and several lines of work have been proposed. Bayesian
neural networks (BNNs) model such uncertainty by assuming distributions over network parameters,
capturing the plausibility of the model given the data (Blundell et al., 2015; Hernández-Lobato and
Adams, 2015; Gal and Ghahramani, 2016; Kingma et al., 2015; Tomczak et al., 2021). Kendall and
Gal (2017) also model the uncertainties in the model outputs besides model parameters, by including
the additive noise term as part of the neural network output. Meanwhile, ensemble-based methods
(Lakshminarayanan et al., 2017; Liu et al., 2022) have been proposed to model predictive uncertainty
by combining multiple neural networks with stochastic outputs. Furthermore, the Neural Processes
Family (Garnelo et al., 2018b,a; Kim et al., 2019; Gordon et al., 2020) has introduced a series of
models that capture predictive uncertainty in an out-of-distribution fashion, particularly designed for
few-shot learning settings.

4



These above mentioned models have all assumed a parametric form in p(y |x), namely Gaussian
distribution, or a mixture of Gaussians, and optimize the network parameters based on a Gaussian
negative log-likelihood objective function. Deep generative models, on the other hand, have been
known for modeling implicit distributions without parametric distributional assumptions, but very few
works have been proposed to utilize such feature to tackle regression tasks. GAN-based models are
introduced by Zhou et al. (2021) and Liu et al. (2021) for conditional density estimation and predictive
uncertainty quantification. For classification tasks, on the other hand, generative classifiers (Revow
et al., 1996; Fetaya et al., 2020; Ardizzone et al., 2020; Mackowiak et al., 2021) is a class of models
that also perform classification with generative models; among them, Zimmermann et al. (2021)
propose score-based generative classifiers to tackle classification tasks with score-based generative
models (Song et al., 2021b,c). They model p(x |y) and predict the label with the largest conditional
likelihood of x, while CARD models p(y |x) instead.

In recent years, the class of diffusion-based (or score-based) deep generative models has demonstrated
its outstanding performance in modeling high-dimensional multi-modal distributions (Ho et al., 2020;
Song et al., 2021a; Kawar et al., 2022; Xiao et al., 2022; Dhariwal and Nichol, 2021; Song and Ermon,
2019, 2020), with most work focusing on Gaussian diffusion processes operating in continuous
state spaces. Hoogeboom et al. (2021) introduce extensions of diffusion models for categorical data,
and Austin et al. (2021) have proposed diffusion models for discrete data as a generalization of the
multinomial diffusion models, which could provide an alternative way of performing classification
with diffusion-based models.

4 Experiments

For the hyperparameters of CARD in both regression and classification tasks, we set the number of
timesteps as T = 1000, a linear noise schedule with β1 = 10−4 and βT = 0.02, same as Ho et al.
(2020). We provide a more detailed walk-through of the experimental setup, including training and
network architecture, in Appendix A.8.

4.1 Regression

Putting aside its statistical interpretation, the word regress indicates a direction opposite to progress,
suggesting a less developed state. Such semantics in fact translates well into the statistical domain, in
the sense that traditional regression analysis methods often only focus on estimating E(y |x), while
leaving out all remaining details about p(y |x). In recent years, Bayesian neural networks (BNNs)
have emerged as a class of models that aims at estimating the uncertainty (Hernández-Lobato and
Adams, 2015; Gal and Ghahramani, 2016; Lakshminarayanan et al., 2017; Tomczak et al., 2021),
providing a more complete picture of p(y |x). The metric that they use to quantify uncertainty
estimation, negative log-likelihood (NLL), is computed with a Gaussian density, implying their
assumption such that the conditional distributions p(y |x = x) for all x are Gaussian. However,
this assumption is very difficult to verify for real-world datasets: the covariates can be arbitrarily
high-dimensional, making the feature space increasingly sparse with respect to the number of
collected observations.

To accommodate the need for uncertainty estimation without imposing such restriction for the
parametric form of p(y |x), we apply the following two metrics, both of which are designed to
empirically evaluate the level of similarity between the learned and the true conditional distributions:

1. Prediction Interval Coverage Probability (PICP);
2. Quantile Interval Coverage Error (QICE).

PICP has been described in Yao et al. (2019), whereas QICE is a new metric proposed by us. We
describe both of them in what follows.

4.1.1 PICP and QICE

The PICP is computed as

PICP :=
1

N

N∑
n=1

1yn≥ŷlow
n

· 1yn≤ŷhigh
n

, (11)
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where ŷlow
n and ŷhigh

n represent the low and high percentiles, respectively, of our choice for the
predicted y outputs given the same x input. This metric measures the proportion of true observations
that fall in the percentile range of the generated y samples given each x input. Intuitively, when
the learned distribution represents the true distribution well, this measurement should be close to
the difference between the selected low and high percentiles. In this paper, we choose the 2.5th and
97.5th percentile, thus an ideal PICP value for the learned model should be 95%.

Meanwhile, there is a caveat for this metric: for example, imagine a situation where the 2.5th to
97.5th percentile of the learned distribution happens to cover the data between the 1st and 96th

percentiles from the true distribution. Given enough samples, we shall still obtain a PICP value close
to 95%, but clearly there is a mismatch between the learned distribution and the true one.

Based on such reasoning, we propose a new empirical metric QICE, which by design can be viewed
as PICP with finer granularity, and without uncovered quantile ranges. To compute QICE, we first
generate enough y samples given each x, and divide them into M bins with roughly equal sizes. We
would obtain the corresponding quantile values at each boundary. In this paper, we set M = 10,
and obtain the following 10 quantile intervals (QIs) of the generated y samples: below the 10th

percentile, between the 10th and 20th percentiles, . . . , between the 80th and 90th percentiles, and
above the 90th percentile. Optimally, when the learned conditional distribution is identical to the true
one, given enough samples from both learned and true distribution we shall observe about 10% of
true data falling into each of these 10 QIs.

We define QICE to be the mean absolute error between the proportion of true data contained by each
QI and the optimal proportion, which is 1/M for all intervals:

QICE :=
1

M

M∑
m=1

∣∣∣∣rm − 1

M

∣∣∣∣, where rm =
1

N

N∑
n=1

1yn≥ŷlowm
n

· 1
yn≤ŷ

highm
n

. (12)

Intuitively, under optimal scenario with enough samples, we shall obtain a QICE value of 0. Note
that each rm is indeed the PICP for the corresponding QI with boundaries at ŷlowm

n and ŷ
highm
n . Since

the true y for each x is guaranteed to fall into one of these QIs, we are thus able to overcome the
mismatch issue described in the above example for PICP: fewer true instances falling into one QI
would result in more instances captured by another QI, thus increasing the absolute error for both QIs.

QICE is similar to NLL in the sense that it also utilizes the summary statistics of the samples from
the learned distribution conditional on each new x to empirically evaluate how well the model fits the
true data. Meanwhile, it does not assume any parametric form on the conditional distribution, making
it a much more generalizable metric to measure the level of distributional match between the learned
and the underlying true conditional distributions, especially when the true conditional distribution is
known to be multi-modal. We will demonstrate this point through the regression toy examples.

4.1.2 Toy Examples

To demonstrate the effectiveness of CARD in regression tasks for not only learning the conditional
mean E(y |x), but also recreating the ground truth data generating mechanism, we first apply CARD
on 8 toy examples, whose data generating functions are designed to possess different statistical
characteristics: some have a uni-modal symmetric distribution for their error term (linear regression,
quadratic regression, sinusoidal regression), others have heteroscedasticity (log-log linear regression,
log-log cubic regression) or multi-modality (inverse sinusoidal regression, 8 Gaussians, full circle).
We show that the trained CARD models can generate samples that are visually indistinguishable from
the true response variables of the new covariates, as well as quantitatively match the true distribution
in terms of some summary statistics. We present the scatter plots of both true and generated data
for all 8 tasks in Figure 1. For tasks with uni-modal conditional distribution, we fill the region
between the 2.5th and 97.5th percentile of the generated y’s. We observe that within each task, the
generated samples blend remarkably well with the true test instances, suggesting the capability of
reconstructing the underlying data generation mechanism by CARD. A more detailed description of
the toy examples, including more quantitative analyses, is presented in Appendix A.13.

4.1.3 UCI Regression Tasks

We continue to investigate our model through experiments on real-world datasets. We adopt the
same set of 10 UCI regression benchmark datasets (Dua and Graff, 2017) as well as the experimental

6



Figure 1: Regression toy example scatter plots. (Top) left to right: linear regression, quadratic
regression, log-log linear regression, log-log cubic regression; (Bottom) left to right: sinusoidal
regression, inverse sinusoidal regression, 8 Gaussians, full circle.

protocol proposed by Hernández-Lobato and Adams (2015) and followed by Gal and Ghahramani
(2016) and Lakshminarayanan et al. (2017). The dataset information is provided in Table 14.

We apply multiple train-test splits with 90%/10% ratio in the same way as Hernández-Lobato and
Adams (2015) (20 folds for all datasets except 5 for Protein and 1 for Year), and report the metrics by
their mean and standard deviation across all splits. We compare our method to all aforementioned
BNN frameworks: PBP, MC Dropout, and Deep Ensembles, as well as another deep generative
model that estimates a conditional distribution sampler, GCDS (Zhou et al., 2021). We note that
GCDS is related to a concurrent work of Yang et al. (2022), who share a comparable idea but use it in
a different application. Following the same paradigm of BNN model assessment, we evaluate the
accuracy and predictive uncertainty estimation of CARD by reporting RMSE and NLL. Furthermore,
we also report QICE for all methods to evaluate distributional matching. Since this new metric was
not applied in previous methods, we re-ran the experiments for all BNNs and obtained comparable or
slightly better results in terms of other commonly used metrics reported in their literature. Further
details about the experimental setup for these models can be found in Appendix A.9. The experiment
results with corresponding metrics are shown in Tables 1, 2, and 3, with the number of times that
each model achieves the best corresponding metric reported in the last row.

We observe that CARD outperforms existing methods, often by a considerable margin (especially on
larger datasets), in all metrics for most of the datasets, and is competitive with the best method for the
remaining ones: we obtain state-of-the-art results in 9 out of 10 datasets in terms of RMSE, 8 out of
10 for NLL, and 5 out of 10 for QICE. It is worth noting that although we do not explicitly optimize
our model by MSE or by NLL, we still obtain better results than models trained with these objectives.

4.2 Classification

Similar to Lakshminarayanan et al. (2017), our motivation for classification is not to achieve state-of-
the-art performance in terms of mean accuracy on the benchmark datasets, which is strongly related
to network architecture design. Our goal is two-fold:

1. We aim to solve classification problems via a generative model, emphasizing its capability to
improve the performance of a base classifier with deterministic outputs in terms of accuracy;

2. We intend to provide an alternative sense of uncertainty, by introducing the idea of model
confidence at the instance level, i.e., how sure the model is about each of its predictions,
through the stochasticity of outputs from a generative model.

As another type of supervised learning problems, classification is different from regression mainly
for the response variable being discrete class labels instead of continuous values. The conventional
operation is to cast the classifier output as a point estimate, with a value between 0 and 1. Such
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Table 1: RMSE of UCI regression tasks. For both 1Kin8nm and 2Naval dataset, we multiply the
response variable by 100 to match the scale of others.

Dataset RMSE ↓
PBP MC Dropout Deep Ensembles GCDS CARD (ours)

Boston 2.89± 0.74 3.06± 0.96 3.17± 1.05 2.75± 0.58 2.61± 0.63
Concrete 5.55± 0.46 5.09± 0.60 4.91± 0.47 5.39± 0.55 4.77± 0.46
Energy 1.58± 0.21 1.70± 0.22 2.02± 0.32 0.64± 0.09 0.52± 0.07
Kin8nm1 9.42± 0.29 7.10± 0.26 8.65± 0.47 8.88± 0.42 6.32± 0.18
Naval2 0.41± 0.08 0.08± 0.03 0.09± 0.01 0.14± 0.05 0.02± 0.00
Power 4.10± 0.15 4.04± 0.14 4.02± 0.15 4.11± 0.16 3.93± 0.17
Protein 4.65± 0.02 4.16± 0.12 4.45± 0.02 4.50± 0.02 3.73± 0.01
Wine 0.64± 0.04 0.62± 0.04 0.63± 0.04 0.66± 0.04 0.63± 0.04
Yacht 0.88± 0.22 0.84± 0.27 1.19± 0.49 0.79± 0.26 0.65± 0.25
Year 8.86± NA 8.77± NA 8.79± NA 9.20± NA 8.70± NA

# best 0 1 0 0 9

Table 2: NLL of UCI regression tasks.

Dataset NLL ↓
PBP MC Dropout Deep Ensembles GCDS CARD (ours)

Boston 2.53± 0.27 2.46± 0.12 2.35± 0.16 18.66± 8.92 2.35± 0.12
Concrete 3.19± 0.05 3.21± 0.18 2.93± 0.12 13.64± 6.88 2.96± 0.09
Energy 2.05± 0.05 1.50± 0.11 1.40± 0.27 1.46± 0.72 1.04± 0.06
Kin8nm −0.83± 0.02 −1.14± 0.05 −1.06± 0.02 −0.38± 0.36 −1.32± 0.02
Naval −3.97± 0.10 −4.45± 0.38 −5.94± 0.10 −5.06± 0.48 −7.54± 0.05
Power 2.92± 0.02 2.90± 0.03 2.89± 0.02 2.83± 0.06 2.82± 0.02
Protein 3.05± 0.00 2.80± 0.08 2.89± 0.02 2.81± 0.09 2.49± 0.03
Wine 1.03± 0.03 0.93± 0.06 0.96± 0.06 6.52± 21.86 0.92± 0.05
Yacht 1.58± 0.08 1.73± 0.22 1.11± 0.18 0.61± 0.34 0.90± 0.08
Year 3.69± NA 3.42± NA 3.44± NA 3.43± NA 3.34± NA

# best 0 0 1 1 8

Table 3: QICE (in %) of UCI regression tasks.

Dataset QICE ↓
PBP MC Dropout Deep Ensembles GCDS CARD (ours)

Boston 3.50± 0.88 3.82± 0.82 3.37± 0.00 11.73± 1.05 3.45± 0.83
Concrete 2.52± 0.60 4.17± 1.06 2.68± 0.64 10.49± 1.01 2.30± 0.66
Energy 6.54± 0.90 5.22± 1.02 3.62± 0.58 7.41± 2.19 4.91± 0.94
Kin8nm 1.31± 0.25 1.50± 0.32 1.17± 0.22 7.73± 0.80 0.92± 0.25
Naval 4.06± 1.25 12.50± 1.95 6.64± 0.60 5.76± 2.25 0.80± 0.21
Power 0.82± 0.19 1.32± 0.37 1.09± 0.26 1.77± 0.33 0.92± 0.21
Protein 1.69± 0.09 2.82± 0.41 2.17± 0.16 2.33± 0.18 0.71± 0.11
Wine 2.22± 0.64 2.79± 0.56 2.37± 0.63 3.13± 0.79 3.39± 0.69
Yacht 6.93± 1.74 10.33± 1.34 7.22± 1.41 5.01± 1.02 8.03± 1.17
Year 2.96± NA 2.43± NA 2.56± NA 1.61± NA 0.53± NA

# best 2 0 2 1 5

design is intended for prediction interpretability: since humans already have a cognitive intuition
for probabilities (Cosmides and Tooby, 1996), the output from a classification model is intended to
convey a sense of likelihood for a particular class label. In other words, the predicted probability
should reflect its confidence, i.e., a level of certainty, in predicting such a label. Guo et al. (2017)
provide the following example of a good classifier, whose output aligns with human intuition for
probabilities: if the model outputs a probability prediction of 0.8, we hope it indicates that the model
is 80% sure that its prediction is correct; given 100 predictions of 0.8, one shall expect roughly 80 of
them are correct.

In that sense, a good classification algorithm not only can predict the correct label, but also can
reflect the true correctness likelihood through its probability predictions, i.e., providing calibrated
confidence (Guo et al., 2017). To evaluate the level of miscalibration by a model, metrics like
Expected Calibration Error (ECE) and Maximum Calibration Error (MCE) (Naeini et al., 2015) have
been adopted in recent literature (Kristiadi et al., 2022; Rudner et al., 2021) for image classification
tasks, and calibration methods like Platt scaling and isotonic regression have been developed to
improve such alignment (Guo et al., 2017).

Note that these methods are all based on point estimate predictions by the classifier. Furthermore,
these alignment metrics can only be computed at a subgroup level in practice, instead of at the
instance level. In other words, one may not be able to make the claim with the existing classification

8



framework such that given a particular test instance, how confident the classifier is in its prediction
to be correct. We discuss our analysis in ECE with more details in Appendix A.16, which may help
justify our motivation in introducing an alternative way to measure model confidence at the level of
individual test instances in Section 4.2.1.

4.2.1 Predict with Instance Level Model Confidence via Generative Models

We propose the following framework to assess model confidence for its predictions at the instance
level: for each test instance, we first sample N class prototype reconstructions by CARD through the
classification version of Algorithm 2, and then perform the following computations:

1. We directly calculate the prediction interval width (PIW) between the 2.5th and 97.5th

percentiles of the N reconstructed values for all classes, i.e., with C different classes in total,
we would obtain C PIWs for each instance;

2. We then convert the samples into probability space with Eq. (10), and apply paired two-
sample t-test as an uncertainty estimation method proposed in Fan et al. (2021): we obtain
the most and second most predicted classes for each instance, and test whether the difference
in their mean predicted probability is statistically significant.

This framework would require the classifier to not produce the exact same output each time, since the
goal is to construct prediction intervals for each of the class labels. Therefore, the class of generative
models is a preferable modeling choice due to its ability to produce stochastic outputs, instead of just
a point estimate by traditional classifiers.

In practice, we view each one-hot label as a class prototype in real continuous space (introduced
in Section 2.2), and we use a generative model to reconstruct this prototype in a stochastic fashion.
The intuition is that if the classifier is sure about the class that a particular instance belongs to,
it would precisely reconstruct the original prototype vector without much uncertainty; otherwise,
different class prototype reconstructions of the same test instance tend to have more variations: under
the context of denoising diffusion models, given different samples from the prior distribution at
timestep T , the label reconstructions would appear rather different from each other.

4.2.2 Classification with Model Confidence on CIFAR-10 Dataset

We demonstrate our experimental results on the CIFAR-10 dataset. We first contextualize the
performance of CARD in conventional metrics including accuracy and NLL with other BNNs
in ResNet-18 architecture in Table 4. The metrics of other methods were reported in Tomczak
et al. (2021), a recent work in BNNs that proposes tighter ELBOs to improve variational inference
performance and prior hyperparameter optimization. Following the recipe in Section 2.2, we first
pre-train a deterministic classifier with the same ResNet-18 architecture, and achieve a test accuracy
of 90.39%, with which we proceed to train CARD. We then obtain our instance prediction through
majority vote, i.e., the most predicted class label among its N samples for each image input, and
achieve an improved test accuracy with a mean of 90.93% across 10 runs, showing its ability to
improve test accuracy from the base classifier. Our NLL result is competitive among the best ones,
even though the model is not optimized with a cross-entropy objective function, as we assume the
class labels to be in the real continuous space.

Table 4: Comparison of accuracy (in %) and NLL for CIFAR-10 classification with other BNNs.

Model CMV-MF-VI CM-MF-VI CV-MF-VI MF-VI MC Dropout MAP CARD

Accuracy 86.25± 0.06 86.66± 0.24 79.78± 0.30 77.08± 1.14 83.64± 0.28 84.69± 0.35 90.93± 0.02

NLL 0.41± 0.00 0.39± 0.00 0.59± 0.00 0.68± 0.02 0.49± 0.00 0.93± 0.02 0.46± 0.00

We now present the results from one model run with the proposed framework in Section 4.2.1 for
evaluating the instance-level prediction confidence. After obtaining the PIW and paired two-sample
t-test (α = 0.05) result from each test instance, we first split the test instances into two groups by the
correctness of majority-vote predictions, then we obtain only the PIW corresponding to the true class
for each instance, and compute the mean PIW of the true class within each group. In addition, we
split the test instances by t-test rejection status, and compute the mean accuracy in each group. We
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report the results from these two grouping procedures in Table 5, where the metrics are computed
across all test instances and at the level of each true class label.

Table 5: PIW (multiplied by 100) and t-test results for CIFAR-10 classification task.

Class Accuracy PIW Accuracy by t-test Status
Correct Incorrect Rejected Not-Rejected (Count)

All 90.95% 2.37 21.52 91.25% 42.86% (63)

1 91.00% 3.28 18.83 91.51% 45.45% (11)
2 96.00% 0.55 29.27 96.19% 33.33% (3)
3 87.30% 2.65 24.40 87.55% 25.00% (4)
4 81.90% 5.48 21.45 82.10% 63.64% (11)
5 93.30% 2.41 30.02 93.67% 20.00% (5)
6 84.70% 4.16 19.57 85.21% 46.15% (13)
7 94.20% 1.84 26.01 94.38% 33.33% (3)
8 92.80% 1.96 19.35 93.07% 25.00% (4)
9 95.30% 0.56 15.75 95.49% 33.33% (3)
10 93.00% 1.50 14.04 93.26% 50.00% (6)

We observe from Table 5 that under the scope of the entire test set, the mean PIW of the true class
label among the correct predictions is narrower than that of the incorrect predictions by an order of
magnitude, indicating that when CARD is making correct predictions, its class label reconstructions
have much smaller variations. We may interpret such results as that CARD can reveal what it does
not know through the relativity in reconstruction variations. Furthermore, when comparing the mean
PIWs across different classes, we observe that the class with a higher prediction accuracy tends to have
a sharper contrast in true label PIW between correct and incorrect predictions; additionally, the PIW
values of both correct and incorrect predictions tend to be larger in a less accurate class. Meanwhile,
it is worth noting that if we predict the class label by the one with the narrowest PIW for each
instance, we can already obtain a test accuracy of 87.84%, suggesting a strong correlation between
the prediction correctness and instance-level model confidence (in terms of label reconstruction
variability). Moreover, we observe that the accuracy of test instances rejected by the t-test is much
higher than that of the not-rejected ones, both across the entire test set and within each class.

We point out that these metrics can reflect how sure CARD is about the correctness of its predictions,
and can thus be used as an important indicator of whether the model prediction of each instance
can be trusted or not. Therefore, it has the potential to be further applied in the human-machine
collaboration domain (Madras et al., 2018; Raghu et al., 2019; Wilder et al., 2020; Gao et al., 2021),
such that one can apply such uncertainty measurement to decide if we can directly accept the model
prediction, or we need to allocate the instance to humans for further evaluation.

5 Conclusion

In this paper, we propose Classification And Regression Diffusion (CARD) models, a class of
conditional generative models that approaches supervised learning problems from a conditional
generation perspective. Without training with objectives directly related to the evaluation metrics,
we achieve state-of-the-art results on benchmark regression tasks. Furthermore, CARD exhibits a
strong ability to represent the conditional distribution with multiple density modes. We also propose
a new metric Quantile Interval Coverage Error (QICE), which can be viewed as a generalized version
of negative log-likelihood in evaluating how well the model fits the data. Lastly, we introduce a
framework to evaluate prediction uncertainty at the instance level for classification tasks.
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