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Abstract

Arbitrary conditioning is an important problem in unsupervised learning, where we
seek to model the conditional densities p(xu | xo) that underly some data, for all
possible non-intersecting subsets o, u ⊂ {1, . . . , d}. However, the vast majority of
density estimation only focuses on modeling the joint distribution p(x), in which
important conditional dependencies between features are opaque. We propose a
simple and general framework, coined Posterior Matching, that enables Variational
Autoencoders (VAEs) to perform arbitrary conditioning, without modification to
the VAE itself. Posterior Matching applies to the numerous existing VAE-based
approaches to joint density estimation, thereby circumventing the specialized
models required by previous approaches to arbitrary conditioning. We find that
Posterior Matching is comparable or superior to current state-of-the-art methods for
a variety of tasks with an assortment of VAEs (e.g. discrete, hierarchical, VaDE).

1 Introduction

Variational Autoencoders (VAEs) [21] are a widely adopted class of generative model that have been
successfully employed in numerous areas [4, 15, 26, 33, 16]. Much of their appeal stems from their
ability to probabilistically represent complex data in terms of lower-dimensional latent codes.

Like most other generative models, VAEs are typically designed to model the joint data distribution,
which communicates likelihoods for particular configurations of all features at once. This can be
useful for some tasks, such as generating images, but the joint distribution is limited by its inability
to explicitly convey the conditional dependencies between features. In many cases, conditional
distributions, which provide the likelihood of an event given some known information, are more
relevant and useful. Conditionals can be obtained in theory by marginalizing the joint distribution,
but in practice, this is generally not analytically available and is expensive to approximate.

Easily assessing the conditional distribution over any subset of features is important for tasks where
decisions and predictions must be made over a varied set of possible information. For example, some
medical applications may require reasoning over: the distribution of blood pressure given age and
weight; or the distribution of heart-rate and blood-oxygen level given age, blood pressure, and BMI;
etc. For flexibility and scalability, it is desirable for a single model to provide all such conditionals
at inference time. More formally, this task is known as arbitrary conditioning, where the goal is
to model the conditional density p(xu | xo) for any arbitrary subsets of unobserved features xu
and observed features xo. In this work, we show, by way of a simple and general framework, that
traditional VAEs can perform arbitrary conditioning, without modification to the VAE model itself.

Our approach, which we call Posterior Matching, is to model the distribution p(z | xo) that is induced
by some VAE, where z is the latent code. In other words, we consider the distribution of latent codes
given partially observed features. We do this by having a neural network output an approximate
partially observed posterior q(z | xo). In order to train this network, we develop a straightforward
maximum likelihood estimation objective and show that it is equivalent to maximizing p(xu | xo),
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the quantity of interest. Unlike prior works that use VAEs for arbitrary conditioning, we do not make
special assumptions or optimize custom variational lower bounds. Rather, training via Posterior
Matching is simple, highly flexible, and without limiting assumptions on approximate posteriors
(e.g., q(z | xo) need not be reparameterized and can thus be highly expressive).

We conduct several experiments in which we apply Posterior Matching to various types of VAEs for a
myriad of different tasks, including image inpainting, tabular arbitrary conditional density estimation,
partially observed clustering, and active feature acquisition. We find that Posterior Matching leads to
improvements over prior VAE-based methods across the range of tasks we consider.

2 Background

Arbitrary Conditioning A core problem in unsupervised learning is density estimation, where
we are given a dataset D = {x(i)}Ni=1 of i.i.d. samples drawn from an unknown distribution p(x)
and wish to learn a model that best approximates the probability density function p. A limitation of
only learning the joint distribution p(x) is that it does not provide direct access to the conditional
dependencies between features. Arbitrary conditional density estimation [18, 24, 38] is a more
general task where we want to estimate the conditional density p(xu | xo) for all possible subsets of
observed features o ⊂ {1, . . . , d} and unobserved features u ⊂ {1, . . . , d} such that o and u do not
intersect. Here, xo ∈ R|o| and xu ∈ R|u|. Estimation of joint or marginal likelihoods is a special
case where o = ∅. Note that, while not strictly necessary for arbitrary conditioning methods [24, 38],
we assume D is fully observed, a requirement for training traditional VAEs.

Variational Autoencoders Variational Autoencoders (VAEs) [21] are a class of genera-
tive models that assume a generative process in which data likelihoods are represented as
p(x) =

∫
p(x | z)p(z) dz, where z is a latent variable that typically has lower dimensionality than

the data x. A tractable distribution that affords easy sampling and likelihood evaluation, such as a
standard Gaussian, is usually imposed on the prior p(z). These models are learned by maximizing
the evidence lower bound (ELBO) of the data likelihood:

log p(x) ≥ Ez∼qψ(·|x)[log pϕ(x | z)]− KL(qψ(z | x) || p(z)),

where qψ(z | x) and pϕ(x | z) are the encoder (or approximate posterior) and decoder of the
VAE, respectively. The encoder and decoder are generally neural networks that output tractable
distributions (e.g., a multivariate Gaussian). In order to properly optimize the ELBO, samples drawn
from qψ(z | x) must be differentiable with respect to the parameters of the encoder (often called the
reparameterization trick). After training, a new data point x̂ can be easily generated by first sampling
z from the prior, then sampling x̂ ∼ pϕ(· | z).

3 Posterior Matching

Latent Space
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Figure 1: A two-dimensional VAE latent space
(left) that represents the distribution of codes of
handwritten 3s, 5s, and 8s. Conditioning on the
subset of pixels shown in the center should then
result in a distribution over latent codes that only
correspond to 3s and 8s, as shown on the right.

In this section we describe our framework,
coined Posterior Matching, to model the under-
lying arbitrary conditionals in a VAE. In many
respects, Posterior Matching cuts the Gordian
knot to uncover the conditional dependencies.
Following our insights, we show that our ap-
proach is direct and intuitive. Notwithstanding,
we are the first to apply this direct methodol-
ogy for arbitrary conditionals in VAEs and are
the first to connect our proposed loss with arbi-
trary conditional likelihoods p(xu | xo). Note
that we are not proposing a new type of VAE.
Rather, we are formalizing a simple and intuitive
methodology that can be applied to numerous
existing (or future) VAEs.
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3.1 Motivation

Let us begin with a motivating example, depicted in Figure 1. Suppose we have trained a VAE on
images of handwritten 3s, 5s, and 8s. This VAE has thus learned to represent these images in a
low-dimensional latent space. Any given code (vector) in this latent space represents a distribution
over images in the original data space, which can be retrieved by passing that code through the VAE’s
decoder. Some regions in the latent space will contain codes that represent 3s, some will represent 5s,
and some will represent 8s. There is typically only an interest in mapping from a given image x to a
distribution over the latent codes that could represent that image, i.e., the posterior q(z | x). However,
we can just as easily ask which latent codes are feasible having only observed part of an image.

For example, if we only see the right half the image shown in Figure 1, we know the digit could be a
3 or an 8, but certainly not a 5. Thus, the distribution over latent codes that could correspond to the
full image, that is pψ(z | xo) (where ψ is the encoder’s parameters), should only include regions that
represent 3s or 8s. Decoding any sample from pψ(z | xo) will produce an image of a 3 or an 8 that
aligns with what has been observed.

The important insight is that we can think about how conditioning on xo changes the distribution
over latent codes without explicitly worrying about what the (potentially higher-dimensional and
more complicated) conditional distribution over xu looks like. Once we know pψ(z | xo), we can
easily move back to the original data space using the decoder.

3.2 Approximating the Partially Observed Posterior

The partially observed approximate posterior of interest is not readily available, as it is implicitly
defined by the VAE:

pψ(z | xo) = Exu∼p(·|xo)

[
qψ(z | xo,xu)

]
, (1)

where qψ(z | xo,xu) = qψ(z | x) is the VAE’s encoder. Thus, we introduce a neural network in
order to approximate it.

Given a network that outputs the distribution qθ(z | xo) (i.e. the partially observed encoder in
Figure 2), we now discuss our approach to training it. Our approach is guided by the priorities of
simplicity and generality. We minimize (with respect to θ) the following likelihoods, where the
samples are coming from our target distribution as defined in Equation 1:

Exu∼p(·|xo)

[
Ez∼qψ(·|xo,xu)[− log qθ(z | xo)]

]
. (2)

We discuss how this is optimized in practice in Section 3.4.

Due to the relationship between negative log-likelihood minimization and KL-divergence minimiza-
tion [3], we can interpret Equation 2 as minimizing:

Exu∼p(·|xo)

[
KL

(
qψ(z | xo,xu) || qθ(z | xo)

) ]
. (3)

We can directly minimize the KL-divergence in Equation 3 if it is analytically available between the
two posteriors, for instance if both posteriors are Gaussians. However, Equation 2 is more general in
that it allows us to use more expressive (e.g., autoregressive) distributions for qθ(z | xo) with which
the KL-divergence cannot be directly computed. This is important given that pψ(z | xo) is likely to
be complex (e.g., multimodal) and not easily captured by a Gaussian (as in Figure 1). Importantly,
there is no requirement for qθ(z | xo) to be reparameterized, which would further limit the class of
distributions that can be used. There is a high degree of flexibility in the choice of distribution for the
partially observed posterior. Note that this objective does not utilize the decoder.

3.3 Connection with Arbitrary Conditioning

While the Posterior Matching objective from Equation 2 and Equation 3 is intuitive, it is not imme-
diately clear how this approach relates back to the arbitrary conditioning objective of maximizing
p(xu | xo). We formalize this connection in Theorem 3.1 (see Appendix for proof).
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Figure 2: Overview of the Posterior Matching framework. The partially observed encoder can be
appended to any existing VAE to enable arbitrary conditioning. At inference time, we can decode
samples from qθ(z | xo) to perform imputation or compute p(xu | xo).

Theorem 3.1. Let qψ(z | x) and pϕ(x | z) be the encoder and decoder, respectively, for some
VAE. Additionally, let qθ(z | xo) be an approximate partially observed posterior. Then minimizing

Exu∼p(·|xo)

[
KL

(
qψ(z | xo,xu) || qθ(z | xo)

)]
is equivalent to minimizing

Exu∼p(·|xo)

[
− log pθ,ϕ(xu | xo) + KL

(
qψ(z | xo,xu) || qθ(z | xo,xu)

) ]
, (4)

with respect to the parameters θ.

The first term inside the expectation in Equation 4 gives us the explicit connection back to the arbitrary
conditioning likelihood p(xu | xo), which is being maximized when minimizing Equation 4. The
second term acts as a sort of regularizer by trying to make the partially observed posterior match the
VAE posterior when conditioned on all of x — intuitively, this makes sense as a desirable outcome.

3.4 Implementation

A practical training loss follows quickly from Equation 2. For the outer expectation, we do not
have access to the true distribution p(xu | xo), but for a given instance x that has been partitioned
into xo and xu, we do have one sample from this distribution, namely xu. So we approximate this
expectation using xu as a single sample. This type of single-sample approximation is common with
VAEs, e.g., when estimating the ELBO. For the inner expectation, we have access to qψ(z | x), which
can easily be sampled in order to estimate the expectation. In practice, we generally use a single
sample for this as well. This gives us the following Posterior Matching loss:

LPM(x, o, θ, ψ) = −Ez∼qψ(·|x)
[
log qθ(z | xo)

]
, (5)

where o is the set of observed feature indices. During training, o can be randomly sampled from a
problem-specific distribution for each minibatch.

Figure 2 provides a visual overview of our approach. In practice, we represent xo as a concatenation
of x that has had unobserved features set to zero and a bitmask b that indicates which features are
observed. This representation has been successful in other arbitrary conditioning models [24, 38].
However, this choice is not particularly important to Posterior Matching itself, and alternative
representations, such as set embeddings, are valid as well.

As required by VAEs, samples from qψ(z | x) will be reparameterized, which means that minimizing
LPM will influence the parameters of the VAE’s encoder in addition to the partially observed posterior
network. In some cases, this may be advantageous, as the encoder can be guided towards learning
a latent representation that is more conducive to arbitrary conditioning. However, it might also be
desirable to train the VAE independently of the partially observed posterior, in which case we can
choose to stop gradients on the samples z ∼ qψ(· | x) when computing LPM.

Similarly, the partially observed posterior can be trained against an existing pretrained VAE. In this
case, the parameters of the VAE’s encoder and decoder are frozen, and we only optimize LPM with
respect to θ. Otherwise, we jointly optimize the VAE’s ELBO and LPM.
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We emphasize that there is a high degree of flexibility with the choice of VAE, i.e. we have not imposed
any unusual constraints. However, there are some potentially limiting practical considerations that
have not been explicitly mentioned yet. First, the training data must be fully observed, as with
traditional VAEs, since LPM requires sampling qψ(z | x). However, given that the base VAE requires
fully observed training data anyway, this is generally not a relevant limitation for our purposes. Second,
it is convenient in practice for the VAE’s decoder to be factorized, i.e. p(x | z) =

∏
i p(xi | z),

as this allows us to easily sample from p(xu | z) (sampling xu is less straightforward with other
types of decoders). However, it is standard practice to use factorized decoders with VAEs, so this is
ordinarily not a concern. We also note that, while useful for easy sampling, a factorized decoder is
not necessary for optimizing the Posterior Matching loss, which does not incorporate the decoder.

3.5 Posterior Matching Beyond Arbitrary Conditioning

Truth Step 1 Step 5 Step 10 Step 20 Step 30

Figure 3: Example acquisitions from our CNN
model using the lookahead posteriors (see Sec-
tion 5.5). Top row shows xo, and blue pixels are
unobserved. Bottom row shows imputation of xu.

The concept of matching VAE posteriors is quite
general and has other uses beyond the applica-
tion of arbitrary conditioning. We consider one
such example, which still has ties to arbitrary
conditioning, in order to give a flavor for other
potential uses.

A common application of arbitrary conditioning
is active feature acquisition [13, 23, 25], where
informative features are sequentially acquired
on an instance-by-instance basis. In the unsuper-
vised case, the aim is to acquire as few features
as possible while maximizing the ability to re-
construct the remaining unobserved features (see Figure 3 for example).

One approach to active feature acquisition is to greedily select the feature that will maximize the
expected amount of information to be gained about the currently unobserved features [23, 25]. For
VAEs, Ma et al. [25] show that this is equivalent to selecting each feature according to

argmax
i∈u

H(z | xo)− Exi∼p(·|xo)
[
H(z | xo, xi)

]
= argmin

i∈u
Exi∼p(·|xo)

[
H(z | xo, xi)

]
. (6)

For certain families of posteriors, such as multivariate Gaussians, the entropies in Equation 6 can be
analytically computed. In practice, approximating the expectation in Equation 6 is done via entropies
of the posteriors p(i)(z | xo) ≡ Exi∼pθ,ϕ(·|xo)

[
qθ(z | xo, xi)

]
, where samples from pθ,ϕ(xi | xo) are

produced by first sampling z ∼ qθ(· | xo) and then passing z through the VAE’s decoder pϕ(xi | z)
(we call p(i)(z | xo) the “lookahead” posterior for feature i, since it is obtained by imagining what
the posterior will look like after one acquisition into the future). Hence, computing the resulting
entropies requires one network evaluation per sample of xi to encode z, for i ∈ u. Thus, if using k
samples for each xi, each greedy step will be Ω(k · |u|), which may be prohibitive in high dimensions.

In analogous fashion to the Posterior Matching approach that has already been discussed, we can train
a neural network to directly output the lookahead posteriors for all features at once. The Posterior
Matching loss in this case is

LPM-Lookahead(x, o, u, ω, θ, ϕ) =
∑
i∈u

Exi∼pθ,ϕ(·|xo)

[
Ez∼qθ(·|xo,xi)

[
− log q(i)ω (z | xo)

]]
, (7)

where ω is the parameters of the lookahead posterior network. In practice, we train a single shared
network with a final output layer that outputs the parameters of all q(i)ω (z | xo). Note that given the
distributions q(i)ω (z | xo) for all i, computing the greedy acquisition choice consists of doing a forward
evaluation of our network, then choosing the feature i ∈ u such that the entropy of q(i)ω (z | xo) is
minimized. In other words, we may bypass the individual samples of xi, and use a single shared
network for a faster acquisition step. In this setting, we let q(i)ω (z | xo) be a multivariate Gaussian so
that the entropy computation is trivial. See Appendix for a diagram of the entire process. This use
of Posterior Matching leads to large improvements in the computational efficiency of greedy active
feature acquisition (demonstrated empirically in Section 5.5).
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4 Prior Work

A variety of approaches to arbitrary conditioning have been previously proposed. ACE is an autore-
gressive, energy-based method that is the current state-of-the-art for arbitrary conditional likelihood
estimation and imputation, although it can be computationally intensive for very high dimensional
data [38]. ACFlow is a variant of normalizing flows that can give analytical arbitrary conditional
likelihoods [24]. Several other methods, including Sum-Product Networks [32, 6], Neural Conditioner
[2], and Universal Marginalizer [10], also have the ability to estimate conditional likelihoods.

Rezende et al. [34] were among the first to suggest that VAEs can be used for imputation. More
recently, VAEAC was proposed as a VAE variant designed for arbitrary conditioning [18]. Unlike
Posterior Matching, VAEAC is not a general framework and cannot be used with typical pretrained
VAEs. EDDI is a VAE-based approach to active feature acquisition and relies on arbitrary conditioning
[25]. The authors introduce a “Partial VAE” in order to perform the arbitrary conditioning, which,
similarly to Posterior Matching, tries to model p(z | xo). Unlike Posterior Matching, they do this by
maximizing a variational lower bound on p(xo) using a partial inference network q(z | xo) (there is
no standard VAE posterior q(z | x) in EDDI). Gong et al. [13] use a similar approach that is based
on the Partial VAE of EDDI. The major drawback of these methods is that, unlike with Posterior
Matching, q(z | xo) must be reparameterizable in order to optimize the lower bound (the authors use
a diagonal Gaussian). Thus, certain more expressive distributions (e.g., autoregressive) cannot be
used. Additionally, these methods cannot be applied to existing VAEs. The methods of Ipsen et al.
[17] and Collier et al. [9] are also similar to EDDI, where the former optimizes an approximation
of p(xo,b) and the latter optimizes a lower bound on p(xo | b). Ipsen et al. [17] also focuses on
imputation for data that is missing “not at random”, a setting that is outside the focus of our work.

There are also several works that have considered learning to identify desirable regions in latent
spaces. Engel et al. [11] start from a pretrained VAE, but then train a separate GAN [14] with special
regularizers to do their conditioning. They only condition on binary vectors, y, that correspond to
a small number of predefined attributes, whereas we allow for conditioning on arbitrary subsets of
continuous features xo (a more complicated conditioning space). Also, their resulting GAN does not
make the likelihood q(z | y) available, whereas Posterior Matching directly (and flexibly) models
q(z | xo), which may be useful for downstream tasks (e.g. Section 5.5) and likelihood evaluation
(see Appendix). Furthermore, Posterior Matching trains directly through KL, without requiring an
additional critic. Whang et al. [40] learn conditional distributions, but not arbitrary conditional
distributions (a much harder problem). They also consider normalizing flow models, which are
limited to invertible architectures with tractable Jacobian determinants and latent spaces that have the
same dimensionality as the data (unlike VAEs). Cannella et al. [7] similarly do conditional sampling
from a model of the joint distribution, but are also restricted to normalizing flow architectures and
require a more expensive MCMC procedure for sampling.

5 Experiments

In order to empirically test Posterior Matching, we apply it to a variety of VAEs aimed at different
tasks. We find that our models are able to match or surpass the performance of previous specialized
VAE methods. All experiments were conducted using JAX [5] and the DeepMind JAX Ecosystem
[1]. Code is available at https://github.com/lupalab/posterior-matching.

Our results are dependent on the choice of VAE, and the particular VAEs used in our experiments
were not the product of extensive comparisons and did not undergo thorough hyperparameter tuning
— that is not the focus of this work. With more carefully selected or tuned VAEs, and as new VAEs
continue to be developed, we can expect Posterior Matching’s downstream performance to improve
accordingly on any given task. We emphasize that our experiments span a diverse set of task, domains,
and types of VAE, wherein Posterior Matching was effective.

5.1 MNIST

In this first experiment, our goal is to demonstrate that Posterior Matching replicates the intuition
depicted in Figure 1. We do this by training a convolutional VAE with Posterior Matching on the
MNIST dataset. The latent space of this VAE is then mapped to two dimensions with UMAP [27] and
visualized in Figure 4. In the figure, black points represent samples from qθ(z | xo), and for select
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Figure 4: UMAP [27] visualization of the latent space of a VAE trained on MNIST. Black dots
represent samples from the distribution qθ(z | xo) learned via Posterior Matching. Images of xo are
to the right of their respective plot. Samples from each mode are decoded and shown.

Table 1: Peak signal-to-noise ratio (PSNR) and precision/recall scores [35] for image inpaintings. We
report mean and standard deviation across five evaluations with different random masks. VAEAC and
ACFlow results are taken from Li et al. [24]. Higher is better for all metrics.

MNIST OMNIGLOT CELEBA

PSNR Precision Recall PSNR Precision Recall PSNR Precision Recall

VDVAE + PM (ours) 21.603 ± 0.022 0.996 0.996 18.256 ± 0.038 0.995 0.994 27.190 ± 0.049 0.995 0.995
VQ-VAE + PM (ours) 19.981 ± 0.021 0.989 0.993 17.954 ± 0.046 0.979 0.973 25.531 ± 0.036 0.982 0.984

VAEAC 19.613 ± 0.042 0.877 0.975 17.693 ± 0.023 0.525 0.926 23.656 ± 0.027 0.966 0.967

ACFlow 17.349 ± 0.018 0.945 0.984 15.572 ± 0.031 0.962 0.971 22.393 ± 0.040 0.970 0.988
ACFlow+BG 20.828 ± 0.031 0.947 0.983 18.838 ± 0.009 0.967 0.970 25.723 ± 0.020 0.964 0.987

samples, the corresponding reconstruction is shown. The encoded test data is shown, colored by
true class label, to highlight which regions correspond to which digits. We see that the experimental
results nicely replicate our earlier intuitions — the learned distribution qθ(z | xo) puts probability
mass only in parts of the latent space that correspond to plausible digits based on what is observed
and successfully captures multimodal distributions (see the second column in Figure 4).

5.2 Image Inpainting

One practical application of arbitrary conditioning is image inpainting, where only part of an image
is observed and we want to fill in the missing pixels with visually coherent imputations. As with prior
works [18, 24], we assume pixels are missing completely at random. We test Posterior Matching as
an approach to this task by pairing it with both discrete and hierarchical VAEs.

Vector Quantized-VAEs We first consider VQ-VAE [30], a type of VAE that is known to work
well with images. VQ-VAE differs from the typical VAE with its use of a discrete latent space. That
is, each latent code is a grid of discrete indices rather than a vector of continuous values. Because
the latent space is discrete, Oord et al. [30] model the prior distribution with a PixelCNN [29, 36]
after training the VQ-VAE. We similarly use a conditional PixelCNN to model qθ(z | xo). First, a
convolutional network maps xo to a vector, and that vector is then used as a conditioning input to the
PixelCNN. More architecture and training details can be found in the Appendix. We train VQ-VAEs
with Posterior Matching for the MNIST, OMNIGLOT, and CELEBA datasets. Table 1 reports peak
signal-to-noise ratio (PSNR) and precision/recall [35] for inpaintings produced by our model. We
find that Posterior Matching with VQ-VAE consistently achieves better precision/recall scores than
previous models while having comparable PSNR.

Hierarchical VAEs Hierarchical VAEs [22, 37, 39] are a powerful extension of traditional VAEs
that allow for more expressive priors and posteriors by partitioning the latent variables into subsets
z = {z1, . . . , zL}. A hierarchy is then created by fractorizing the prior p(z) =

∏
i p(zi | z<i)

and posterior q(z | x) =
∏
i q(zi | z<i,x). These models have demonstrated impressive perfor-

mance on images and can even outperform autoregressive models [8]. Posterior Matching can be
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(a) OMNIGLOT (b) MNIST (c) CELEBA

Figure 5: Example image inpaintings from VDVAE with Posterior Matching. First two columns on
the left are x and xo. Inpainting samples are on the right.

Table 2: Test normalized root-mean-square error (NRMSE) and arbitrary conditional log-likelihoods
(LL) for UCI datasets. Lower is better for NRMSE, and higher is better for LL. Results for methods
other than Posterior Matching are reproduced from Strauss and Oliva [38]. Mean and standard
deviation are reported over 5 random observed masks for each instance.

POWER GAS HEPMASS MINIBOONE BSDS

NRMSE LL NRMSE LL NRMSE LL NRMSE LL NRMSE LL

Posterior Matching 0.834 ± 0.001 0.246 ± 0.002 0.330 ± 0.013 5.964 ± 0.005 0.857 ± 0.000 -8.963 ± 0.007 0.450 ± 0.002 -3.116 ± 0.175 0.573 ± 0.000 77.488 ± 0.012
VAEAC 0.880 ± 0.001 -0.042 ± 0.002 0.574 ± 0.033 2.418 ± 0.006 0.896 ± 0.001 -10.082 ± 0.010 0.462 ± 0.002 -3.452 ± 0.067 0.615 ± 0.000 74.850 ± 0.005

ACE 0.828 ± 0.002 0.631 ± 0.002 0.335 ± 0.027 9.643 ± 0.005 0.830 ± 0.001 -3.859 ± 0.005 0.432 ± 0.003 0.310 ± 0.054 0.525 ± 0.000 86.701 ± 0.008
ACE Proposal 0.828 ± 0.002 0.583 ± 0.003 0.312 ± 0.033 9.484 ± 0.005 0.832 ± 0.001 -4.417 ± 0.005 0.436 ± 0.004 -0.241 ± 0.056 0.535 ± 0.000 85.228 ± 0.009
ACFlow 0.877 ± 0.001 0.561 ± 0.003 0.567 ± 0.050 8.086 ± 0.010 0.909 ± 0.000 -8.197 ± 0.008 0.478 ± 0.004 -0.972 ± 0.022 0.603 ± 0.000 81.827 ± 0.007
ACFlow+BG 0.833 ± 0.002 0.528 ± 0.003 0.369 ± 0.016 7.593 ± 0.011 0.861 ± 0.001 -6.833 ± 0.006 0.442 ± 0.001 -1.098 ± 0.032 0.572 ± 0.000 81.399 ± 0.008

naturally applied to hierarchical VAEs, where the partially observed posterior is represented as
q(z | xo) =

∏
i q(zi | z<i,xo). We adopt the Very Deep VAE (VDVAE) architecture used by Child

[8] and extend it to include the partially observed posterior (see Appendix for training and architecture
details). We note that due to our hardware constraints, we trained smaller models and for fewer
iterations than Child [8]. Inpainting results for our VDVAE models are given in Table 1. We see that
they achieve better precision/recall scores than the VQ-VAE models and, unlike VQ-VAE, are able to
attain better PSNR than ACFlow for MNIST and CELEBA. Figure 5 shows some example inpaint-
ings, and additional samples are provided in the Appendix. The fact that we see better downstream
performance when using VDVAE than when using VQ-VAE is illustrative of Posterior Matching’s
ability to admit easy performance gains by simply switching to a more powerful base VAE.

5.3 Real-valued Datasets

We evaluate Posterior Matching on real-valued tabular data, specifically the benchmark UCI repository
datasets from Papamakarios et al. [31]. We follow the experimental setup used by Li et al. [24]
and Strauss and Oliva [38]. In these experiments, we train basic VAE models while simultaneously
learning the partially observed posterior. Given the flexibility that Posterior Matching affords, we use
an autoregressive distribution for qθ(z | xo). Further details can be found in the Appendix.

Table 2 reports the arbitrary conditional log-likelihoods and normalized root-mean-square error
(NRMSE) of imputations for our models (with features missing completely at random). Likelihoods
are computed using an importance sampling estimate (see Appendix for details). We primarily
compare to VAEAC as a baseline in the VAE family, however we also provide results for ACE and
ACFlow for reference. We see that Posterior Matching is able to consistently produce more accurate
imputations and higher likelihoods than VAEAC. While our models don’t match the likelihoods
achieved by ACE and ACFlow, Posterior Matching is comparable to them for imputation NRMSE.

5.4 Partially Observed Clustering

Probabilistic clustering often views cluster assignments as a latent variable. Thus, when applying
Posterior Matching in this setting, we may perform “partially observed” clustering, which clusters
instances based on a subset of observed features. We consider VaDE, which uses a mixture of
Gaussians as the prior, allowing it to do unsupervised clustering by treating each Gaussian component
as one of the clusters [19]. Despite differences in how VaDE is trained compared to a classic VAE,
training a partially observed encoder via Posterior Matching remains exactly the same.

We train models on both MNIST and FASHION MNIST (see Appendix for experimental details).
Figure 6 shows the clustering accuracy of these models as the percentage of (randomly selected)
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Figure 6: Partially observed clustering accuracy achieved by Posterior Matching with VaDE.

observed features changes. As a baseline, we train a supervised model where the labels are the
cluster predictions from the VaDE model when all of the features are observed. We see that Posterior
Matching is able to match the performance of the baseline, and even slightly outperform it for
low percentages of observed features. Unlike the supervised approach, Posterior Matching has the
advantage of being generative.

5.5 Very Fast Greedy Feature Acquisition

As discussed in Section 3.5, we can use Posterior Matching outside of the specific task of arbitrary
conditioning. Here, we consider the problem of greedy active feature acquisition. We train a VAE
with a Posterior Matching network that outputs the lookahead posteriors described in Section 3.5,
using the loss in Equation 7. Note that we are also still using Posterior Matching in order to learn
qθ(z | xo) and therefore to produce reconstructions. Training details can be found in the Appendix.
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Figure 7: Average RMSE of reconstructions for
greedy active feature acquisition.

We consider the MNIST dataset and compare to
EDDI as a baseline, using the authors’ publicly
available code. We downscale images to 16 ×
16 since EDDI has difficulty scaling to high-
dimensional data. We also only evaluate on the
first 1000 instances of the MNIST test set, as
the EDDI code was very slow when computing
the greedy acquisition policy. EDDI also uses
a particular architecture that is not compatible
with convolutions. Thus we train a MLP-based
VAE on flattened images in order to make a fair
comparison. However, since Posterior Matching
does not place any limitations on the type of
VAE being used, we also train a convolutional
version. For our models, we greedily select the
feature to acquire using the more expensive sampling-based approach (similar to EDDI) as well as
with the lookahead posteriors (which requires no sampling). In both cases, imputations are computed
with an expectation over 50 latent codes, as is done for EDDI. An example acquisition trajectory is
shown in Figure 3.

Figure 7 presents the root-mean-square error, averaged across the test instances, when imputing xu
with different numbers of acquired features. We see that our models are able to achieve lower error
than EDDI. We also see that acquiring based on the lookahead posteriors incurs only a minimal
increase in error compared to the sampling-based method, despite being far more efficient. Computing
the greedy choice with our model using the sampling-based approach takes 68 ms ± 917 µs (for a
single acquisition on CPU). Using the lookahead posteriors, the time is only 310 µs ± 15.3 µs, a
roughly 219x speedup.

6 Conclusions

We have presented an elegant and general framework, called Posterior Matching, that allows VAEs
to perform arbitrary conditioning. That is, we can take an existing VAE that only models the joint
distribution p(x) and train an additional model that, when combined with the VAE, is able to assess
any likelihood p(xu | xo) for arbitrary subsets of unobserved features xu and observed features xo.
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We applied this approach to a variety of VAEs for a multitude of different tasks. We found that
Posterior Matching outperforms previous specialized VAEs for arbitrary conditioning with tabular
data and for image inpainting. Importantly, we find that one can switch to a more powerful base
VAE and get immediate improvements in downstream arbitrary conditioning performance “for free,”
without making changes to Posterior Matching itself. We can also use Posterior Matching to perform
clustering based on partially observed inputs and to improve the efficiency of greedy active feature
acquisition by several orders of magnitude at negligible cost to performance.

With this work, we hope to make arbitrary conditioning more widely accessible. Arbitrary condi-
tioning no longer requires specialized methods, but can instead be achieved by applying one general
framework to common VAEs. As advances are made in VAEs for joint density estimation, we can
expect to immediately reap the rewards for arbitrary conditioning.
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