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Abstract

Modeling neural population dynamics underlying noisy single-trial spiking activi-
ties is essential for relating neural observation and behavior. A recent non-recurrent
method - Neural Data Transformers (NDT) - has shown great success in capturing
neural dynamics with low inference latency without an explicit dynamical model.
However, NDT focuses on modeling the temporal evolution of the population activ-
ity while neglecting the rich covariation between individual neurons. In this paper
we introduce SpatioTemporal Neural Data Transformer (STNDT), an NDT-based
architecture that explicitly models responses of individual neurons in the population
across time and space to uncover their underlying firing rates. In addition, we
propose a contrastive learning loss that works in accordance with mask modeling
objective to further improve the predictive performance. We show that our model
achieves state-of-the-art performance on ensemble level in estimating neural activi-
ties across four neural datasets, demonstrating its capability to capture autonomous
and non-autonomous dynamics spanning different cortical regions while being
completely agnostic to the specific behaviors at hand. Furthermore, STNDT spatial
attention mechanism reveals consistently important subsets of neurons that play a
vital role in driving the response of the entire population, providing interpretability
and key insights into how the population of neurons performs computation.1

1 Introduction

One of the most prominent questions in systems neuroscience is how neurons perform computations
that give rise to behaviors. Recent evidence suggests that computation in the brain could be governed
at the population level [1, 2]. Population of neurons are proposed to obey an internal dynamical rule
that drives their activities over time [3, 4]. Inferring these dynamics on a single trial basis is crucial
for understanding the relationship between neural population responses and behavior, subsequently
enabling the development of robust decoding schemes with wide applicability in brain-computer
interfaces (BCI) [5–7]. However, modeling population dynamics on single trials is challenging due to
the stochasticity of individual neurons making their spiking activity vary from trial to trial even when
they are subject to identical stimuli or recorded under repeated behavior conditions.

A direct approach to reduce the trial-to-trial variability of neural responses could be to average
responses over repeated trials of the same behavior [8, 9], to convolve the neural response with a
Gaussian kernel [10], or in general, to define a variety of neural activity measures [11]. However,
more success was found in approaches that explicitly model neural responses as a dynamical system,
including methods treating the population dynamics as being linear [12, 13], switched linear [14],
non-linear [15, 16], or reduced projected nonlinear models [11]. Recent approaches leveraging
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recurrent neural networks (RNN) have shown promising progress in modeling distinct components
of a dynamical system - neural latent states, initial conditions and external inputs - on a moment-
to-moment basis [15, 17, 18]. These sequential methods rely on continuous processing of neural
inputs at successive timesteps, causing latency that hampers applicability in real-time decoding of
neural signals. Consequently to RNN-based approaches, Neural Data Transformer (NDT) [16] was
proposed as a non-recurrent approach to improve inference speed by leveraging the transformers
architecture which learns and predicts momentary inputs in parallel [19]. While successful, NDT
has only focused on modeling the relationship of neural population activity between timesteps while
ignoring the rich covariation among individual neurons. Neurons in a population have been shown
to have heterogeneous tuning profiles where each neuron has a different level of preference to a
particular muscle movement direction [20, 21]. Neuron pairs also exhibit certain degree of correlation
in terms of trial-to-trial variability (noise correlation) that affects the ability to decode the behaviors
they represent [2, 22]. These spatial correlations characterize the amount of information that can be
encoded in the neural population [22], necessitating the need to model the neural population activity
across both time and space dimensions.

In this work, we propose to incorporate the information distributed along the spatial dimension to
improve the learning of neural population dynamics, and introduce SpatioTemporal Neural Data
Transformer, an architecture based on Neural Data Transformer which explicitly learns both the
spatial covariation between individual neurons and the temporal progression of the entire neural
population. We summarize our main contributions as follows:

• We introduce STNDT which allows the transformer to learn both the spatial coordination between
neurons and the temporal progression of the population activity by letting neurons attend to each
other while also attending over temporal instances.

• We propose a contrastive training scheme, complementary to the mask modeling objective, to
ensure the robustness of model prediction against induced noise augmentations.

• We validate our model’s performance on four neural datasets in the publicly available Neural
Latents Benchmark suite [23] and show that ensemble variants of our model outperforms other
state-of-the-art methods, demonstrating its capability to model autonomous and non-autonomous
neural dynamics in various brain regions while being agnostic to external behavior task structures.

• We show that the spatial attention, a feature unique to STNDT, identifies consistently important
subsets of neurons that play an essential role in driving the response of the entire population.
This exclusive attribute of STNDT provides interpretability and key insights into how the neural
population distributes the computation workload among the neurons.

2 Related Work

Modeling spatial covariation in neural population: Neurons act as an orchestrated system which
collectively encodes behaviors in a distributed and redundant manner. Many previous works have
studied and incorporated neural variability across neurons to closely match firing statistics observed in
multi-channel neural recordings [24–30]. [25] simulated population responses within a Dichotomized
Gaussian framework and solved for signal and noise correlations numerically. [26, 27] developed
Generative Adversarial Networks that were able to capture pairwise correlations among the neurons
and generate realistic firing patterns. [28–30] modeled the population responses as being generated
from a latent variable with learnable covariance matrix reflecting covariability among the neurons.

While these methods resemble our work in the overarching motivation of capturing interactions
among neurons, they rely on the knowledge of the respective stimuli/conditions that the trials belong
to when modeling the interaction. On the other hand, STNDT is trained in an unsupervised manner
and learns the rich covariation among neurons encompassing all recorded behaviors without access
to any external observation apart from the population spiking activity. In addition, while the goal
of aforementioned methods is to generate realistic firing activities associated with induced stimuli,
oftentimes with some assumptions regarding their statistics (e.g. noise correlation is shared across
time bins and trials), STNDT aims to uncover the denoised firing patterns behind the noisy single-trial
spiking activity and does not depend on any prior assumptions regarding their firing statistics.

Transformers for modeling spatiotemporal data: Transformers were initially developed to model
the relationship between words in a sentence, which can be thought of as a temporal progression of a
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Figure 1: Spatiotemporal Neural Data Transformer (STNDT) architecture. Separate multihead
self-attention modules are trained to learn spatial covariation and temporal progression of neural
activities. Temporal attention feature matrix is treated as the matrix V upon which spatial attention is
multiplied to give the final spatiotemporal features. Colors represent entities over which self attention
is performed. The complete STNDT consists of multiple layers of such spatiotemporal attention
modules.

sequence of tokens. Recent works have leveraged the self-attention mechanism in transformers to
model spatiotemporal data types where there exist an additional interacting dimensions possessing
distinct dynamics, such as trajectories of traffic agents [31–33], dynamic scene graph of video [34],
or 3D human motion [35]. However, in these works the spatial interaction at each timestep and
the temporal dynamics for each entity are captured independently, treating the other dimension as
the batch dimension at each attention block. In contrast, STNDT interleaves spatial and temporal
attention in a unified framework, using spatial attention to re-weight temporal features and enabling
direct study of each individual neuron’s role in driving the population dynamics.

Interpretability of self-attention mechanism: Several approaches have been proposed to probe
the inner workings of black-box deep learning models [36–38]. Unlike our work, these approaches
attempted to attribute importance of visual inputs to the model prediction in a supervised setting and
did not take into account interaction between input features. For attention-based models, the weights
of attention matrix have been used as a tool to provide certain level of interpretability [39–42]. The
interpretability is built upon the fact that attention weights signify how much influence other inputs
have on a particular input in deciding its final outcome in a self-supervision manner. This influence
might align with some human interpretable meaning, such as linguistic patterns [43]. In our work, we
further leverage attention weights to gain insights into the interaction of neurons from multi-channel
neural recordings.

3 Methods

Problem formulation: Single-trial spiking activity of a neural population can be represented as a
spatiotemporal matrix X ∈ NT×N , where each column Xi ∈ NT is the time series of one neuron, T
is the number of time bins for each trial, and N is the number of neurons in the population. Each
element Xtn in the matrix is the number of action potentials (spikes) that neuron n fires within the
time bin t. Spike counts are assumed to be samples of an inhomogeneous Poisson process P (λ(t, n))
where λ(t, n) is the underlying true firing rate of neuron n at time t. The matrix Y ∈ RT×N

containing λ(t, n) fully represents the dynamics of the neural population and explains the observable
spiking data of the respective trial. We propose to learn the mapping ϕ(X;W ) : X → Y by the
Spatiotemporal Transformer with the set of weights W .

Spatiotemporal Neural Data Transformer: At the core of the transformer architecture is the
multihead attention mechanism, where feature vectors learn to calibrate the influence of other feature
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vectors in their transformation. Spike trains are embedded into feature matrices X̃ with added
sinusoidal positional encoding to preserve order information as initially proposed in [19]. We em-
ployed separate embeddings to encode positions in each temporal and spatial dimension individually,
resulting in two distinct feature embeddings X̃T = Emb(X) + PT and X̃S = Emb(X⊤) + PS .

A set of three matrices WQ
T , WK

T , WV
T ∈ RN×N are learned to transform T N -dimensional

embedding X̃T = {x̃1, x̃2, ..., x̃T } to queries QT = X̃TW
Q
T , keys KT = X̃TW

K
T and values

VT = X̃TW
V
T , upon which latent variable ZT is computed as:

ZT = Attention(QT ,KT , VT ) = F
(

softmax
(
QTK

⊤
T√

N

)
VT

)
(1)

The outer product of QTK
⊤
T represents the attention each xi pays to all other xj and determines

how much influence their values vj have on its latent output zi. F is the sequence of concatenating
multiple heads and feeding through a feedforward network with ReLU activation [19]. We used 2
heads for all reported models.

Implementations of transformers in popular applications such as in natural language processing
literature consider each feature vector xi as an N -dimensional token in a sequence, equivalent to a
word in a sentence. Elements in the N -dimensional vector therefore serve as a convenient numerical
representation and do not have inherent relationships among them. The attention mechanism thus
only models the relationship between tokens in a sequence. In our application, each feature vector xi

is a collection of firing activities of N physical neurons among which there exists an interrelation
as neuronal population acts as a coordinated structure with complex interdependencies rather than
standalone individuals. We therefore propose to model both the temporal relationship - the evolution
of neural activities - and the spatial relationship - covariability of neurons - by learning two separate
multihead attention blocks (Figure 1). The temporal latent state ZT is computed with temporal
attention block as in Equation 1. In parallel, spatial attention block operates on the spatial embedding
X̃S and learns an attention weights matrix signifying the relationship between neurons:

AS = softmax
(
QSK

⊤
S√

T

)
(2)

where QS = X̃SW
Q
S and KS = X̃SW

K
S .

This AS matrix is then multiplied with the transpose of temporal latent state ZT to incorporate the
influence of spatial attention on the final spatiotemporal latent state ZST :

ZST = F(ASZ
⊤
T ) (3)

For stable training, as in [19] we used layer normalization before X̃T , X̃S , ASZ
⊤
T and feedforward

layers. Residual connections are also employed around temporal attention, feedforward layers and
ASZ

⊤
T .

Mask modeling and contrastive losses: Similar to [16], we train the spatiotemporal transformer in
an unsupervised way with BERT’s mask modeling objective [44]. During training, a random subset
of spike bins along both spatial and temporal axes of input X are masked (zero-ed out or altered) and
the transformer is asked to reconstruct the log firing rate at the masked bins such that the Poisson
negative log likelihood is minimized:

Lmask =

N∑
i=1

T∑
j=1

exp(z̃ij)− x̃ij z̃ij (4)

where z̃ij and x̃ij are the log output firing rate and input spike of neuron i at timestep j if location ij
is masked.

Neural dynamics are shown to be embedded in a low-dimensional space, i.e. model prediction should
be fairly consistent when a smaller subset of neurons are used compared to when the entire population
is taken into account. Furthermore, in stereotyped behaviors often found in neuroscience experiments,
trials with the same condition should yield similar output firing rate profiles. Therefore, to enhance
robustness of model prediction to neural firing variability we further constrain model firing rate
outputs by a contrastive loss, such that different augmentations of the same trial input remain closer
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Figure 2: A: co-bps metrics improves when multiple models are ensembled together. B: STNDT
facilitates accurate inference of behavior from spiking data. Decoded hand trajectories from 4
trials (dashed line) closely match the ground truth trajectories (solid line). C: STNDT uncovers the
stereotyped feature of neural activity in structured behaviors. Firing rate prediction and PSTHs of
three example neurons are shown. Trials belonging to the same condition are plotted with the same
color (4 trials per condition shown). All results are shown for MC_Maze dataset.

to each other and stay distant to other trial inputs. We adopt the NT-XEnt contrastive loss introduced
in [45]:

Lcontrastive =
∑
ij

lij =
∑
ij

−log
exp(sim(zi, zj)/τ)∑2N

k=1 1k ̸=iexp(sim(zi, zk)/τ)
(5)

where sim(u, v) = u⊤v/(∥u∥∥v∥) is the cosine similarity between two predictions u and v on two
different augmentations of input x and τ is the temperature parameter.

Transformations such as dropping out neurons and jittering samples in time have been used to create
different views of neural data [46]. In our work, we define the augmentation transformation as random
dropout and alteration of spike counts at random elements in the original input matrix X , similar to
how masking is done, i.e. zero out or change spike counts to random integers at random neurons and
timesteps. See Appendix for details on probabilities used to create these augmentations.

Bayesian hyperparameter tuning: We follow [47] to use Bayesian optimization for hyperparameters
tuning. We observe that the primary metrics co-smoothing bits/spike (co-bps) are not well correlated
with the mask loss (see Figure 1 in the Appendix , while co-bps, vel R2, psth R2 and fp-bps are more
pairwise correlated. Therefore, we run Bayesian optimization to optimize co-bps for M models then
select the best N models as ranked by validation co-bps, and ensemble them by taking the mean of
the predicted rates of these N models.

4 Experiments and results

Datasets and evaluation metrics: We evaluate our model performance on four neural datasets in
the publicly available Neural Latents Benchmark [23]: MC_Maze, MC_RTT, Area2_Bump, and
DMFC_RSG. The 4 datasets cover autonomous and non-autonomous neural population dynamics
recorded on rhesus macaques in a variety of behavioral tasks (delayed reaching, self-paced reaching,
reaching with perturbation, time interval reproduction) spanning multiple brain regions (primary
motor cortex, dorsal premotor cortex, somatosensory cortex, dorso-medial frontal cortex). The
diverse scenarios and systems offer comprehensive evaluation of a latent variable model and serve as
a standardized benchmark for comparison between different modeling approaches. We use different
metrics to measure performance of our model depending on the particular behavior task of each
dataset, following the standard evaluation pipeline in [23]. We evaluate and report our model
performance on the hidden test split held by NLB to have a fair comparison with other state-of-the-art
(SOTA) methods. See [23] for further details of evaluation strategy and how the metrics are calculated.
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Table 1: Performance of STNDT as compared to SOTA methods on MC_Maze and MC_RTT datasets
MC_Maze MC_RTT

Methods co-bps↑ vel R2↑ psth R2↑ fp-bps↑ co-bps↑ vel R2↑ fp-bps↑
GPFA 0.1872 0.6399 0.5150 − 0.1548 0.5339 −

Smoothing 0.2109 0.6238 0.1853 − 0.1468 0.4142 −
SLDS 0.2249 0.7947 0.5330 1.1579 0.1649 0.5206 0.0620
MINT 0.3304 0.9121 0.7496 0.2076 0.1676 0.5953 0.1012

AutoLFADS 0.3364 0.9097 0.6360 0.2349 0.1868 0.6167 0.1213
iLQR-VAE 0.3559 0.8840 0.6062 0.1480 − − −

AESMTE1 (single) 0.3599 0.9105 0.6641 0.2470 0.1927 0.6627 0.1229
AESMTE3 (ensemble) 0.3676 0.9114 0.6683 0.2589 0.2053 0.6334 0.1344

STNDT single (ours) 0.3691 0.8985 0.6567 0.2505 0.1938 0.6143 0.0988
STNDT ensemble (ours) 0.3862 0.9095 0.6693 0.2686 0.2095 0.6270 0.1244

Table 2: Performance of STNDT as compared to SOTA methods on Area2_Bump and DMFC_RSG
datasets

Area2_Bump DMFC_RSG

Methods co-
bps↑

vel
R2↑

psth
R2↑

fp-
bps↑

co-
bps↑

tp-corr↓ psth
R2↑

fp-bps↑

GPFA 0.1680 0.5975 0.5289 − 0.1176 −0.3763 0.2142 −
Smoothing 0.1544 0.5736 0.2084 − 0.1202 −0.5139 0.2993 −

SLDS 0.1960 0.7385 0.5740 0.0242 0.1243 −0.5412 0.3372 −0.0418
MINT 0.2735 0.8877 0.9135 0.1483 0.1821 −0.6929 0.7013 0.1650

AutoLFADS 0.2569 0.8492 0.6318 0.1505 0.1829 −0.8248 0.6359 0.1844
iLQR-VAE − − − − − − − −

AESMTE1 (single) 0.2801 0.8675 0.6367 0.1523 0.1733 −0.6189 0.5267 0.1511
AESMTE3 (ensemble) 0.2860 0.8999 0.7109 0.1603 0.1886 −0.7601 0.6064 0.1828

STNDT single (ours) 0.2818 0.8766 0.6454 0.1357 0.1859 −0.5205 0.6051 0.1601
STNDT ensemble (ours) 0.2898 0.8913 0.7368 0.1476 0.1940 −0.4857 0.6452 0.1910

• Co-smoothing (co-bps): the primary metric, measuring the ability of the model to predict activity
of held-out neurons it has not seen during training. Co-bps is tied to the goodness of mask loss
evaluated for held-out neurons.

• Behavior decoding (vel R2 or tp-corr): measures how useful the model firing rates prediction
can be used to decode behavior (the velocity of primate’s hand in the cases of MC_Maze and
Areas_Bump datasets, or the correlation between neural speed and time between Set cue and Go
response in DMFC_RSG dataset).

• Match to peri-stimulus time histogram (psth R2): indicates how well predicted firing rates
match the peri-stimuls time histogram in repeated, stereotyped task structures.

• Forward prediction (fp-bps): measures model’s ability to predict unseen future activity of the
neural population. It is computed in the similar manner as co-bps but on the held-out time points of
all neurons.

Baselines: We compare STNDT against the following baselines, all of which have been evaluated
using the same held-out test split.

• Smoothing [23]: A simple method where a Gaussian kernel is convolved with held-in spikes to
produce smoothed held-in firing rates. Then a Poisson Generalized Linear Model (Poisson GLM)
is fitted from the held-in smoothed rates to held-out rates.

• GPFA [10]: extracts population latent states as a smooth and low dimensional evolution by
combining smoothing and dimension reduction in a common probabilistic framework.

• SLDS [14]: models neural dynamics as a switching linear dynamical system, which breaks down
nonlinear data into sequences of simpler dynamical modes.
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• AutoLFADS [17]: models population activity as a non-linear dynamical system with bi-directional
recurrent neural networks at the core and a scalable framework of hyperparameter tuning.

• MINT [48]: an interpretable decode algorithm that exploits the sparsity and stereotypy of neural
activity to interpolate neural states using a library of canonical neural trajectories.

• iLQR-VAE [49]: improves upon LFADS with iterative linear quadratic regulator algorithm, an
optimization-based recognition model to replace RNN as the inference network.

• NDT [16]: leverages transformer architecture with some adaption to neural data to model temporal
progression of neural activity across time. AESMTE1 is the best single model and AESMTE3 is
the best emsemble of multiple models found as a result of Bayesian hyperparameter tuning [47].

4.1 Spatiotemporal transformer achieves state-of-the-art performance in modeling
autonomous dynamics

We first tested STNDT on recordings of dorsal premotor (PMd) and motor cortex (M1) of a monkey
performing a delayed reaching task (MC_Maze dataset) to evaluate the ability of STNDT to uncover
single-trial population dynamics in a highly structured behavior. The dataset has been studied
extensively in previous work [15–17]. It consists of 2869 trials of monkey performing a center-out
reaching task in a maze with obstructing barriers, composing 108 different conditions for straight and
curved reaching trajectories. The monkey is trained to hold the cursor at the center while the target is
presented and only move the cursor to reach the target after a ‘Go’ cue. The neural dynamics during
the preparation and execution periods is well modeled as an autonomous dynamical system [15].

We observed that by explicitly modeling spatial interaction, STNDT outperformed other state-of-the-
art methods and improved NDT’s ability to model autonomous single-trial dynamics as measured by
the negative log likelihood of unobserved neural activity. The single STNDT model improved both
Poisson log likelihood of heldout neurons (co-bps) and heldout timesteps (fp-bps). The performance
is further increased by aggregating multiple STNDT models as shown in Table 1 and Figure 2A.

Since MC_Maze features repeated trials, the prediction of any latent variable models should uncover
stereotypical patterns of neuronal responses for trials belonging to the same condition. Therefore,
we computed PSTH which is the average of neural population response across trials of the same
condition, and measure R2 matching of model prediction to this PSTH. We observed that with the
help of spatial modeling and contrastive loss, STNDT boosts NDT ability to recover this stereotyped
firing pattern 1. We show in Figure 2C several responses of example neurons. STNDT firing rates
prediction of trials under the same condition exhibit a consistent, stable PSTH as desired. These
predicted rates also decode behaviors accurately when mapped to hand velocity via a linear regression
model (Table 1, Figure 2B).

4.2 Spatiotemporal transformer improves inference of non-autonomous neural dynamics
underlying naturalistic behaviors

There is much interest in systems neuroscience to study neural dynamics in unconstrained, naturalistic
behaviors as it is crucial for developing ubiquitous BCI decoders. We evaluated STNDT’s applicability
to this setting via recordings in primary motor cortex during self-paced reaching task (MC_RTT
dataset) [23, 50]. Unlike MC_Maze dataset, the monkey in this task continuously acquires targets
which appear randomly in an 8x8 grid without preparatory periods, resulted in a wide variety of hand
trajectories and trial lengths. We observe that STNDT achieves SOTA performance on the primary
metric co-bps and performs on par with NDT on remaining metrics, while maintaining a more robust
performance against random initializations of model weights (Table 1 and Appendix).

4.3 Spatiotemporal transformer better captures input-driven dynamics underlying sensory
processes

We next tested STNDT in a setting where unexpected input perturbations affect the neural dynamics in
somatosensory cortex to probe whether STNDT can leverage spatial interaction to improve modeling
of non-autonomous dynamics in this brain region. Area2_Bump dataset consists of recordings from
the Area 2, which was shown in previous works to be driven by mechanical perturbation to the arm
and contains information about whole-arm kinematics [23, 51]. The task comprises of active and
passive trials with a center hold period at the start. During active trials, the monkey performs a classic
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center-out reaching task. In passive trials, a force is applied on the monkey’s hand in a random
direction via a manipulandum, after which the monkey has to return to the center target and proceed
with the task as in active trials. Despite the relatively small scale of the dataset, STNDT brings
about further improvements to NDT performance in terms of co-bps and psth-R2, on both single and
ensemble levels.

4.4 Spatiotemporal transformer enhances prediction of neural population activity during
cognitive task

Dorsomedial frontal cortex (DMFC) is believed to serve as an intermediate layer between low-level
sensory and motor areas, and possess distinct confluence of internal dynamics and inputs [52, 53]. We
are therefore interested to see if characterizing spatial relationship alongside temporal relationship and
incorporating contrastive loss could help STNDT better model the dynamics in this brain region. We
tested STNDT on the DMFC_RSG dataset [23, 53] consisting of recordings from a rhesus macaque
performing a time-interval reproduction task. The monkey is presented two ‘Ready’ and ‘Set’ stimuli
separated by a specific time interval ts while fixating eye and hold the joystick at the center position.
It then has to execute a ‘Go’ response by either an eye saccade or joystick movement such that the
time interval tp between its reponse and the ‘Set’ cue is sufficiently close to ts. STNDT successfully
captures the dynamics in this cognitive task, outperforming NDT by a large margin across co-bps,
psth-R2 and fp-bps on both single and ensemble level (Table 2).

4.5 Spatial attention mechanism identifies important subsets of neurons driving the
population dynamics

In Figure 3, we visualize spatial attention weights obtained from STNDT on the MC_Maze dataset in
the first and last attention layers. Attention map for remaining datasets are provided in Appendix.
Interestingly, spatial attention shows that in early layers, only a small subsets of neurons in the
population are consistently attended to by all neurons. The spatial attention tends to disperse as
the model goes to deeper layers. Strikingly, the subset of heavily-attended neurons stays relatively
identical across different trials, hinting that these neurons might play a crucial role in driving the
population response to the behavior task. We further tested this hypothesis by incrementally dropping
the neurons heavily attended to (i.e. zeroing out their spiking activity input to the model) in a
descending order of their attention weights identified in the first layer. We observed that dropping
these important neurons identified by STNDT caused a significant decline in the model performance
(Figure 4). The performance decline was significantly more than the case where the same number of
random neurons are dropped. To rule out the possible case that dropping neurons only has adverse
effect on the spatial attention module but that effect propagates to the subsequent modules and
indirectly impacts the performance of the overall STNDT pipeline, we repeated the experiment
on the vanilla NDT model which, unlike STNDT, lacks a spatial attention structure. Interestingly,
we observed the same performance deterioration when we dropped the spiking activity of STNDT-
identified important neurons and asked a pretrained vanilla NDT to make inference on the resulting
inputs. This finding suggests that the impact of the important neurons that only STNDT can identify
might potentially generalize to other latent variable models that without input from these neurons,
some latent variable models might not function optimally. We provide additional results from similar
analyses on GPFA and Smoothing models in the Appendix.

We further examine whether important neurons were selected by the spatial attention mechanism
based on some criteria more sophisticated than simple firing statistics, as more active neurons tend to
have higher signal-to-noise ratio and might encode more useful information with regard to behaviors.
We find that the important neurons are not the ones with the highest spike counts or the least variability
in spiking activity. In fact, attention weights of a neuron do not correlate or only correlate weakly to
its firing activity statistics, as we show in Table 3 the Pearson’s correlation of a neuron’s attention
weight with the mean and variance of its spiking activity. All correlation values have p-value < 1e-4.
These results indicate that STNDT’s spatial attention has picked up on meaningful population features
that are more significant than firing statistics of the neurons.
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Figure 3: Visualization of STNDT’s spatial attention weights in the first and last layers of four
example trials. Attention weights in layer 1 reveal a consistent subset of neurons that are heavily
attended to by all neurons in the population. The attention becomes more dispersed in deeper layers.
Results are shown for 182 neurons in MC_Maze dataset.

Figure 4: Spatial attention module, unique to STNDT, identifies important neurons that are the main
driving force of population response to behavioral task. Performance of STNDT as measured by four
evaluation metrics are plotted as neurons are incrementally dropped from input neural population.
Performance significantly deteriorates when important neurons identified by STNDT are dropped,
while only decreases slightly when random neurons are dropped. The effect of important neurons
indentified by STNDT generalizes to vanilla NDT, which lacks a spatial attention structure. Shaded
region represents 2 standard error of the mean. Results are shown for MC_Maze dataset.

Table 3: Pearson’s correlation between spatial attention weight of a neuron versus mean and variance
of its spiking activity.

MC_Maze MC_RTT Area2_Bump DMFC_RSG

ρ(spike mean, attn weight) 0.0164 0.2217 0.0327 0.0852
ρ(spike var, attn weight) 0.0124 0.2189 0.0353 0.0937
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Table 4: Ablation Study: Performance of STNDT on MC_Maze and MC_RTT datasets with and
without contrastive loss (CL) on single and ensemble levels.

MC_Maze MC_RTT

Methods co-bps↑ vel R2↑ psth R2↑ fp-bps↑ co-bps↑ vel R2↑ fp-bps↑
AESMTE1 (single) 0.3599 0.9105 0.6641 0.2470 0.1927 0.6627 0.1229

AESMTE3 (ensemble) 0.3676 0.9114 0.6683 0.2589 0.2053 0.6334 0.1344

STNDT single w/o CL 0.3668 0.8979 0.6549 0.2471 0.1865 0.5988 0.0964
STNDT single w/ CL 0.3691 0.8985 0.6567 0.2505 0.1938 0.6143 0.0988

STNDT ensemble w/o CL 0.3843 0.9090 0.6686 0.2675 0.2065 0.6352 0.1260
STNDT ensemble w/ CL 0.3862 0.9095 0.6693 0.2686 0.2095 0.6270 0.1244

Table 5: Ablation Study: Performance of STNDT on Area2_Bump and DMFC_RSG datasets with
and without contrastive loss (CL) on single and ensemble levels.

Area2_Bump DMFC_RSG

Methods co-
bps↑

vel
R2↑

psth
R2↑

fp-
bps↑

co-
bps↑

tp-
corr↓

psth
R2↑

fp-
bps↑

AESMTE1 (single) 0.2801 0.8675 0.6367 0.1523 0.1733 −0.6189 0.5267 0.1511
AESMTE3 (ensemble) 0.2860 0.8999 0.7109 0.1603 0.1886 −0.7601 0.6064 0.1828

STNDT single w/o CL 0.2765 0.8773 0.7169 0.1498 0.1824 −0.5059 0.6134 0.1473
STNDT single w/ CL 0.2818 0.8766 0.6454 0.1357 0.1859 −0.5205 0.6051 0.1601

STNDT ensemble w/o CL 0.2904 0.8937 0.7303 0.1491 0.1931 −0.5186 0.6429 0.1888
STNDT ensemble w/ CL 0.2898 0.8913 0.7368 0.1476 0.1940 −0.4857 0.6452 0.1910

4.6 Ablation Study: Contrastive loss encourages consistency of model prediction and
improves performance

We conduct an ablation study to assess the effectiveness of contrastive loss on the overall performance
of STNDT. Tables 4 and 5 report how the model scores on different metrics across all four datasets on
the single and ensemble levels. In general, we observe that having contrastive loss further improves
the performance of STNDT on predicting neural activity of heldout neurons (co-bps) and heldout
timesteps (fp-bps). The contribution of contrastive loss is most eminent on MC_Maze dataset.

5 Discussion

In this paper we presented STNDT, a novel architecture based upon NDT [16] that explicitly learns
the covariation among individual neurons in the population alongside the momentary evolution of
the population spiking activity in order to infer the underlying firing rates behind highly variable
single-trial spike trains. By incorporating self-attention along both spatial and temporal dimensions
as well as a contrastive loss, STNDT enhances NDT’s ability to model dynamics spanning a variety
of tasks and brain regions, most notably by the accurate prediction of activity for unseen neurons
(co-bps). Although STNDT does not consistently outperform NDT on other secondary metrics, we
show in the Appendix that STNDT is more robust to random initializations and performs better than
NDT on average across random seeds. Moreover, the improvement STNDT contributes on co-bps is
the direct reflection of the spatial attention’s success. Since the spatial attention module aims to learn
the relationship between all (observed and unobserved) neurons at training time, it will leverage this
information to infer activities of unobserved neurons based on those of observed neurons at testing
time, which is exactly what co-bps measures. Finally, the novel spatial attention mechanism unique
to STNDT brings about valuable interpretability as it discovers influential subsets of neurons whose
activities contain salient information about the response of the entire neural population without which
some latent variable models might not function optimally.
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