
Graph Learning Assisted Multi-objective Integer
Programming (Appendix)

A.1 Search region update

According to Definition 2 in the main paper, the search region is described by a set of (maximal) local
upper bounds. Hence, we update the search region by efficiently updating the local upper bounds
when a new nondominated point is attained based on Eq. (2). We summarize the update procedures
in Algorithm 1 as below. It is originally proposed in [26] and used by the ODA in [27], on which we
deploy the graph learning method.

Algorithm 1: Update of local upper bounds
1: Input: A set of points N , the corresponding local upper bounds U(N), a new nondominated point y∗

(Note: U(N) is initialized as U(∅) = {(M, . . . ,M)} as introduced in the main paper)
2: N ′ = N ∪ y∗; U(N ′) = U(N);
3: for u ∈ U(N) do
4: ## if y∗ dominates u, u is deleted and new bounds are added;

or, y∗ could be a defining point of u. ##
5: if y∗ < u then
6: U(N ′) = U(N ′)\{u};
7: for i ∈ {1, . . . , p} do
8: ui = (u1, . . . , ui−1, y

∗
i , ui+1, . . . , up);

9: Ni(u
i) = {y∗}

10: for j ∈ {1, . . . , p}\{i} do
11: Nj(u

i) = {y|y ∈ Nj(u), yi < y∗
i }

12: if Nj(u
i) ̸= ∅,∀{j|j ∈ {1, . . . , p}\{i}, ui

j ̸= M} then
13: U(N ′) = U(N ′) ∪ {ui}
14: else
15: for i ∈ {1, . . . , p} do
16: if y∗

i = ui and y∗
−i < u−i then

17: Ni(u) = Ni(u) ∪ {y∗}
18: Return: updated local upper bounds U(N ′)

In the above algorithm, Ni(u) denotes the defining points for the i-th dimension of the local upper
bound u. It satisfies, 1) Ni(u) ⊂ N , and 2) ∀y ∈ Ni(u), yk = uk and y−k < u−k, where y−k

refers to a reduction of y with its k-th component eliminated. According to [26, 27], the set of local
upper bounds is maximal if and only if every bound in the set has at least one defining point on
the dimensions {i|i ∈ {1, . . . , p}, ui ̸= M}. Therefore, Algorithm 1 adds new local upper bounds
by ensuring they have defining points for bounded dimensions (line 7 ∼ 13). When y∗i = ui and
y∗−i < u−i, y∗ is exactly a defining point of u and added to Ni(u) (line 15 ∼ 17). We refer the
readers to [26, 27] for more details.

A.2 Scalarizations

ODAs normally rely on scalarization methods to convert MOIP into a series of single-objective IPs. A
variety of scalarization methods have been proposed for different ODAs. Given a MOIP as in Eq. (1)
in the main paper, we introduce four commonly used methods including the one (i.e. Lexicographic
optimization) used in our approach. More scalarization methods can be found in [6, 8].

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Weighted sum method. It minimizes a weighted sum of objectives as follows: minx{
∑

µifi(x)|µ ∈
Rp;x ∈ X}. The optimal solution to such scalarization is an (weakly) efficient solution to the MOIP
when µ (≥)> 0. While this method is simple and widely used, it is not appropriate for nonconvex
objective spaces since some nondominated points cannot be represented by the scalarized objective.

ϵ-constraint method. It optimizes one objective with constraints to other objective values as follows:
minx{fk(x)|fi(x) ⩽ ϵi, i ̸= k, ϵ ∈ Rp;x ∈ X}. Its optimal solution is weakly efficient for MOIP,
and many variants have been proposed to derive efficient solutions. Classic ϵ-constraint methods
enumerate ϵ to compute all nondominated points and require considerable iterations of IP solving
when the number of objectives rises. ODAs can be used as a paradigm to improve the classic methods
since they efficiently exclude the dominated region by newly derived points in the objective space.

Weighted Tchebycheff method. It minimizes the maximal distances between objectives and the
ideal point yI ∈ Rp as follows: minx{max1⩽i⩽p{µi(fi(x)− yIi)}|x ∈ X}, where µ ≥ 0 captures
the preference over different objectives. The optimal solution to the above formulation is weakly
efficient to MOIP, and variants have been developed to compute efficient solutions, e.g., lexicographic
and augmented weighted Tchebycheff methods.

Lexicographic optimization method. It is used in the ODA [27], which is defined as follows:
lexmin{{fk(x),

∑p
i=1,i̸=k fi(x)}|fi(x) ⩽ ui, i ̸= k, u ∈ Rp;x ∈ X}. The k-th objective is

optimized in priority and the sum of the other objectives is optimized without impairing the optimal
value of the k-th objective. Similar to the ϵ-constraint method, u is used to restrict the objective
values, i.e., the search region for the above IP in the objective space.

A.3 Proofs

Here we rewrite Proposition 1 and 2 and present proofs for them.

Proposition 1. Given u ∈ U(N) and a strictly monotone function F : Y → R, the optimal solution
to the following scalarized problem (IP) will derive a nondominated point in Ynd,

Γ(u) := min{F(y) = F(y1, . . . , yp)|y ∈ Y; y < u}. (A.1)

Proof. We assume the optimal solution y∗ to Γ(u) is not a nondominated point, i.e., y∗ /∈ Ynd.
Therefore, there exists a point y′ ∈ Ynd satisfying y′ ≤ y∗ < u. According to the strictly monotone
property of F , we have F(y′) < F(y∗) which contradicts with the optimality of y∗ in Γ(u).

Proposition 2. ODAs generate the whole Pareto front with finite iterations.

Proof. Given the bounded MOIP defined in Eq. (1) in the main paper, the number of nondominated
points is finite, i.e., |Ynd| < ∞. The ODAs iteratively solve IPs with the form in Eq. (A.1), and each
arrives at the following possible results: 1) a new nondominated point, 2) a repetitive nondominated
point, and 3) infeasibility. According to Definition 2, the remaining nondominated points are located
in the search region delimited by the local upper bounds. Thus solving IPs (constrained by the bounds)
optimally in iterations will attain all nondominated points, according to Proposition 2. Meanwhile,
the local upper bounds inducing infeasible IPs and repetitive points are ignored by ODAs, which
means the regions without nondominated points are excluded. Hence, the number of iterations cannot
be infinite within the bounded and discrete objective space.

A.4 Featurization

Given the graph encoding in the main paper, we can readily represent different scalarized problems
by different featurizations on the graph. Here, we realize the featurization of the Lexicographic
scalarizations for the ODA in [27], since we use it to deploy our graph learning method. According
to the original work in [27], the Lexicographic scalarization is defined as follows,

lexmin

fk(x),

p∑
i=1,i̸=k

fi(x)

s.t. f(x) ∈ Y, fi(x) ⩽ ui,∀i ∈ {1, . . . , p}, i ̸= k

(A.2)

2

Table A.1: Featurization of the Lexicographic scalarization on the graph.
Features Description Digit
Objective features (O) The ideal point yI

i = minx∈X fi(x). 1
The selected local upper bound u. 1
The defining point as described in Section A.1. 1
The average, maximum and minimum of current local upper bounds. 3
One-hot vector to identify which objective is in priority. 1

Constraint features (C) The right-hand side of constraints in Eq. (A.2). 1
Variable features (V) The average and standard deviation of history solutions. 2

Coefficients of variables for the objective in priority. 1
Edge features (Eov) Coefficients of variables for all objectives. 1
Edge features (Ecv) Coefficients in the incidence matrix between variables and constraints. 1

where u = (u1, . . . , up) is the selected local upper bound in an iteration of ODA. The logic behind
the above Lexicographic scalarization is that the k-th objective is optimized in priority, so that the
sum of the remaining objectives are optimized without impairing the optimized value of the k-th
objective. The ODA in [27] employs IP solver to solve the above scalarized problems (IPs) efficiently.

Our work centers on learning representations of scalarized problems in the above form to predict
whether the corresponding IPs 1) are infeasible, or 2) lead to repetition of nondominated points, with
the proposed two-stage GNN. Based on the prediction, we choose to solve the scalarized problem, or
discard the selected local upper bound and enter the next iteration. To effectively capture the above
scalarized problem, we leverage a set of features as described in Table A.1.

A.5 Pseudocode for dataset collection

Algorithm 2: Data collection for a MOIP instance with an ODA
1: Input: MOIP instance z, local upper bounds U = U(∅), nondominated points N = {}, time limit L, step

t = 0, dataset Dz = {}
2: while runtime < L do
3: Select a local upper bound ut from U ;
4: Record the current state st by collecting the features in Section A.4;
5: Solve the IP defined by ut with the solver;
6: if IP is infeasible or returned point y is already in N then
7: Dz = Dz ∪ (st, 1); Discard ut from U ;
8: else
9: Dz = Dz ∪ (st, 0); Update U by ODA itself as described in Section A.1; N = N ∪ y

10: if U={} then
11: Return: Dz

12: t = t+ 1;
13: Return: Dz

According to the optimal policy in Definition 3 in the main paper, we collect states and the optimal
actions for each instance following the procedure in Algorithm 2. We run an ODA and label states
which induce infeasible IPs or repetitive nondominated points, by at = 1. The proposed graph
learning approach aims to approximate such an optimal policy by discarding the local upper bounds
ut in futile IPs. We execute Algorithm 2 for every training instance in each group and collect the
training set D =

⋃Z
z=1 Dz = {(si, ai)}Ii=1. Except for the component we plug in to extract features,

the other components remain the same as in the original ODA, such as the selection of the bounds at
line 3 and the update of the search region at line 9.

A.6 Additional results

We present more results on instances with 6 and 7 objectives. Following the instance generation
in the main paper, we generate 110 instances of MOKP(6-100) and MOAP(6-40), respectively,

3

Table A.2: Comparison with baselines on MOKP and MOAP instances with 6 and 7 objectives.
MOKP(6-100) MOKP(7-100) MOAP(6-40) MOAP(7-50)

Methods Time(s) Card. HV IGD Time(s) Card. HV IGD Time(s) Card. HV IGD Time(s) Card. HV IGD

ODA-T 1000.0 2554.6 0.53 0.059 1000.0 1946.3 0.45 0.080 1000.0 1976.3 0.76 0.016 1000.0 951.5 0.80 0.024
ODA-B 1000.0 1684.2 0.53 0.064 1000.0 1099.6 0.49 0.081 1000.0 1509.8 0.73 0.019 1000.0 980.9 0.83 0.023
ODA-K 1000.0 2437.1 0.40 0.075 1000.0 2025.9 0.31 0.104 1000.0 1966.5 0.35 0.037 1000.0 1228.5 0.45 0.051

MOEAD 2000.0 3612.5 0.50 0.061 2000.0 4345.1 0.46 0.072 2000.0 2958.9 0.63 0.021 2000.0 3235.4 0.67 0.033
NSGAII 2000.0 1000.0 0.47 0.075 2000.0 1000.0 0.40 0.065 2000.0 1793.5 0.35 0.035 2000.0 2000.0 0.43 0.052
NSGAIII 2000.0 140.2 0.44 0.084 2000.0 150.3 0.35 0.090 2000.0 241.1 0.44 0.029 2000.0 243.1 0.49 0.045
UNSGAIII 2000.0 149.7 0.45 0.085 2000.0 121.8 0.38 0.099 2000.0 235.9 0.45 0.028 2000.0 237.7 0.52 0.044

PMOCO 1000.0 2464.7 0.53 0.061 1000.0 2688.5 0.51 0.064 - - - - - - - -
Ours 1000.0 2996.4 0.54 0.057 1000.0 2392.8 0.51 0.065 1000.0 2261.3 0.80 0.009 1000.0 1358.2 0.87 0.012

with 100 instances for the collection of training set (in which 1% is used for validation) and 10
instances for testing. We also generate 10 instances of MOKP(7-100) and MOAP(7-50) to evaluate
the generalization of the models trained with MOKP(6-100) and MOAP(6-40), respectively. We
train PMOCO with instances of MOKP(6-100) and MOKP(7-100) since it cannot generalize across
different numbers of objectives. The results are displayed in Table A.2.

We observe that our method achieves the highest HV and the lowest IGD values for MOKP(6-100),
MOAP(6-40) and MOAP(7-50). While it performs slightly inferior to PMOCO for MOKP(7-100),
i.e., 0.508/0.512 w.r.t HV and 0.065/0.064 w.r.t IGD, we note that our model is directly applied
to instances with more objectives and PMOCO has no such generalization capability. Particularly,
without the need of extra efforts to train the model with new data, our method attains comparable
results to PMOCO. This advantage allows our method to be more preferable in practice where a
decision maker can add objectives freely and get the results quickly. Furthermore, our method
significantly improves ODA-T with more nondominated points found in the same runtime, and the
cardinality is also larger than those of ODA-B, ODA-K and most heuristic baselines. While MOEAD
achieves the largest cardinality in each instance group and mostly attains the best performance among
evolutionary algorithms, it is still inferior to ODA-T, ODA-B and our method. This stems from the
fact that the (feasible) solutions returned by MOEAD are of poor quality and ODAs (including ours)
guarantee that the solutions are exactly nondominated. In summary, our method not only achieves the
best performance for instances that are similar to the ones in training, but also generalizes fairly well
to instances with more objectives and larger sizes.

A.7 Computation of HV and IGD

Hypervolume. The hypervolume for a set of feasible points F is defined as the volume of a subspace
in the objective space, which is weakly dominated by F and bounded by a reference point r∗, as
follows,

HV(F) = λp({y ∈ Rp|∃y′ ∈ F, y′ ≤ y ≤ r∗}), (A.3)

where λp denotes the Lebesgue measure on the p-dimensional space which calculates the volume
for a p-dimensional subspace. The hypervolume is a widely used metric to assess the performance
of approximated solutions. Since the range of objective values varies across different problems
and instances, we employ the normalized hypervolume (NHV) following [10], which is defined as
NHV(F) = HV(F)/

∏p
i=1 r

∗
i . We compute r∗ for an instance as element-wise maximums of all

points from different methods, so that NHVs of solutions from each method are derived for this
instance. We then compute the average NHV across the instances used for testing.

Inverted generational distance. Given a set of feasible points F and the reference set Y , the inverted
generational distance is defined as follows,

IGDσ(Y, F) =
1

|Y |
(∑
y∈Y

min
f∈F

d(y, f)σ
)1/σ

, (A.4)

where d(y, f) = (
∑p

i=1(yi − fi)
2)1/2 represents Euclidean distance and σ is set to 1. The reference

set is set as the Pareto front if all nondominated points are known. However, it is often not practical

4

Figure A.1: The exact Pareto front.

Figure A.2: Approximated Pareto front by our method.

Figure A.3: Approximated Pareto front by PMOCO.

Figure A.4: Approximated Pareto front by MOEAD.

Figure A.5: Approximated Pareto front by NSGAIII.

for complex MOIPs in which the whole Pareto front is intractable to compute in prior. On the other
hand, the reference set could also be a (good) approximated Pareto front for assessment. In this
paper, we use the exact Pareto front for MOKP(3-100) to compute IGD since they are easy to be
solved optimally. For the other instances, we gather all nondominated points from all methods as the
good approximated Pareto front. This approximation is closer to the true Pareto front and thus better
than the approximated solutions from each method. Moreover, we find that it is better than the one
achieved by running a single method with long time, since different methods could generate different
parts of nondominated points in Pareto front and we gather them together to gain better spread.

5

A.8 Visualization

We visualize the solutions attained by different methods. We pick four representatives from all base-
lines in the main paper including ODA-T in ODAs, MOEAD, NSGAIII in evolutionary computation,
and the recent PMOCO in deep reinforcement learning. Among them, ODA-T achieves the exact
Pareto front. Regarding each baseline, we plot solutions to four testing instances for MOKP(3-100)
by normalizing the objective values to [0, 1]R=3, which are displayed in Figure A.1∼ A.5. It is clear
that the solutions achieved by our method is almost the same to the exact Pareto front, with good
convergence and spread. In comparison, MOEAD and NSGAIII exhibit clear biases towards only
parts of the Pareto front. While PMOCO scatters its points dispersedly with a similar shape to the
Pareto front, the points are too sparse to approximate the details. Furthermore, our method guarantees
the derived points are exactly nondominated (i.e. in Pareto front) and thus gains a substantially better
approximation. Last but not least, our method consumes significantly less runtime than other methods
(i.e. less than half) as stated in the main paper, which suggests a favorable trade-off to fast achieve an
adequately good approximated Pareto front.

6

	Search region update
	Scalarizations
	Proofs
	Featurization
	Pseudocode for dataset collection
	Additional results
	Computation of HV and IGD
	Visualization

