
Graph Learning Assisted Multi-Objective Integer
Programming

Yaoxin Wu1, Wen Song2, Zhiguang Cao3,∗, Jie Zhang1,
Abhishek Gupta3 and Mingyan Simon Lin3

1Nanyang Technological University
2Institute of Marine Science and Technology, Shandong University, China

3Singapore Institute of Manufacturing Technology, A*STAR
wuyaoxin@ntu.edu.sg, wensong@email.sdu.edu.cn, zhiguangcao@outlook.com
zhangj@ntu.edu.sg, {abhishek_gupta, simon_lin}@simtech.a-star.edu.sg

Abstract

Objective-space decomposition algorithms (ODAs) are widely studied for solving
multi-objective integer programs. However, they often encounter difficulties in
handling scalarized problems, which could cause infeasibility or repetitive nondom-
inated points and thus induce redundant runtime. To mitigate the issue, we present
a graph neural network (GNN) based method to learn the reduction rule in the ODA.
We formulate the algorithmic procedure of generic ODAs as a Markov decision
process, and parameterize the policy (reduction rule) with a novel two-stage GNN
to fuse information from variables, constraints and especially objectives for better
state representation. We train our model with imitation learning and deploy it on
a state-of-the-art ODA. Results show that our method significantly improves the
solving efficiency of the ODA. The learned policy generalizes fairly well to larger
problems or more objectives, and the proposed GNN outperforms existing ones for
integer programming in terms of test and generalization accuracy.

1 Introduction

Practical combinatorial optimization often involves multiple objectives that conflict with each other.
Such problems can be termed as multi-objective combinatorial optimization (MOCO), which are
widely studied in operations research and computer science [1], and also have broad applications
in energy [2], engineering [3], biology [4], etc. In contrast to the single-objective optimization,
MOCO centers on searching solutions with nondominated images (points) in the objective space,
which constitute the Pareto front. These solutions reflect different preferences on the objectives, so
that decision makers could select from them according to practical use. In this paper, we focus on
multi-objective integer programming (MOIP), which provides a unified modeling framework for
MOCOs, and is convenient in handling complex constraints which could be difficult for heuristic
methods [5]. However, MOIP problems are extremely difficult to be solved optimally (i.e. enumerate
the whole Pareto front) [6, 7]. Therefore, accelerating the computation of MOIPs to ameliorate the
partial Pareto front in reasonable time is a critical and challenging issue [8, 9, 10].

Recently, deep learning has been extensively explored in solving single-objective combinatorial
optimization problems such as vehicle routing, scheduling, and bin packing [11, 12, 13, 14, 15, 16,
17, 18]. As a general modeling and solving framework, single-objective integer programming (IP)
has also received increasing attention, and this line of works mostly attempt to improve ingredients in
the branch and bound (BnB) paradigm [19, 20, 21, 22, 23, 24]. In contrast, research on applying deep

∗Corresponding Author.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

𝑓2

𝑓1

Local upper bounds 𝑼(𝑵)

Points 𝑵

Search region 𝑺(𝑵)

Search zone to explore 𝒛(𝒖)

𝑓2

𝑓1

New point by solving IP

Dominated region

𝑓2

𝑓1

𝑓2

𝑓1
(1) Selection of IP (3) IP computation (4) Update by dominance (5) Update by reduction rule

Discard or not

Yes

No

(2) Reduction rule

Figure 1: An example of ODA for solving a MOIP with two objectives. The algorithmic procedure
iterates the following phases, 1) selecting one from all local upper bounds and defining the corre-
sponding scalarized problem (IP); 2) determining whether the IP is to be solved, if Yes 3) solving the
IP by calling a solver; 4) updating the search region according to the dominance of the newly derived
image (point), if No 5) discarding the selected local upper bound without calling a solver.

learning to MOCO is relatively sparse, with only recent trials targeting at specific problems such as
travelling salesman and knapsack problem [10, 25, 26, 27] rather than the more general MOIP.

This paper, for the first time, presents a graph learning based method to assist MOIP solving by
improving the bounded-time performance of objective-space decomposition algorithms (ODAs).
With highly optimized IP solvers such as CPLEX and Gurobi, ODAs iteratively decompose a MOIP
into multiple scalarized problems (i.e. IPs) by applying local upper bounds in the objective space and
solve one of the IPs to update the bounds, as illustrated in Figure 1. Since ODAs involve computation
primarily in the low-dimensional objective space which could be fulfilled by calling mature IP solvers,
this paradigm has attracted much research in the literature [8, 28, 29, 30]. However, existing ODAs
often solve large amounts of IPs that 1) are infeasible or 2) lead to repetition of nondominated points,
which result in unnecessary and redundant computation.

To tackle this issue, we propose to learn reduction rules to discard local upper bounds that induce
futile IPs pertaining to infeasibility or repetition in iterations of ODAs, so as to reduce unnecessary
computation eventually. To this end, we model the algorithmic procedure of ODAs as a Markov
decision process based on the analysis of classic reduction rules in ODAs. To resolve the challenges
in representing MOIP solving states, we propose a novel two-stage graph neural network (GNN) to
parameterize the policy (reduction rule). In the first stage, the variable, constraint and objective nodes
attend to each other locally to update their embeddings; while in the second stage, the embeddings are
aggregated into three hypernodes for each pair of node types to realize a better global representation.
We train the GNN based policy with imitation learning so that it learns to discard local upper bounds
of futile IPs. We employ our method to improve a state-of-the-art ODA [29], and extensive results
on benchmark problems indicate its efficacy in accelerating the search of nondominated points in
bounded time and generalizing to larger problems or more objectives. We also compare the proposed
GNN with existing ones for IPs to verify its superiority in learning representations for MOIPs.

2 Related work

2.1 Objective-space decomposition for MOIP

A variety of methods have been proposed for MOIPs. Among them, ODAs attract much attention
since they usually resort to highly-optimized IP solvers for solving the decomposed scalarized
problems, with additional light computation only processing local bounds in a low-dimensional
objective space. IP solutions to scalarized problems update local bounds to delimit a search region
where nondominated points exactly exist. As representatives, Kirlik and Sayın [31] equip ϵ-constraint
with p-1 dimensional boxes representing the search region, and iteratively split them to filter out the
ones without nondominated points. Klamroth et al. [28] formally describe the search region with
full dimensional zones whose amount is significantly less than that of boxes in [31], inducing less
subroutines for IPs. Dächert et al. [32] accelerate the update of the search region with a specific
neighborhood relation between local upper bounds. Boland et al. [33] define the search region
by known efficient solutions and extra disjunctive constraints, which increased the computational
complexity in IP solving. Tamby and Vanderpooten [29] point out the infeasibility issue and propose
a state-of-the-art framework for MOIPs where infeasible programs could be avoided. However, this

2

method needs to restore all solved IPs and look up their feasible domains to check feasibility of the
current IP in each iteration. Moreover, existing ODAs generally lack a capacity to detect repetitive
IPs. This paper provides a graph learning based method to fast bypass infeasibility and repetition of
nondominated points. Other less related works pertaining to ODAs can be found in [34, 35, 30].

2.2 Graph learning for integer programs

Graph neural networks (GNNs) have been explored to learn representations for single-objective IPs,
which identify problem structures better than trivial neural networks (e.g. multilayer perceptron
(MLP)) and enable generalization to different scales. Gasse et al. [21] describe IPs at each node in
BnB search as bipartite graphs and use graph convolutional network (GCN) to learn branching rules.
It inspires a number of subsequent works to employ miscellaneous GNNs for tackling IPs. Ding
et al. [36] propose tripartite graph embedding for IPs to predict values of binary variables. Gupta
et al. [37] consider a hybrid use of GCN and MLP to accelerate the branching in BnB. Nair et al. [24]
adapt the bipartite GCN in [21] to learn both branching rules and a specific diving heuristic at the root
node. Wu et al. [38] apply it to select variables in IPs for destroy operations in a large neighborhood
search framework. Recently, Khalil et al. [39] evolve the bipartite GCN by substituting its message
passing structure into GIN and GraphSAGE [40, 41], to separately train node selection rules and
predict warm starts for BnB search. The existing graph learning based methods might be inadequate
to represent MOIPs where multiple objective nodes need to be identified and the potential scalarized
problems need to be discriminated. In this paper, we propose an effective graph encoding for MOIPs,
and design a novel two-stage GNN to learn the corresponding graph representations. We update
node embeddings by attention in objective-variable, variable-constraint graphs, and aggregate these
(locally) advanced node embeddings into hypernodes to further gain a favorable graph representation.

3 Preliminaries

3.1 Multi-objective integer programs

The integer-constrained optimization with p objective functions are formally described as follows:

min
x

f(x) = (f1(x), . . . , fp(x))

s.t. Ax ⩽ b, x ∈ Znz × Rn−nz ,
(1)

where A ∈ Rm×n, b ∈ Rm, m,n, nz ∈ N and n ⩾ nz > 0. The MOIP is specified from the
above formulation with n = nz . Given a feasible solution x, its image (point) in the objective space
is y = f(x) = (f1(x), . . . , fp(x)), resulting in the set of feasible solutions X and their images
Y . In Y , an image y is weakly dominated by y′ (i.e. y′ ≦ y), if y′i ⩽ yi,∀i ∈ {1, . . . , p}; y is
dominated by y′ (i.e. y′ ≤ y), if y′ ≦ y and y ̸= y′; y is strictly dominated by y′ (i.e. y′ < y),
if y′i < yi,∀i ∈ {1, . . . , p}. Accordingly, a solution x ∈ X is efficient or weakly efficient if
its image f(x) is not dominated or strictly dominated by any other image in the objective space.
The common goal of MOIPs is searching the Pareto front that is the set of nondominated images
Ynd = {f(x)|x ∈ Xe} derived from efficient solutions Xe.

3.2 Objective-space decomposition algorithms

Following [28, 32, 29], we describe the search region by local upper bounds to locate the remaining
nondominated points at each iteration in ODAs.

Definition 1. Given a set of points (images) N in p-dimensional objective space, the corresponding
search region is defined as S(N) = {y ∈ Rp|y′ ≦̸ y,∀y′ ∈ N ; yI ≦ y}, where yI is the ideal point
with yIi = minx∈X fi(x) = miny∈Ynd

yi.

To concisely represent the search region and facilitate its decomposition into scalarized problems, the
(maximal) local upper bounds are introduced [28].

Definition 2. A set of points U(N) is called (maximal) local upper bounds of N if and only if 1)
S(N) =

⋃
u∈U(N) z(u), where z(u) = {y ∈ Rp|yI ≦ y < u} is the search zone under local upper

bound u; 2) ∀u, u′ ∈ U(N), u ≦̸ u′.

3

The "maximal" emphasizes the condition 2), i.e., ∀u, u′, z(u) ⊈ z(u′). Given the current set of local
upper bounds and a new nondominated point, the search region (with the local upper bounds) can be
efficiently updated by excluding the dominated region of the point via the algorithm in [28]. Such
update procedure keeps shrinking the search region to locate the remaining nondominated points, and
we elaborate it in Appendix A.1.

Proposition 1. Given u ∈ U(N) and a strictly monotone function2 F : Y → R, the optimal solution
to the following scalarized problem (IP) will derive a nondominated point in Ynd,

Γ(u) := min{F(y) = F(y1, . . . , yp)|y ∈ Y; y < u}. (2)

The common instantiations of F include ϵ-constraint, Lexicographic and weighted Tchebycheff
methods [42, 8], which are detailed in Appendix A.2. Given the above concepts, the generic
algorithmic procedure for ODAs starts from a (local) upper bound U(∅) = {(M, . . . ,M)} with M
being a large value,3 and comprises four components, 1) selection rule that picks u from U(N) in
Eq. (2); 2) reduction rule that detects feasibility of IP in Eq. (2); 3) IP solving with a solver (e.g.
Gurobi, CPLEX); 4) update of search region U(N) according to dominance or reduction rule. This
algorithmic paradigm has the property in Proposition 2. We prove Proposition 1, 2 in Appendix A.3.

Proposition 2. ODAs generate the whole Pareto front for MOIP with finite iterations.

4 Methodology

In this section, we identify the critical issue about the infeasibility and repetition of nondominated
points in ODAs, and propose to circumvent the solving of the corresponding IPs with a reduction rule
learned automatically by GNN. We encode the generic algorithmic procedure of ODAs as a MDP,
where the reduction rule is parameterized by a two-stage GNN and trained with imitation learning.

4.1 Problem statement: infeasibility and repetition reduction

In ODAs, most of the computation time in each iteration is consumed by IP solving (normally with
mature solvers). However, existing algorithms are less effective in identifying and discarding local
upper bounds that induce futile IPs with infeasible or repetitive nondominated points. The commonly
used reduction rules rely on the inclusion relationship of solution spaces between IPs solved and to
be solved [31, 33, 29]. We summarize this class of reduction rules as follows.

Observation 1. Given a scalarized problem Γ(u), it is infeasible if there exists a Γ(u′) with, 1) the
same F as in Γ(u), and 2) u ≦ u′, which has been solved and returns null.

Since all solutions in Γ(u) are subset of those in Γ(u′), they have been proved infeasible under the
same objective function by Γ(u′). However, reduction rules based on observation 1 require Γ(u′) to
be solved to prove infeasibilty, which induces extra runtime. We extend it to the optimality cases.

Proposition 3. Given a scalarized problem Γ(u), it is infeasible if there exists a solved Γ(u′) with 1)
the same F as in Γ(u), 2) the optimal point y∗ satisfying F(u) ⩽ F(y∗), and 3) u ≦ u′.

Proof. Given u ≦ u′, the solution space of Γ(u′) contains the one of Γ(u). Since the optimal
point y∗ has achieved the lower bound in Γ(u′), Γ(u) cannot attain any feasible solution y′ with
F(y′) < F(u) ⩽ F(y∗) based on the strictly monotone property in Proposition 1. If so, it contradicts
with the optimality of y∗ in Γ(u′).

While the instantiation for Observation 1 as the reduction rule can be found in [31, 33], Proposition 3
is used as a reduction rule with Lexicographic scalarization in [29]. However, the above methods
need clearly more memory and extra runtime to trace or iterate over the IPs to check infeasibility.
Meanwhile, the repetition of nondominated points also broadly exists in ODAs, where existing
methods generally detect them by calling solvers, inducing extra runtime as well [31, 29, 30].

To curtail unnecessary solver calls that cause infeasibility and repetition, we incline to fast predict
these status immediately after a local upper bound is selected with its IP formulation. In the following,
we convert the algorithmic procedure of ODAs into a MDP, and learn a reduction rule by GNN to
discard the local upper bounds that may induce infeasible and repetitive points in corresponding IPs.

2A strictly monotone function ensures that: ∀y, y′ ∈ Rp, if y ≤ y′, then F(y) < F(y′).
3In practice, M could be provided by a decision maker to constrain the search region of interest [28].

4

Remark. Since we learn the reduction rule to accelerate the detection of unnecessary IPs, an
undesirable byproduct is that some IPs with effective nondominated points could be ignored, which
may impair the completeness of the found Pareto points. However, our learned reduction rule has
favorable potential to achieve a good trade-off that it is able to search reasonably more nondominated
points in the bounded time, especially for large-scale problems.

4.2 Markov decision process

For each MOIP instance, we describe the solving process of ODAs as a MDP, where the reduction
rule is considered as the agent and remaining algorithmic procedures as the environment. At the t-th
iteration, the state st is characterized by the current algorithmic status including the fixed information
of the given MOIP instance; the current nondominated points Nt and their statistics; the found efficient
solutions X t

e and their statistics; the set of local upper bounds and the selected one ut. The agent
determines whether the selected local upper bound ut is discarded (1) or not (0), i.e., at ∈ A = {0, 1},
via the learned policy π(at|st). With the decision from the agent, the environment transits from st to
st+1 by either solving the IP defined by ut and updating the search region S(N), or directly discarding
ut from U(N). The above one-step transition iterates to yield an episode τ = (s0, ao, s1, . . . , sT)

with its probability p(τ) = p(s0)
∏T−1

t=0

∑
at
p(st+1|st, at)π(at|st). According to Proposition 2, the

length of the trajectory (episode) is finite and generally larger than the cardinality of Pareto front due
to the presence of futile IPs. The goal of MDP is to learn an optimal policy defined as below.

Definition 3. The optimal policy π∗ for an ODA is the one finalizing, 1) NT with all points in the
Pareto front, and 2) the frequency of at = 0 in τ always equal to the cardinality of the Pareto front.

In other words, it would be ideal that with the learned reduction rule, every subroutine of the solver
can produce one (effective) nondominated point, and all local upper bounds with their IPs resulting
in infeasible or repetitive points are discarded with π∗(at = 1|st) = 1.

4.3 Graph learning

For graph encoding of states {st}T−1
t=0 in the above MDP, it is crucial to represent multiple objective

nodes for each respective MOIP as in Eq. (1) and identify varying scalarized problems (IPs) as
in Eq. (2) along the solving process. To this end, we define a graph G = (C,V,O, Ecv, Eov) with
constraint nodes C = {c1, · · · , cm, cm+1, · · · , cm+p} featurized by a matrix C ∈ R(m+p)×dc ,
variable nodes V = {v1, · · · , vn} featurized by V ∈ Rn×dv , objective nodes O = {o1, · · · , op}
featurized by O ∈ Rp×do , edges Ecv = {eij |ci ∈ C, vj ∈ V} between constraint and variable nodes
featurized by Ecv ∈ R(m+p)×n×dcv , edges Eov = {ekj |ok ∈ O, vj ∈ V} between objective and
variable nodes featurized by Eov ∈ Rp×n×dov . To derive accurate global representations of states,
we further attach three hypernodes H = {h1, h2, h3} to aggregate node representations from three
partial graphs, that is, G1 = (C,V), G2 = (O,V) and G3 = (C,O). We illustrate the above graph in
Figure 2 (the left one). The proposed graph encoding is generic for MOIPs, in which we can capture
different scalarized problems by featurization (e.g. updating u for each IP). In this paper, we realize
the featurization with respect to the Lexicographic scalarizations for the ODA [29], and the details
are provided in Appendix A.4.

Two-stage GNN. Given the graph encoding, we propose a two-stage GNN (illustrated in the right
half of Figure 2) to parameterize the reduction rule as πθ(at|st). It pertains to the class of message-
passing neural networks [43] with graph attention structure [44] and is enhanced by hypernode
embedding which aggregates high-level graph information. In the first stage, the total four passes are
executed along the two groups of undirected edges in the order V → C → V → O → V , where the
representations of target nodes for each pass are advanced as follows (taking V → C as an example),

αij =
SUM (LR (vjWv + eijWcv + ciWc) ·Wa)∑

vj∈V SUM (LR (vjWv + eijWcv + ciWc) ·Wa)
,

ci = MLP1((1 + ε) · ci + MLP2(
∑

vj∈V
αij · vj)), ∀i, ci ∈ C

(3)

where ci, vj denote the i-th and j-th row of matrice C and V (i.e. features of ci and vj),
and are separately projected into dr-dimensional embeddings before feeding them into Eq. (3);
Wv,Wcv,Wc,Wa ∈ Rdr×dr are trainable parameters to compute the attention weight αij ; LR and

5

𝒄𝟐

𝒄𝟑

𝒄𝟏

𝒗𝟐 𝒗𝟑 𝒗𝟒

Variable set with features V

C
o
n

stra
in

t set

w
ith

 fea
tu

res C

𝒐𝟐

𝒐𝟑

𝒐𝟏

O
b

je
ct

iv
e

se
t

w
it

h
 f

ea
tu

re
s

O

𝒗𝟏

𝒐𝟑: 𝑐31𝑥1 + 𝑐32𝑥2 + 𝑐33𝑥3 + 𝑐34𝑥4

𝒄𝟏: 𝑎11𝑥1 + 𝑎12𝑥2 + 𝑎13𝑥3 + 𝑎14𝑥4 ≤ 𝑏1

min.

𝒄𝟐: 𝑐11𝑥1 + 𝑐12𝑥2 + 𝑐13𝑥3 + 𝑐14𝑥4 ≤ 𝑢1
𝒄𝟑: 𝑐21𝑥1 + 𝑐22𝑥2 + 𝑐23𝑥3 + 𝑐24𝑥4 ≤ 𝑢2

𝒐𝟐: 𝑐21𝑥1 + 𝑐22𝑥2 + 𝑐23𝑥3 + 𝑐24𝑥4

𝒐𝟏: 𝑐11𝑥1 + 𝑐12𝑥2 + 𝑐13𝑥3 + 𝑐14𝑥4

𝒄𝟒: 𝑐31𝑥1 + 𝑐32𝑥2 + 𝑐33𝑥3 + 𝑐34𝑥4 ≤ 𝑢3
𝒄𝟒

𝒉𝟐 𝒉𝟏

𝒉𝟑

𝒄𝟐

𝒄𝟑

𝒄𝟏

𝒗𝟐 𝒗𝟑 𝒗𝟒

𝒐𝟐

𝒐𝟑

𝒐𝟏

𝒗𝟏

𝒄𝟒

𝒉𝟐 𝒉𝟏

𝒉𝟑

Edges with features 𝐄𝒐𝒗Edges with features 𝐄𝒄𝒗 Objectives constrained by 𝒖 Aggregation by attetnionMessage passing

Hypernode

𝒉𝒈

Aggregation by MLP

A scalarized problem formulated by Eq.(2)

Variable set with features V

O
b

je
ct

iv
e

se
t

w
it

h
 f

ea
tu

re
s

O C
o
n

stra
in

t set

w
ith

 fea
tu

res C

Figure 2: An illustration of graph learning for MOIP instances with three objectives and one
constraint. The left subfigure shows the graph encoding for scalarized problems (IPs) in Eq. (2),
where three constraints are varying since objectives are constrained by different local upper bound
u along the solving process. The right subfigure shows the message flow with circled numbers,
where ① and ② correspond to four message passes in the first stage among objectives, variables and
constraints; ③ ∼ ⑥ correspond to the two-step aggregation in the second stage.

SUM mean Leaky ReLU activation and the addition of elements, respectively; MLP1 and MLP2 are
two multilayer perceptrons, and each has two linear layers and one ReLU activation; ε could be a
trainable parameter [40] and we set it to 0 in this paper. Following the above structure and logic, the
representation of all nodes are updated after all passes are executed.

Since we aim to learn prediction for IPs that are encoded on graphs, an accurate representation of the
entire graph is the foremost concern. Hence, in the second stage, we propose to aggregate the graph
representation in a two-step manner as expressed in Eq. (4). Specifically, we first aggregate partial
graphs (G1, G2, G3) on hypernodes (h1, h2, h3) with attentions and then aggregate those hypernodes
to attain the graph representation,

h1,h2,h3 = Softmax(MLP3(H1))H1,Softmax(MLP4(H2))H2,Softmax(MLP5(H3))H3,

hg = MLP6([h1;h2;h3]), given H1 = [C;V],H2 = [O;V],H3 = [C;O],
(4)

where [;] means the concatenation operation; h1,h2 and h3 are representations of the three hyper-
nodes; hg denotes the score of the entire graph, meaning the extent that the current IP pertains to
infeasibility or repetition; MLP3 ∼ MLP6 refer to trainable scalar functions. We concretize MLP3 ∼
MLP5 with two linear layers activated by ReLU function to compute attention weights, and concretize
MLP6 with two linear layers regularized by dropout in between. At last, we convert hg with Sigmoid
function into a value in [0, 1], which represents the probability of the current IP in the state being
infeasible or repetitive. We keep the hidden dimension dr = 128 throughout the GNN.

4.4 Training algorithm

We train the policy network by behavioral cloning [45], a specific imitation learning algorithm, which
has been widely used in policy optimization to solve single-objective IPs [19, 21, 24, 37]. We sample
the state-action data in ODAs by using the optimal policy in Definition 3 as the oracle, and then train
the policy network in a supervised fashion.

The collection of states and the optimal actions is summarized by the pseudocode in Appendix A.5.
We run an ODA and label states causing infeasible or repetitive IPs by at = 1, meaning the optimal
policy is supposed to discard the corresponding local upper bounds ut without further solver calls. It
is clear that the policy identified by the gathered state-action pairs is optimal for an MOIP instance
according to Definition 3, since all nondominated points can be generated based on Proposition 2 and
all infeasible or repetitive points are exactly avoided given at = 1. However, it would consume long
time to collect all state-action pairs for an instance if it is complex or large-scale. In our training, we
set a time limit L to collect our data, since we emphasize on the bounded-time performance, which is
also important in practical applications. With the collected dataset D = {(si, ai)}Ii=1, we train the
policy network by minimizing the binary cross-entropy loss defined as below,

L(θ) = −ED ai · log πθ(ai|si) + (1− ai) · log(1− πθ(ai|si)). (5)

6

5 Experimental results

In the experiments, we deploy the proposed graph learning method on a state-of-the-art ODA [29],
and evaluate it on two benchmark problems with varying numbers of objectives. We compare the
learned algorithm with various baselines in literature, where multiple metrics are adopted. In addition,
we assess the generalization of the learned reduction rules to MOIP instances which possess more
objectives or larger sizes than the ones in training. Finally, we conduct the ablation study to verify
the efficacy of the proposed two-stage GNN and the learned reduction rule.

5.1 Settings

We conduct experiments on two widely used benchmarks in the domain of MOIP, i.e., multi-objective
knapsack problem (MOKP) and assignment problem (MOAP) [31], respectively.4 Following the
instance generation in [29], we uniformly sample the value and weight from [1, 100] for each item
in MOKP, and compute the capacity of the knapsack as half of the total weight. For MOAP, we
randomly generate objective function coefficients (i.e. costs for each assignment) from [1, 15].

Instances & datasets. For MOKP, we set the number of items to 100 and generate 110 instances
with 3 and 4 objectives, respectively, with 100 instances for training and 10 for testing. We collect the
training set by solving the 100 instances with the ODA [29] and Gurobi solver (v9.5.1) [46], as stated
in Section 4.4. While we solve 3-objective instances optimally (i.e. attain all Pareto-optimal points),
we set L = 1000s for 4-objective instances to collect the data so that we focus on training models
for improving the bounded-time performance. We leave 1% data in the training set for validation.
In the same way, the testing sets are collected by solving the 10 instances with 3 and 4 objectives,
respectively. For MOAP, we set 50 agents and 50 tasks, respectively. We generate instances and
collect the data in a similar way to MOKP except that we set L = 1000s for all instances. In summary,
we train, validate and test the algorithms on MOKP and MOAP instances with 3 and 4 objectives,
respectively. We name these instance groups as MOKP(3-100), MOKP(4-100), MOAP(3-50) and
MOAP(4-50), with the first value in parentheses being the number of objectives and the second
identifying the problem size. We also generate 10 instances for MOKP(4-150), MOKP(5-100),
MOAP(4-75) and MOAP(5-50), respectively, to evaluate the generalization performance. Note that
we set the number of objectives to the range 3∼5 as they are often used in ODAs [8, 30]. However,
we also present more results with other numbers of objectives in Appendix A.6.

Training & testing. For training, we set the batch size to 64 and initial learning rate to 0.001. The
learning rate decays by 0.2 once the validation loss is not decreased in 8 successive epochs. We
employ early stopping to end the training when there is no improvement of validation performance
in 16 successive epochs. We always retrieve the GNN model with the lowest validation loss along
epochs. We employ Adam optimizer [47] to minimize the loss and execute the training with one
GeForce RTX 2080 Ti GPU. For testing, we plug the learned GNN model in the state-of-the-art
ODA [29], and use the GNN assisted algorithm to solve testing instances in different groups. In
specific, we discard a local upper bound to save the solving of the corresponding IP if the output
value from our GNN is larger than 0.5, so that the algorithm enters the next iteration by selecting
another local upper bound, otherwise the algorithm will explore the IP by calling a solver (Gurobi
in this paper) and update the search region as in the ODA. Except for GNN with GPU, the other
algorithmic procedure is executed with one i9-10940X CPU@3.30GHz during testing.

5.2 Comparison study

We consider representative baselines of various paradigms for comparison, 1) three classic objective-
space decomposition algorithms proposed by Kirlik and Sayın [31], Boland et al. [33], and Tamby
and Vanderpooten [29] (the state-of-the-art, which is also used to deploy the proposed graph learning
method), and we refer to them as ODA-K, ODA-B and ODA-T (it relies on Proposition 3 for
infeasibility and solver for repetition), respectively; 2) the commonly used evolutionary algorithms
including MOEAD, NSGAII, NSGAIII and UNSGAIII [48, 49, 50, 51]. We adapt and tune them for
either of MOKP and MOAP [52, 53]; 3) the latest reinforcement learning model, i.e., PMOCO [10],
which is specialized for MOCO problems with sequential structures. We adapt PMOCO to solve
MOKP, which is trained on the same instances to ours, and other settings follow its original paper.

4http://home.ku.edu.tr/ moolibrary/

7

Table 1: Comparison with various baselines on MOKP and MOAP instances with 3 and 4 objectives.
MOKP(3-100) MOKP(4-100) MOAP(3-50) MOAP(4-50)

Methods Time(s) Card. HV IGD Time(s) Card. HV IGD Time(s) Card. HV IGD Time(s) Card. HV IGD

ODA-T 993.3 4169.8 0.55 0.000 1000.0 3691.4 0.75 0.012 1000.0 2532.9 0.81 0.009 1000.0 2663.7 0.52 0.017
ODA-B 1401.2 4169.8 0.55 0.000 1000.0 3188.4 0.76 0.007 1000.0 1736.5 0.86 0.005 1000.0 1576.5 0.66 0.018
ODA-K 928.4 4169.8 0.55 0.000 1000.0 3091.8 0.61 0.055 1000.0 2952.2 0.58 0.022 1000.0 2443.0 0.24 0.049

MOEAD 2000.0 1234.2 0.52 0.026 2000.0 1224.3 0.73 0.060 2000.0 984.1 0.76 0.008 2000.0 2282.7 0.51 0.017
NSGAII 2000.0 578.3 0.41 0.007 2000.0 998.8 0.68 0.021 2000.0 150.6 0.52 0.020 2000.0 893.6 0.29 0.029
NSGAIII 2000.0 390.0 0.53 0.005 2000.0 188.2 0.69 0.022 2000.0 482.3 0.69 0.017 2000.0 294.2 0.50 0.029
UNSGAIII 2000.0 545.7 0.41 0.007 2000.0 262.7 0.68 0.026 2000.0 401.9 0.69 0.018 2000.0 333.5 0.48 0.031

PMOCO 1000.0 228.4 0.53 0.008 1000.0 632.0 0.75 0.014 - - - - - - - -
Ours 486.9 3379.7 0.55 0.000 1000.0 4000.7 0.76 0.006 1000.0 3564.4 0.87 0.004 1000.0 3771.3 0.67 0.011

Table 2: Generalization to larger sizes and 5 objectives.
MOKP(4-150) MOKP(5-100) MOAP(4-75) MOAP(5-50)

Methods Time(s) Card. HV IGD Time(s) Card. HV IGD Time(s) Card. HV IGD Time(s) Card. HV IGD

ODA-T 1000.0 3649.7 0.80 0.017 1000.0 2884.0 0.66 0.017 1000.0 1719.7 0.77 0.017 1000.0 2511.8 0.81 0.007
ODA-B 1000.0 2306.9 0.80 0.027 1000.0 2506.5 0.63 0.020 1000.0 899.1 0.73 0.037 1000.0 1312.9 0.75 0.028
ODA-K 1000.0 2588.0 0.53 0.109 1000.0 2654.2 0.45 0.110 1000.0 1640.3 0.24 0.064 1000.0 2236.9 0.36 0.047

MOEAD 2000.0 3834.1 0.75 0.089 2000.0 4200.9 0.60 0.084 2000.0 2383.6 0.45 0.037 2000.0 3221.5 0.59 0.026
NSGAII 2000.0 998.8 0.70 0.057 2000.0 1000.0 0.59 0.041 2000.0 930.7 0.24 0.062 2000.0 1105.7 0.34 0.043
NSGAIII 2000.0 185.6 0.72 0.058 2000.0 139.8 0.55 0.053 2000.0 209.9 0.46 0.062 2000.0 239.3 0.46 0.035
UNSGAIII 2000.0 264.5 0.71 0.069 2000.0 157.8 0.56 0.060 2000.0 233.2 0.40 0.056 2000.0 225.6 0.49 0.035

PMOCO 1000.0 732.0 0.81 0.023 1000.0 1475.5 0.66 0.020 - - - - - - - -
Ours 1000.0 4032.6 0.82 0.013 1000.0 3634.4 0.66 0.015 1000.0 2137.4 0.79 0.017 1000.0 3089.2 0.82 0.006

We apply all methods on testing instances of MOKP(3-100), MOKP(4-100), MOAP(3-50) and
MOKP(4-50), respectively. For MOKP(3-100), our method and three ODAs go through all local
upper bounds since the instances are easy to be solved in relatively short time. For other instances, we
set the time limit to 1000s for our method and ODAs. We set the same runtime for PMOCO across all
instance groups and allow longer runtime (2000s) for evolutionary algorithms. To comprehensively
assess the bounded-time performance, we adopt the following metrics, 1) Card.: cardinality of the
returned set of nondominated points (for ODAs and ours) or feasible points (for others) [30];5 2)
HV: hypervolume that reflects the convergence and spread of the approximated Pareto front [54]; 3)
IGD: inverted generational distance that gauges the similarity between a set of images and the Pareto
front [55]. We present details of the calculation for HV and IGD in Appendix A.7. For each metric,
we record the average value across testing instances in each group and gather the results in Table 1.

For MOKP(3-100), we observe that the three classic ODAs attain all nondominated points and
outperform other baselines in terms of the three metrics. However, our method is relatively fast to
derive most nondominated points with less than half runtime. The nondominated points are very
close to the Pareto front with almost the same HV and IGD as those in ODAs. In all approximate
solutions, our method significantly surpasses evolutionary algorithms and PMOCO on all metrics. The
advantage may stem from the facts that, 1) our method based on ODA-T adopts the highly-optimized
IP solver (Gurobi) to fast compute nondominated points in scalarized problems, while solutions
found in other heuristics have no guarantee to be nondominated; 2) the learned reduction rule further
accelerates the search to find more nondominated points efficiently. We visualize the approximation
(to Pareto front) by our method and heuristic baselines in Appendix A.8. Such advantage is also
revealed on other instance groups, where our method consistently delivers higher HV and lower
IGD than heuristic baselines. While ODA-T and ODA-B perform better than or comparable to the
heuristics (in terms of HV and IGD) on MOKP(4-100), MOAP(3-50) and MOAP(4-50), our method
generally outperforms the three ODAs on all metrics. On the other hand, although ODA-T has gained
more nondominated points than ODA-B, ODA-K, our method with the learned reduction rule finds
further more nondominated points than ODA-T in the same runtime, as shown in Card. columns. It

5While ODAs (thus also ours) ensure the optimal solutions to IPs are in the Pareto front according to
Proposition 2, the other baselines belong to heuristic algorithms without any guarantee of solution quality.

8

Table 3: Ablation study on GNNs.
MOKP MOAP MOKP MOAP

Models 3-100 4-100 3-50 4-50 4-150 5-100 4-75 5-50

GCN 68.4 67.6 72.7 91.2 70.4 58.8 94.5 90.6
GraphSage 63.0 70.8 69.6 91.2 59.5 59.9 94.8 90.7

GIN 79.7 82.0 79.6 91.2 59.5 58.8 93.4 90.6

2-stage GIN 80.7 82.5 80.8 91.3 59.5 58.8 95.2 90.6
Ours 82.8 80.9 82.8 91.3 68.6 73.9 95.0 90.7 Figure 3: Ablation study on reduction rules.

indicates that our method is more effective in curtailing the solving of futile IPs, which could save
runtime to explore more fruitful IPs. Meanwhile, the nondominated points found by our method show
desirable convergence and spread, which are identified by higher HV and lower IGD values.

5.3 Generalization study

The generalization to instances larger than the ones in training is critical, as it may determine whether
the learned algorithm could be used to solve a wider range of instances. Meanwhile, the generalization
to more objectives is also valuable for MOIPs, where a decision maker may freely consider additional
objectives through the learned algorithm. To this end, we apply the learned ODAs trained on MOKP(4-
100) and MOAP(4-50) to solve instances with larger scales and more (i.e. 5) objectives, respectively.
We also adapt evolutionary algorithms and PMOCO to solve these instances. Specially, we directly
train PMOCO on 5-objective instances following [10], since it cannot generalize across objectives.
All results are displayed in Table 2. It is manifested that our method attains the best values on all
metrics for different problems. While MOEAD achieves significantly more feasible points and higher
HV than other evolutionary algorithms and ODA-K, it performs inferior to PMOCO, ODA-T and
ODA-B. Pertaining to ODAs, we observe that ODA-T generally outperforms ODA-B and ODA-K
on all metrics and is comparable to PMOCO. However, our method with the learned reduction rule
further improves ODA-T by circumventing futile IP solving, which also outstrips PMOCO. With the
highest HV and lowest IGD, our method yields a better approximation to the Pareto front, implying
that the learned reduction rule can generalize well to harder instances.

5.4 Ablation study

To evaluate the efficacy of our two-stage GNN, we compare it with the classic bipartite GCN [21],
the latest bipartite GIN and GraphSage [39], all of which were used to solve IPs in their original
papers. We arrange results in Table 3 where test and generalization accuracy are placed in the left
and right half, respectively. We observe that our model generally transcends other GNNs for testing,
except for MOKP(4-100) with a comparable accuracy to GIN. Meanwhile, our model delivers the
highest generalization accuracy on most instance groups, except for MOKP(4-150), where it performs
slightly inferior to GCN. We also verify the efficacy of our aggregation scheme (in the second stage)
by equipping it to GIN given the better test performance than other baselines, which results in the
two-stage GIN. As shown, the two-stage GIN improved the accuracy over GIN on 5/8 instance
groups, implying our scheme is effective to gain a better graph representation. However, our GNN
still achieves superior overall performance to this enhanced GIN, suggesting that our attention in the
first stage attains better node embeddings that benefit the subsequent graph representation learning.

Furthermore, we compare our method with ODA-T regarding the usage rate of the IP solver (Gurobi),
to show the efficacy of the learned reduction rules. A vanilla version of ODA-T is also tested where
we purely use solver to detect infeasibility and repetition (note: different from its vanilla version,
ODA-T relies on Proposition 3 for infeasibility and solver for repetition). We plot the average
numbers of nondominated points, solver calls and ratio in Figure 3. As shown, our method attains
the most nondominated points on 3/4 instance groups except for MOKP(3-100) which is easy for
ODA-T to solve optimally. While the ratio of ODA-T is higher than its vanilla version, the learned
reduction rule further enhances ODA-T with (at least) 13% higher ratio on different groups. It means
the reduction rule assisted by our GNN is more effective than the one in ODA-T.

9

6 Conclusions and future work

This paper presents a graph neural network (GNN) based method to learn the reduction rule in an
ODA, with the aim of improving its bounded-time performance in solving MOIPs. We train a novel
two-stage GNN with imitation learning to discard local upper bounds that induce infeasibility and
repetition of nondominated points. We implement our method with a state-of-the-art ODA and
empirically show that it can significantly enhance the ODA and generalize to larger problems or more
objectives. We also verify the superiority of the proposed GNN to existing ones for integer programs,
in terms of better test and generalization accuracy. The limitation of our method may appear when
the IP solver cannot fast solve intractable scalarized problems. A solution could be compromising the
optimality in Proposition 1 and replace IP solver with heuristics, so that they could still be guided by
the schemes in ODAs and the learned reduction rule. We leave this interesting direction as future
work. Also, we plan to deploy our method to more ODAs.

Acknowledgments and Disclosure of Funding

This work was supported in part by the A*STAR Cyber-Physical Production System (CPPS) -
Towards Contextual and Intelligent Response Research Program, under the RIE2020 IAF-PP grant
A19C1a0018, and Model Factory@SIMTech; in part by the A*STAR HTPO seed grant C211118016,
and the A*STAR Career Development Fund under grant C222812027; in part by the National Natural
Science Foundation of China under grant 62102228, and the Shandong Provincial Natural Science
Foundation under grant ZR2021QF063.

References
[1] Kalyanmoy Deb. Multi-objective optimization. In Search methodologies, pages 403–449.

Springer, 2014.

[2] Yunfei Cui, Zhiqiang Geng, Qunxiong Zhu, and Yongming Han. Multi-objective optimization
methods and application in energy saving. Energy, 125:681–704, 2017.

[3] R Timothy Marler and Jasbir S Arora. Survey of multi-objective optimization methods for
engineering. Structural and multidisciplinary optimization, 26(6):369–395, 2004.

[4] Naveen Saini and Sriparna Saha. Multi-objective optimization techniques: A survey of the
state-of-the-art and applications. The European Physical Journal Special Topics, 230(10):
2319–2335, 2021.

[5] Jing Liang, Xuanxuan Ban, Kunjie Yu, Boyang Qu, Kangjia Qiao, Caitong Yue, Ke Chen,
and Kay Chen Tan. A survey on evolutionary constrained multi-objective optimization. IEEE
Transactions on Evolutionary Computation, 2022.

[6] Matthias Ehrgott. Multicriteria optimization, volume 491. Springer Science & Business Media,
2005.

[7] José Rui Figueira, Carlos M Fonseca, Pascal Halffmann, Kathrin Klamroth, Luís Paquete, Stefan
Ruzika, Britta Schulze, Michael Stiglmayr, and David Willems. Easy to say they are hard, but
hard to see they are easy—towards a categorization of tractable multiobjective combinatorial
optimization problems. Journal of Multi-Criteria Decision Analysis, 24(1-2):82–98, 2017.

[8] Pascal Halffmann, Luca E Schäfer, Kerstin Dächert, Kathrin Klamroth, and Stefan Ruzika.
Exact algorithms for multiobjective linear optimization problems with integer variables: A state
of the art survey. Journal of Multi-Criteria Decision Analysis, 2022.

[9] Arne Herzel, Stefan Ruzika, and Clemens Thielen. Approximation methods for multiobjective
optimization problems: A survey. INFORMS Journal on Computing, 33(4):1284–1299, 2021.

[10] Xi Lin, Zhiyuan Yang, and Qingfu Zhang. Pareto set learning for neural multi-objective
combinatorial optimization. In Proceedings of the 10th International Conference on Learning
Representations (ICLR), 2022.

10

[11] Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In
Proceedings of the 7th International Conference on Learning Representations (ICLR), 2019.

[12] Xinyun Chen and Yuandong Tian. Learning to perform local rewriting for combinatorial
optimization. In Proceedings of the 33rd Conference on Neural Information Processing Systems
(NeurIPS), pages 6278–6289, 2019.

[13] Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seung-
jai Min. Pomo: Policy optimization with multiple optima for reinforcement learning. In
Proceedings of the 34th Conference on Neural Information Processing Systems (NeurIPS),
2020.

[14] Cong Zhang, Wen Song, Zhiguang Cao, Jie Zhang, Puay Siew Tan, and Xu Chi. Learning to
dispatch for job shop scheduling via deep reinforcement learning. In Proceedings of the 34th
Conference on Neural Information Processing Systems (NeurIPS), volume 33, 2020.

[15] Fei Ni, Jianye Hao, Jiawen Lu, Xialiang Tong, Mingxuan Yuan, Jiahui Duan, Yi Ma, and
Kun He. A multi-graph attributed reinforcement learning based optimization algorithm for
large-scale hybrid flow shop scheduling problem. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining, pages 3441–3451, 2021.

[16] Yuan Jiang, Zhiguang Cao, and Jie Zhang. Solving 3d bin packing problem via multimodal deep
reinforcement learning. In Proceedings of the 20th International Conference on Autonomous
Agents and MultiAgent Systems (AAMAS), pages 1548–1550, 2021.

[17] Yaoxin Wu, Wen Song, Zhiguang Cao, Jie Zhang, and Andrew Lim. Learning improvement
heuristics for solving routing problems. IEEE Transactions on Neural Networks and Learning
Systems, 33(9):5057–5069, 2022.

[18] Yining Ma, Jingwen Li, Zhiguang Cao, Wen Song, Le Zhang, Zhenghua Chen, and Jing Tang.
Learning to iteratively solve routing problems with dual-aspect collaborative transformer. In
Advances in Neural Information Processing Systems, volume 34, pages 11096–11107, 2021.

[19] He He, Hal Daume III, and Jason M Eisner. Learning to search in branch and bound algorithms.
In Proceedings of the 27th Conference on Neural Information Processing Systems (NeurIPS),
pages 3293–3301, 2014.

[20] Elias B Khalil, Bistra Dilkina, George L Nemhauser, Shabbir Ahmed, and Yufen Shao. Learning
to run heuristics in tree search. In Proceedings of the 26th International Joint Conference on
Artificial Intelligence (IJCAI), pages 659–666, 2017.

[21] Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact
combinatorial optimization with graph convolutional neural networks. In Proceedings of the
33rd Conference on Neural Information Processing Systems (NeurIPS), 2019.

[22] Yunhao Tang, Shipra Agrawal, and Yuri Faenza. Reinforcement learning for integer program-
ming: Learning to cut. In Proceedings of the 37th International Conference on Machine
Learning (ICML), pages 9367–9376, 2020.

[23] Jialin Song, Ravi Lanka, Yisong Yue, and Bistra Dilkina. A general large neighborhood search
framework for solving integer linear programs. In Proceedings of the 34th Conference on
Neural Information Processing Systems (NeurIPS), 2020.

[24] Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid von Glehn, Pawel Lichocki, Ivan Lobov,
Brendan O’Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, et al.
Solving mixed integer programs using neural networks. arXiv preprint arXiv:2012.13349, 2020.

[25] Yiyang Zhao, Linnan Wang, Kevin Yang, Tianjun Zhang, Tian Guo, and Yuandong Tian. Multi-
objective optimization by learning space partitions. In Proceedings of the 10th International
Conference on Learning Representations (ICLR), 2022.

[26] Yinan Shao, Jerry Chun-Wei Lin, Gautam Srivastava, Dongdong Guo, Hongchun Zhang,
Hu Yi, and Alireza Jolfaei. Multi-objective neural evolutionary algorithm for combinatorial
optimization problems. IEEE Transactions on Neural Networks and Learning Systems, 2021.

11

[27] Kaiwen Li, Tao Zhang, and Rui Wang. Deep reinforcement learning for multiobjective opti-
mization. IEEE transactions on cybernetics, 51(6):3103–3114, 2020.

[28] Kathrin Klamroth, Renaud Lacour, and Daniel Vanderpooten. On the representation of the
search region in multi-objective optimization. European Journal of Operational Research, 245
(3):767–778, 2015.

[29] Satya Tamby and Daniel Vanderpooten. Enumeration of the nondominated set of multiobjective
discrete optimization problems. INFORMS Journal on Computing, 33(1):72–85, 2021.

[30] Özlem Karsu and Firdevs Ulus. Split algorithms for multiobjective integer programming
problems. Computers & Operations Research, 140:105673, 2022.

[31] Gokhan Kirlik and Serpil Sayın. A new algorithm for generating all nondominated solutions of
multiobjective discrete optimization problems. European Journal of Operational Research, 232
(3):479–488, 2014.

[32] Kerstin Dächert, Kathrin Klamroth, Renaud Lacour, and Daniel Vanderpooten. Efficient compu-
tation of the search region in multi-objective optimization. European Journal of Operational
Research, 260(3):841–855, 2017.

[33] Natashia Boland, Hadi Charkhgard, and Martin Savelsbergh. A new method for optimizing a
linear function over the efficient set of a multiobjective integer program. European journal of
operational research, 260(3):904–919, 2017.

[34] Miguel Ángel Domínguez-Ríos, Francisco Chicano, and Enrique Alba. Effective anytime
algorithm for multiobjective combinatorial optimization problems. Information Sciences, 565:
210–228, 2021.

[35] Tim Holzmann and J Cole Smith. Solving discrete multi-objective optimization problems using
modified augmented weighted tchebychev scalarizations. European Journal of Operational
Research, 271(2):436–449, 2018.

[36] Jianya Ding, Chao Zhang, Lei Shen, Shengyin Li, Bing Wang, Yinghui Xu, and Le Song.
Accelerating primal solution findings for mixed integer programs based on solution prediction.
In Proceedings of the 34th AAAI Conference on Artificial Intelligence, 2020.

[37] Prateek Gupta, Maxime Gasse, Elias Khalil, Pawan Mudigonda, Andrea Lodi, and Yoshua
Bengio. Hybrid models for learning to branch. Proceedings of the 34th International Conference
on Neural Information Processing Systems (NeurIPS), 33:18087–18097, 2020.

[38] Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Learning large neighborhood search
policy for integer programming. In Proceedings of the 35th Conference on Neural Information
Processing Systems (NeurIPS), volume 34, pages 6278–6289, 2021.

[39] Elias B Khalil, Christopher Morris, and Andrea Lodi. Mip-gnn: A data-driven framework
for guiding combinatorial solvers. In Proceedings of the 36th AAAI Conference on Artificial
Intelligence, 2022.

[40] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In Proceedings of the 7th International Conference on Learning Representations
(ICLR), 2019.

[41] William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Proceedings of the 31st International Conference on Neural Information Processing
Systems (NeurIPS), pages 1025–1035, 2017.

[42] Matthias Ehrgott. A discussion of scalarization techniques for multiple objective integer
programming. Annals of Operations Research, 147(1):343–360, 2006.

[43] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In Proceedings of the 34th International Conference
on Machine Learning (ICML), pages 1263–1272, 2017.

12

[44] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph Attention Networks. In Proceedings of the 6th International Conference on
Learning Representations (ICLR), 2018.

[45] Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina Jayne. Imitation learning:
A survey of learning methods. ACM Computing Surveys (CSUR), 50(2):1–35, 2017.

[46] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2022. URL https://www.
gurobi.com.

[47] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings
of the 3rd International Conference on Learning Representations (ICLR), 2015.

[48] Qingfu Zhang and Hui Li. Moea/d: A multiobjective evolutionary algorithm based on decom-
position. IEEE Transactions on evolutionary computation, 11(6):712–731, 2007.

[49] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast and elitist
multiobjective genetic algorithm: Nsga-ii. IEEE transactions on evolutionary computation, 6
(2):182–197, 2002.

[50] Kalyanmoy Deb and Himanshu Jain. An evolutionary many-objective optimization algorithm
using reference-point-based nondominated sorting approach, part i: solving problems with box
constraints. IEEE transactions on evolutionary computation, 18(4):577–601, 2013.

[51] Haitham Seada and Kalyanmoy Deb. A unified evolutionary optimization procedure for single,
multiple, and many objectives. IEEE Transactions on Evolutionary Computation, 20(3):358–
369, 2015.

[52] Robert F Subtil, Eduardo G Carrano, Marcone JF Souza, and Ricardo HC Takahashi. Using
an enhanced integer nsga-ii for solving the multiobjective generalized assignment problem. In
IEEE congress on evolutionary computation, pages 1–7, 2010.

[53] Thibaut Lust and Jacques Teghem. The multiobjective multidimensional knapsack problem:
a survey and a new approach. International Transactions in Operational Research, 19(4):
495–520, 2012.

[54] Eckart Zitzler, Dimo Brockhoff, and Lothar Thiele. The hypervolume indicator revisited: On
the design of pareto-compliant indicators via weighted integration. In International Conference
on Evolutionary Multi-Criterion Optimization, pages 862–876. Springer, 2007.

[55] Peter AN Bosman and Dirk Thierens. The balance between proximity and diversity in multiob-
jective evolutionary algorithms. IEEE transactions on evolutionary computation, 7(2):174–188,
2003.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 6.
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [N/A]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section 3.
(b) Did you include complete proofs of all theoretical results? [Yes] See Section 3 and 4.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] See Section 5.

13

https://www.gurobi.com
https://www.gurobi.com

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 5.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Section 5.1.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 5.
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

	Introduction
	Related work
	Objective-space decomposition for MOIP
	Graph learning for integer programs

	Preliminaries
	Multi-objective integer programs
	Objective-space decomposition algorithms

	Methodology
	Problem statement: infeasibility and repetition reduction
	Markov decision process
	Graph learning
	Training algorithm

	Experimental results
	Settings
	Comparison study
	Generalization study
	Ablation study

	Conclusions and future work

