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Abstract

Deep learning methods have boosted the adoption of NLP systems in real-life
applications. However, they turn out to be vulnerable to distribution shifts over
time which may cause severe dysfunctions in production systems, urging practi-
tioners to develop tools to detect out-of-distribution (OOD) samples through the
lens of the neural network. In this paper, we introduce TRUSTED, a new OOD
detector for classifiers based on Transformer architectures that meets operational
requirements: it is unsupervised and fast to compute. The efficiency of TRUSTED
relies on the fruitful idea that all hidden layers carry relevant information to detect
OOD examples. Based on this, for a given input, TRUSTED consists in (i) aggre-
gating this information and (ii) computing a similarity score by exploiting the
training distribution, leveraging the powerful concept of data depth. Our extensive
numerical experiments involve 51k model configurations, including various check-
points, seeds, and datasets, and demonstrate that TRUSTED achieves state-of-the-art
performances. In particular, it improves previous AUROC over 3 points.

1 Introduction

The number of AI systems put into production has steadily increased over the last few years. This
is because advanced techniques of Machine Learning (ML) and Deep Learning (DL) have brought
significant improvements over previous state-of-the-art (SOTA) methods in many areas such as
finance [17, 57], transportation [59], and medicine [14, 77]. However, the increasing use of black-box
models has raised concerns about their societal impact: privacy [33, 64, 74, 29], security [6, 3, 20],
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safety [41, 50, 18], fairness [5, 72], and explainability [13, 63] which became areas of active research
in the ML community.

This paper is about a critical safety issue, namely Out-Of-Distribution (OOD) detection [11], which
refers to a change of distribution of incoming data that may cause failures of in-production AI
systems. When data are tabular and of small dimension, simple statistical methods can be efficient,
and one may, for instance, monitor the mean and variance of each marginal over time. However,
these traditional methods do not work anymore when data are high-dimensional and/or unstructured.
Thus, the need to design new techniques that incorporate incoming data and the neural networks
themselves.

Distinguishing OOD examples from in-distribution (ID) examples is challenging for modern deep
neural architectures. DL models transform incoming data into latent representations from which
reliable information extraction is cumbersome. Because of that, designing new tools of investigation
for large pretrained models, judiciously named foundation models by [9], is an essential line of
research for the years to come. In computer vision, methods are more mature thanks to the availability
of appropriate deformation techniques that allow for sensitivity analysis. In contrast, the nature
of tokens in Natural Language Processing (NLP) makes it more difficult to develop such suitable
methods.

In this paper, we focus on classifiers for textual data and on the ubiquitous BERT [34], DistilBERT
[83], and RoBERTa [68] architectures. Existing methods can be grouped according to their positioning
with respect to the network. Some works exploit only the incoming data and compare them with
in-distribution examples through likelihood ratios [42, 19]. Another line of research consists in
incorporating robust constraints during training, with [48] or without [103, 60] access to some
available OOD examples. Another line of research focuses on post-processing methods that can be
used on any pretrained models. In our view, these are the most promising tools because typical users
rely on transformers without retraining. Within post-processing methods, one can distinguish softmax-
based tools that compute a confidence score based on the predicted probabilities and threshold to
decide whether a sample is OOD or not. Notice that this does not require direct access to in-
distribution data. The seminal work is due to Hendrycks [47] who uses the maximum soft-probability,
and has been pushed further in [62, 52]. In [67], authors suggest looking one step deeper into
the network, namely, to compute a confidence score based on the projections of the pre-softmax
layer. More recently, [75] achieved SOTA results on transformer-based encoder by computing the
Mahalanobis distance [71, 32] between a test sample and the in-distribution law [58], estimated
through accessible training data points.

Nevertheless, the distance-based score is computed on the last-layer embedding only, suggesting that
going deeper inside the network might improve OOD detection power. Moreover, the computation of
Mahalanobis-based scores requires inverting the covariance matrix of the training data, which can be
prohibitive in high dimensions. It is worth noticing that the Mahalanobis-based scores can be seen
as a data depth [97, 104] through a simple re-scaling [66], that is a statistical function measuring
the centrality of an observation with respect to a probability distribution. Although data depths are
quite natural in the context of OOD detection, they remain overlooked by the ML community. In the
present work, we rely on the recently introduced Integrated Rank-Weighted depth [76, 94] in order to
remedy the drawbacks of the Mahalanobis-based scores for OOD detection.

1.1 Our contribution

We first leverage the observation introduced by previous work that all hidden layers of a neural
network carry useful information to perform textual OOD detection. For a given input x, our method
consists in computing its average latent representation x and then its OOD score through the depth
score of x with respect to the averaged in-distribution law (see Fig. 1 for an illustration). Notice that
the ability to compute averaged latent representations crucially relies on the structure of transformers
layers that share the same dimension. The depth function we are using is based on the computation
of the projected ranks of the test inputs using randomly sampled directions. From a theoretical
viewpoint, this novel method requires fewer assumptions on the data structure than the Mahalanobis
score.

We conduct extensive numerical experiments on three transformers architectures and eight datasets
and benchmark our method with previous approaches. To ensure reliable results, we introduce a new

2



framework for evaluating OOD detection that considers hyperparameters that were unreported before.
It consists of computing performances for various choices of checkpoints and seeds, which allows us
to report a variance term that makes some previous methods fall within the same performance range.
Our conclusions are drawn by considering over 51k configurations, and show that our new detector
based on data depth improves SOTA methods by 3 AUROC points while having less variance. This
result supports the intuition that OOD detection is a matter of looking at the information available
across the entire network. Our contribution can be summarized as follows:

1. We introduce a novel OOD detection method for textual data. Our detector TRUSTED1 relies
on the full information contained in pretrained transformers and leverages the concept of data depth:
a given input is detected as being in-distribution or OOD sample based on its depth score with respect
to the training distribution.
2. We conduct extensive numerical experiments and prove that our method improves over SOTA
methods. Our evaluation framework is more reliable than previous studies as it includes the variance
with respect to seeds and checkpoints.
3. We release open-source code and data to ease future research, ensure reproducibility and
reduce computation overhead.

2 Problem Formulation

Training distribution and classifier. Let us denote by X the textual input space. Consider the
multiclass classification setup with target space Y = {1, . . . , C} of size C ≥ 2. We assume the
dataset under consideration is made of N ≥ 1 i.i.d. samples (x1, y1), . . . , (xN , yN ) with probability
law denoted by pXY and defined on X ×Y . Accordingly, we will denote by pX and pY the marginal
laws of pXY . Finally, we denote by fN : X → Y the classifier that has been trained using (xi, yi).

Open world setting. In real-life scenarios, the trained model fN is deployed into production and
will certainly be faced with input data whose law is not pXY . To each test point (x, y), we associate
a variable z ∈ {0, 1} such that z = 0 if (x, y) stems from pXY and z = 1 otherwise. It is worth
emphasizing that in our setting fN has never been faced with OOD examples before deployment.
This is usually referred to as the open-world setting. From a probabilistic viewpoint, the test set
distribution of the input data ptestX is a mixture of in-distribution and OOD samples:

ptestX (x) = α pX|Z(x|z = 1) + (1− α) pX|Z(x|z = 0),

where α ∈ (0, 1). In this work, we will not make any further assumptions on the proportion α of
OOD samples and on the OOD pdf pX|Z(x|z = 1), making the problem more difficult but at the
same time more well suited for practical use. Indeed, for textual data, it does not appear to be realistic
to model how a corpus can evolve.

OOD detection. The objective of OOD detection is to construct a similarity function s : X → R+

that accounts for the similarity of any element in X with respect to the training in-distribution. For a
given test input x, we then classify x as in-distribution or OOD according to the magnitude of s(x).
Therefore, one fixes a threshold γ and classifies IN (i.e. ẑ = 0) if s(x) > γ or OOD (i.e. ẑ = 1) if
s(x) ≤ γ. Formally, denoting g(·, γ) the decision function, we take:

g(x, γ) =

{
1 if s (x) ≤ γ,
0 if s (x) > γ.

(1)

Performance evaluation. The OOD problem is a (unbalanced) classification problem, and classically,
two quantities allow to measure the performance of a method. The false alarm rate is the proportion
of samples that are classified as OOD while they are IN. For a given threshold γ, it is theoretically
given by Pr

(
s(X) ≤ γ |Z = 0

)
. The true detection rate is the proportion of samples that are

predicted OOD while being OOD. For a given threshold γ, it is theoretically given by Pr
(
s(X) ≤

γ |Z = 1
)
.

There exist several ways to measure the effectiveness of an OOD method. We will focus on four
metrics. The first two are specifically designed to assess the quality of the similarity function s.

1TRUSTED stands for deTectoR USing inTegrated rank-wEighted Depth.
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Area Under the Receiver Operating Characteristic curve (AUROC) [10]. It is the area under the
ROC curve γ 7→ (Pr

(
s(X) > γ |Z = 0

)
,Pr

(
s(X) ≤ γ |Z = 1

)
), which plots the true detection

rates against the false alarm rates. The AUROC corresponds to the probability that an in-distribution
example Xin has higher score than an OOD sample Xout: AUROC = Pr(s(Xin) > s(Xout)), as can
be checked from elementary computations.

Area Under the Precision-Recall curve (AUPR-IN/AUPR-OUT) [31]. It is the area under the precision-
recall curve γ 7→ (Pr

(
Z = 1 | s(X) ≤ γ

)
,Pr

(
s(X) ≤ γ |Z = 1

)
) which plots the recall (true

detection rate) against the precision (actual proportion of OOD amongst the predicted OOD). The
AUPR is more relevant to unbalanced situations.

The third metric we will use is more operational as it computes the performance at a specific threshold
γ corresponding to a security requirement.

False Positive Rate at 95% True Positive Rate (FPR). In practice, one wishes to achieve reasonable
level of OOD detection. For a desired detection rate r, this incites to fix a threshold γr such that the
corresponding TPR equals r. At this threshold, one then computes:

Pr(s(X) ≥ γr | z = 0) with γr s.t. TPR(γr) = r. (2)

In our work, we set r = 0.95 in (2).

Error of the best classifier (Err (%)). This refers to the lowest classification error obtained by
choosing the best threshold.

3 TRUSTED: Textual OOD-Detection using Integrated Rank-Weighted Depth

In this work, we focus on OOD detection when using a contextual encoder (e.g., BERT). We denote
by {ϕ1, . . . , ϕL} the L functions corresponding to the layers of the encoder: for every 1 ≤ l ≤ L and
a given textual input x, ϕl(x) ∈ Rd is the embedding of x in the l-th layer, where d is the dimension
of the corresponding embedding space. Notice that all layers share the same dimension d.

3.1 TRUSTED in a nutshell.

Our OOD detection method is composed of three steps. For a given input x with predicted label ŷ:

1. We first aggregate the latent representations of x via an aggregation function F :
(
Rd

)L → Rd.
We choose to take the mean and compute

FPM(x) := F (ϕ1(x), . . . , ϕL(x)) =
1

L

L∑
l=1

ϕl(x) := x. (3)

We will further elaborate on this choice of aggregation function in Sec. 3.2.
2. We compute a similarity score D(FPM(x), FPM(Strain

n,ŷ )) between FPM(x) and the distribution of
the mean-aggregation of the training distribution samples with same predicted target as x (i.e. ŷ) that
we denote by FPM(Strain

n,ŷ ). Formally, if x1, . . . ,xn are the training data, this distribution is given
by (1/nŷ)

∑
i:ŷi=ŷ δFPM(xi), with nŷ = |{i : ŷi = ŷ}| and δx is the Dirac measure in x. We take as

similarity score D a depth function, namely the integrated rank-weighted depth, that we introduce in
Sec. 3.3.
3. The last step consists in thresholding the previous similarity score D(FPM(x), FPM(Strain

n,ŷ )):
under a given threshold γ, we classify x as an OOD example.

3.2 Layer aggregation choice

Most recent work in textual OOD detection with a pretrained transformer solely relies on the last
layer of the encoder [100, 75]. Although detectors using information available in multiple layers
have been proposed previously, mostly for image data, they rely on post-score aggregation heuristics
that are either supervised [58, 44] (and thus require having access to OOD samples) or heavily use
arbitrary heuristics [85]. TRUSTED differentiates from previous OOD detection methods as it relies
on a pre-score aggregation function.
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Most popular layer aggregation techniques for Transformer based architecture involve either Power
Means [46, 82] or Wasserstein barycenters [26]. Motivated by both simplicity and computational
efficiency, we discard the Wasserstein barycenters and decide to work with Power Mean (case p = 1).

3.3 OOD Score Computation via Integrated Rank-Weighted Depth

Since its introduction by John Tukey in 1975 [97] to extend the notion of median to the multivariate
setting, the concept of statistical depth has become increasingly popular in multivariate data analysis.
Multivariate data depths are nonparametric statistics that measure the centrality of any element of
Rd, where d ≥ 2, w.r.t. a probability distribution (respectively a random variable) defined on any
subset of Rd. Let X be a random variable. We denote by PX the law of X . Formally, a data depth is
defined as follows:

D : Rd × P(Rd) −→ [0, 1] ,
(x, PX) 7−→ D(x, PX). (4)

The higher D(x, PX), the deeper x is in PX . Data depth finds many applications in statistics and
ML ranging from anomaly detection [87, 80, 92, 96, 91] to regression [79, 45] and text automatic
evaluation [95]. Numerous definitions have been proposed, such as, among others, the halfspace
depth [97], the simplicial depth [65], the projection depth [66] or the zonoid depth [56], see [90, Ch.
2] for an excellent account of data depth. The halfspace depth is the most popular depth function
probably due to its attractive theoretical properties [37, 104]. However, it is defined as the solution of
an optimization problem (over the unit hypersphere) of a non-differentiable quantity and is therefore
not easy to compute in practice [81, 39]. Furthermore, it has been show in [73] that the approximation
of the halfspace depth suffers from the curse of dimensionality involving statistical rates of order
O((log(n)/n)1/(d−1)) (see Equation (12) in [73]) where n is the sample size. Recently, the Integrated
Rank-Weighted (IRW) depth has been introduced in [76], replacing the infimum with an expectation
(see also [16, 94]) in order to remedy this drawback. In contrast to the halfspace depth, it has been
show in [94] that the approximation of the IRW depth doesn’t suffer from the curse of dimensionality
(see Corollary B.3 in [94]). The IRW depth of x ∈ Rd w.r.t. to a probability distribution PX on Rd is
given by:

DIRW(x, PX) =

∫
Sd−1

min {Fu (⟨u,x⟩) , 1− Fu (⟨u,x⟩)} du,

where Fu(t) = Pr(⟨u,X⟩ ≤ t) and Sd−1 is the unit hypersphere. In practice, the expectation can be
approximated by means of Monte-Carlo. Given a sample Sn = {x1, . . . ,xn}, the approximation of
the IRW depth is defined as:

D̃IRW(x,Sn) =
1

nproj

nproj∑
k=1

min

{
1

n

n∑
i=1

I {⟨uk,xi − x⟩ ≤ 0} , 1
n

n∑
i=1

I {⟨uk,xi − x⟩ > 0}

}
,

where uk ∈ Sd−1 and nproj is the number of direction sampled on the sphere. The approximation
version of the IRW depth can be computed in O(nprojnd) and is then linear in all of its parameters.
In addition, the IRW depth has many appealing properties such as invariance to scale/translation
transformations or robustness [76, 16]. Furthermore, it has been successfully applied to anomaly
detection [94] making it a natural choice for OOD detection.

Connection to Mahalanobis-based score. Interestingly enough, the Mahalanobis distance [71]
can be seen as a data depth via an appropriate rescaling as suggested in [66]. It measures the
distance between an element in Rd and a probability distribution having finite expectation and
invertible covariance matrix differing from the Euclidean perspective by taking account of cor-
relations. Precisely, the Mahalanobis depth function DM(x, PX) is defined as: DM(x, pX) =(
1 + (x− E[X])⊤Σ−1(x− E[X])

)−1
, where Σ−1 is the precision matrix of the r.v. X. Even

though interesting results relying on this notion have been highlighted in [75] for OOD detection, we
experimentally observe better results with the IRW depth. Additionally, the Mahalanobis distance
requires the first two moments to be finite and to compute Σ−1 in high dimension, which can be
ill-conditioned in low data regimes. Last, inverting Σ requires O(d3) operations or storing C matrix,
which can become a burden when the number of classes grows [7].

Application to TRUSTED. The second step of TRUSTED uses an OOD score on the aggregated features.
Thanks to its appealing properties, we choose to rely on the Integrated Rank-Weighted Depth DIRW
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x1

x2

xL−1 xL

mean-aggregation: x = 1
L

L∑
l=1

φL(xl)

averaged embeddings

OOD score: D( , )x P

depth function

in-distribution law

layer 1 layer 2 layer L-1 layer L

pre-trained network

Fig. 1: TRUSTED detector. It relies on two steps: mean layer
aggregation followed by the computation of DIRW.
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Fig. 3: Histogram scores.

that measures the “similarity” between a test sample x and a training dataset Strain
n . One independent

DIRW is computed per class on the final aggregated layer. The decision is taken by taking the D
score of the predicted class. Formally the final score is taken as:

sTRUSTED(x) = DIRW

(
FPM(x), FPM

(
Strain
n,ŷ

))
, (5)

where we recall that FPM(Strain
n,ŷ ) is the distribution of the mean-aggregation of the training distribu-

tion samples with same predicted target as x (i.e. ŷ).

4 Experimental Settings

In this section, we first discuss the limitation of the previous works on textual OOD detection, then
present the chosen benchmark, the pretrained encoders, and baseline methods.

4.1 Previous works and their limitations

Previous works in OOD detection [62, 84, 52, 67, 75] mostly rely on a single model to determine
which methods are the best. This undermines the soundness of the conclusions that may only hold for
the particular instance of the chosen model (e.g. for a specific checkpoint trained with a specific seed).
To the best of our knowledge, no work studies the impact of the several sources of randomness that
are involved, such as checkpoint and seed selections [86]). Nevertheless, these hyperparameters do
impact the OOD detectors’ performances. This is illustrated in Fig. 9 of the supplementary material,
which gathers several Mahalanobis scores for various checkpoints of the same model.

In the light of Fig. 9, we choose to study both the impact of the checkpoint and the seed choice in
our experiment. Specifically, for each model, we consider 5 different checkpoints. We save and
probe models after 1k, 3k, 5k, 10k, 15k, and 20k finetuning steps. We additionally reproduce this
experiment for 3 different seeds. As the reuse of checkpoints reduces the cost of research and allows
for easy head-to-head comparison, our library also contains the probed models to draw general robust
conclusions about the performance of the considered class of models [30, 38, 102].

4.2 Dataset selection

Dataset selection is instrumental for OOD detection evaluation as it is unreasonable to expect a
detection method to achieve good results on any type of OOD data [1]. Since there is a lack of
consensus on which benchmark to use for OOD detection in NLP, we choose to rely on the benchmark
introduced by [103] which is an extension of the one proposed by [49].

Benchmark description. The considered benchmark is composed of three different types of in
distribution datasets (referred to as IN-DS) which are used to train the classifiers: sentiment analysis
(i.e., SST2 [88] and IMDB [70]), topic classification (i.e., 20Newsgroup [54]) and question answering
(i.e., TREC-10 [61]). For splitting we use either the standard split or the one provided by [103]. For
the OOD datasets (referred to as OUT-DS), we first consider the aforementioned datasets (i.e., any pair
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of datasets can be considered as OOD). Then, we also rely on four other datasets: a concatenation
of premises and respective hypotheses from two NLI datasets (i.e., RTE [12, 51] and MNLI [99]),
Multi30K [40] and the source of the English-German WMT16 [8]. We gather in Tab. 5 the statistics
of the various data-sets and refer the reader to reference [103] for further details.

4.3 Baseline methods and pretrained models

Baseline methods. We consider the three following baselines2:

1. Maximum Soft-max Probability (MSP). This method has been proposed by [47]. Given an input x,
it relies on the final score sMSP defined by sMSP(x) = 1−maxy∈Y pY |X(y|x), where pY |X(·|x))
is the soft-probability predicted by the classifier after x has been observed.

2. Energy-based score (E) [67] is defined as the score sE(x) = T × log
[∑

y∈Y exp
(

gy(x)
T

)]
,

where gy(x) represents the logit corresponding to the class label y.

3. Mahalanobis (DM). Following [75, 60, 103], the last layer of the encoder is considered leading
to the score: sM(x) = −DM(FPM(x), FPM(Strain

n,ŷ )) where ŷ represents the label predicted by the
classifier based on the observation of x.3

Aggregation procedures. Both DM and DIRW rely on feature representations of the data which are
extracted from the neural networks. Our goal is to demonstrate that our aggregation procedure FPM

defined in Eq. 3 is a relevant choice to be plugged in Eq. 5. To do so, we also perform experiments on
other natural aggregation strategies we introduce in the following.

1. Logits layer selection. We use the raw non-normalized predictions of the classifier. In this case
FLogits ≡ F (ϕ1(x), . . . , ϕL(x)) = ϕL+1(x).

2. Last layer selection. Following previous work in textual OOD detection [100], we also consider
the last layer of the network. Formally FL ≡ F (ϕ1(x), . . . , ϕL(x)) = ϕL(x).

3. Layer concatenation. We follow the BERT pooler and explore the concatenation of all layers.
Formally, Fcat ≡ F (ϕ1(x), . . . , ϕL(x)) = [ϕ1(x), · · · , ϕL(x)] represents the concatenated vector.
The main limitation of layer concatenation is that the dimension of the considered features linearly
increases with the number of layers which can be problematic for very deep networks [98].

Pretrained encoders. To provide an exhaustive
comparison, we choose to work with different
types of pretrained encoders. We test the various
methods on DISTILBERT (DIS.) [83], BERT [35]
and ROBERTA (ROB.) [68]. We trained all models
with a dropout rate [89] of 0.2, a batch size of 32,
we use ADAMW [55]. Additionally, the weight
decay is set to 0.01, the warmup ratio is set to 0.06
and the learning rate to 10−5.

IN-DS BERT Acc DIS. Acc ROB. Acc
20ng 92.9 92.0 92.7
imdb 91.7 90.6 93.6
sst2 92.7 91.7 95.2
trec 96.8 97.0 97.0

Tab. 1: Average test accuracy achieved by dif-
ferent classifier when training is initialized with
different seeds.

5 Static Experimental Results

In this section, we demonstrate the effectiveness of our proposed detector using various pretrained
models. Due to space limitations, additional tables are reported in the Supplementary Material.

5.1 Methods comparison

In Tab. 2, we report the aggregated score obtained by each method combined with a different
aggregation function. We observe that TRUSTED obtains the best overall scores followed by DIRW

using Fcat. Similarly to previous works [75], we notice in general that score leveraging information

2Contrarily to [75], we do not use likelihood ratio as it would require using extra language models, which are
not available in our setting.

3An alternative is to compute the minimum of all Mahalanobis distance computed on all the classes. However,
we observe slightly better performance when using the predicted label ŷ.
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Tab. 2: Average OOD detection performance (in %). The averages are taken over 1440 configurations
and include four different IN-DS (20ng, imdb, sst2, trec), eight OOD-DS, three different seeds, five
different checkpoints and three different pretrained encoders. Due to space constraints, different
aggregations and related discussions are relegated to Appendix B.

Score Aggregation AUROC AUPR-IN AUPR-OUT FPR Err
E FL+1 89.9 ±9.7 84.9 ±19.0 79.9 ±27.3 44.9 ±33.4 23.9 ±22.0

MSP Soft. 89.7 ±9.1 84.3 ±18.9 80.4 ±25.6 45.5 ±29.5 25.4 ±21.4

DM FL 93.8 ±9.8 89.2 ±20.1 91.5 ±16.4 19.8 ±23.7 12.7 ±17.0

FL+1 71.7 ±13.7 54.7 ±32.0 73.3 ±28.4 62.6 ±23.1 37.0 ±22.9

F[L,L+1] 81.7 ±20.7 60.7 ±20.0 83.8 ±20.3 73.4 ±23.5 33.0 ±21.3

FL⊕L+1 83.6 ±10.6 61.9 ±39.3 79.4 ±26.9 81.5 ±10.1 30.4 ±18.8

Fcat 90.4 ±11.5 84.0 ±22.1 88.0 ±19.7 28.9 ±26.2 17.6 ±18.8

FPM 81.2 ±15.3 67.7 ±28.7 82.1 ±22.2 40.2 ±28.0 23.1 ±20.3

DIRW FL 92.6 ±8.0 88.5 ±17.7 86.3 ±19.7 37.8 ±27.3 23.6 ±20.4

FL+1 82.4 ±14.0 77.2 ±24.0 72.1 ±29.8 68.5 ±29.5 38.0 ±25.3

F[L,L+1] 95.5 ±10.0 91.2 ±15.0 94.1 ±29.0 23.5 ±31.5 13.7 ±15.3

FL⊕L+1 95.9 ±10.0 91.0 ±20.0 94.0 ±11.0 15.5 ±20.5 13.0 ±16.0

Fcat 96.1 ±4.9 91.8 ±14.0 94.1 ±11.4 19.1 ±21.6 14.1 ±16.2

TRUSTED FPM 97.0 ±4.0 93.2 ±11.5 95.1 ±10.0 15.4 ±19.2 11.7 ±13.7

available from the training set (i.e., DM and DIRW) achieve stronger results than those relying on
output of softmax scores solely (i.e., E and MSP).

Interestingly, we observe that DM achieves the best results when relying on the last layer solely (i.e.,
using FL+1). Considering additional layers through concatenation or mean hurts the performances of
DM. This is not the case when relying on DIRW . Indeed layer aggregation improves the performance
of the detector demonstrating the relevance of using DIRW over DM as an OOD score. Relying
on Mahalanobis as OOD score suppose that the representation follows a multivariate Gaussian
distribution which might be too strong assumption in the case of layer aggregation. On the contrary
DIRW do not rely on any distributional assumption.

5.2 On the pretrained encoder choice

Tab. 3: Average (over 480 model configurations) performance per pretrained encoder type.
Model Score Aggregation AUROC AUPR-IN AUPR-OUT FPR Err
BERT MSP Soft. 89.6 ±9.3 84.1 ±19.8 80.8 ±25.5 46.4 ±30.8 25.8 ±22.4

E FL+1 89.7 ±9.9 85.2 ±19.2 79.9 ±28.2 45.5 ±34.4 23.5 ±22.2

DM FL 95.9 ±6.9 91.9 ±17.3 93.1 ±15.4 15.9 ±21.5 10.7 ±15.1

FL+1 70.7 ±13.0 51.9 ±31.5 74.3 ±26.9 62.3 ±22.2 37.4 ±22.1

Fcat 92.2 ±8.8 81.9 ±24.4 92.2 ±12.4 29.3 ±26.5 21.5 ±21.6

FPM 80.5 ±16.0 65.9 ±30.3 81.9 ±21.8 42.1 ±28.9 24.9 ±21.6

DIRW FL 92.6 ±7.7 88.7 ±18.2 87.0 ±19.1 38.0 ±27.8 23.8 ±20.4

FL+1 81.1 ±14.7 76.6 ±24.8 71.7 ±29.6 72.3 ±29.4 40.8 ±25.9

Fcat 96.5 ±5.2 92.1 ±15.7 95.8 ±9.2 15.9 ±22.1 12.8 ±17.9

TRUSTED FPM 97.4 ±4.1 93.6 ±12.8 96.4 ±8.6 12.6 ±19.6 10.4 ±15.6

DIS. MSP Soft. 88.2 ±9.7 82.7 ±20.4 77.2 ±27.9 51.6 ±30.4 28.0 ±22.7

E FL+1 88.1 ±10.9 83.3 ±20.8 77.1 ±29.4 50.3 ±36.1 26.2 ±24.1

DM FL 94.1 ±9.0 89.4 ±20.2 90.6 ±18.0 21.6 ±24.3 13.8 ±18.1

FL+1 72.3 ±13.9 55.7 ±33.1 72.3 ±29.3 63.8 ±23.1 37.8 ±24.0

Fcat 89.2 ±11.6 83.9 ±21.7 85.6 ±21.5 30.8 ±25.7 17.4 ±18.2

FPM 80.0 ±15.6 68.6 ±28.4 79.2 ±24.7 43.8 ±28.1 24.1 ±20.8

DIRW FL 91.2 ±9.2 86.5 ±19.9 84.6 ±21.5 43.0 ±28.1 26.8 ±21.9

FL+1 78.4 ±15.4 73.5 ±25.5 67.8 ±32.1 76.1 ±26.3 41.7 ±25.9

Fcat 96.3 ±3.9 91.5 ±13.3 94.0 ±11.7 18.9 ±20.7 14.3 ±14.9

TRUSTED FPM 97.3 ±2.9 93.3 ±10.4 95.1 ±9.9 14.1 ±17.1 11.1 ±11.5

ROB. MSP Soft. 91.4 ±7.9 85.9 ±16.4 83.0 ±23.0 39.1 ±26.0 22.6 ±18.7

E FL+1 91.7 ±8.0 86.2 ±16.8 82.6 ±24.1 39.2 ±28.5 22.0 ±19.5

DM FL 91.7 ±11.9 86.6 ±22.0 90.9 ±15.5 21.6 ±24.7 13.5 ±17.5

FL+1 72.1 ±14.0 56.1 ±31.4 73.4 ±28.8 61.7 ±23.8 35.9 ±22.4

Fcat 89.8 ±13.1 85.9 ±20.0 86.5 ±22.5 26.8 ±26.4 14.4 ±15.8

FPM 82.8 ±14.4 68.4 ±27.4 85.0 ±19.7 35.1 ±26.5 20.5 ±18.2

DIRW FL 93.8 ±6.6 90.2 ±14.7 87.4 ±18.2 32.9 ±25.3 20.5 ±18.4

FL+1 87.2 ±10.0 81.0 ±21.0 76.4 ±27.2 58.1 ±29.4 32.2 ±23.2

Fcat 95.7 ±5.5 91.9 ±13.1 92.6 ±12.6 22.1 ±21.8 15.2 ±15.6

TRUSTED FPM 96.3 ±4.7 92.7 ±11.3 93.9 ±11.2 19.1 ±20.2 13.4 ±13.8

When training and deploying a classifier, a key question is choosing a pretrained encoder. It can be
beneficial in critical applications to trade off the main task accuracy to ensure better OOD detection.
In Tab. 3, we report the individual performance of OOD methods on three types of classifiers.
Although TRUSTED achieves state-of-the-art on all configurations, it is worth noticing a difference in
performance concerning the type of pretrained model. It is also important to remark that for ROB both
MSP and E achieve on-par performances with DM while not requiring any extra training information.
Overall, for a given method (i.e. DM or DIRW), the ranking of detectors performances according to
the type of feature extractor remain still. This validates the use of the mean-aggregation procedure of
TRUSTED. Overall, based on the difference of OOD detection performance of Tab. 3, we recommend
to use TRUSTED on BERT or DIS. if accurate OOD detection is required.
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5.3 Impact of the training dataset

OOD detection performance depends on the nature of what is considered in-distribution (the training
distribution in our case). Thus, it is interesting to study the performance per-IN-DS as reported in
Tab. 4. Even though TRUSTED achieves strong results in terms of AUROC, we observe a high FPR on
SST2. From Fig. 4, we observe that IMDB and SST2 are harder to detect, especially for DM. Finally,
since high AUROC does not necessarily imply a low FPR, it is crucial to take both into account when
designing an OOD detector.
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Fig. 4: AUROC&FPR trade-off.

AUROC AUPR-IN AUPR-OUT FPR Err
IN-DS Score
20ng TRUSTED 98.4 ±1.8 96.8 ±4.8 98.0 ±4.2 8.0 ±10.5 6.4 ±6.8

DM 97.6 ±4.6 95.1 ±9.9 97.4 ±6.4 10.1 ±13.6 7.6 ±7.5

imdb TRUSTED 98.6 ±2.1 99.8 ±0.4 88.6 ±15.5 8.0 ±13.9 5.2 ±2.0

DM 93.3 ±9.8 98.0 ±5.4 77.3 ±24.7 19.3 ±20.6 6.4 ±2.8

sst2 TRUSTED 93.8 ±5.8 86.0 ±17.2 93.9 ±9.4 30.7 ±22.9 22.1 ±17.9

DM 86.3 ±12.3 71.7 ±29.8 90.5 ±12.9 43.0 ±25.2 30.4 ±22.9

trec TRUSTED 97.6 ±2.3 91.8 ±8.1 99.3 ±1.1 12.2 ±15.3 11.0 ±12.7

DM 99.0 ±1.2 94.9 ±6.8 99.8 ±0.4 4.4 ±7.4 4.3 ±6.2

Tab. 4: Average OOD detection performance per IN-DS.

6 Dynamic Experimental Results

Most OOD detection methods are tested on specific checkpoints, where the selection criterion is often
unclear. The consequences of this selection on OOD detection are rarely studied. This section aims
to respond to this by measuring the OOD detection performance of methods on various checkpoint
finetuning of the pretrained encoder. We will use 5 different checkpoints taken after 1k, 3k, 5k,
10k, 15k, and 20k iterations. Training curves of the models are given in Fig. 7. Notice that after 3k
iterations models have converged and no over-fitting is observed even after 20k iterations (i.e., we do
not observe an increase in validation loss).

Overall analysis. We report the results of the dynamic analysis on the various pretrained models
in Fig. 5. For all the methods and models (except DM on ROB), we observe that training longer
the classifier hurts detection. Interestingly, this drop in performance has a higher impact on FPR
compared to AUROC. Thus, it is better to use an early stopping criterion to ensure proper OOD
detection performance. In addition, we observed that TRUSTED (corresponding to DIRW) achieves
better detection results and that DM outperforms TRUSTED for checkpoints larger than 10k on ROB.
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Fig. 5: Detection performance of different pretrained encoder during finetuning. First column
correspond to BERT, second to ROB and last to DIS.
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Analysis Per In-Dataset. Fig. 6 reports the re-
sults of the dynamical analysis per IN-DS. We ob-
serve that DIRW is consistently better than DM

with sensible improvement on IMDB and SST2,
which are the hardest benchmarks. We observe
a similar trend to the previous experiment: train-
ing longer the classifiers hurt their OOD detection
performances. Similar observations hold for FPR,
AUPR-IN, and AUPR-OUT that are postponed to the
Supplementary Material (see Fig. 10).
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Fig. 6: AUROC per IN-DS during fine-tuning.

7 Conclusions and Future Directions

In this work, we introduced TRUSTED a novel OOD detector that relies on information available
in all the hidden layers of a network. TRUSTED leverages a novel similarity score built on top of
the Integrate Rank-Weighted depth. We conduct extensive numerical experiments proving that it
consistently outperforms previous approaches, including detection based on the Mahalanobis distance.
Our comprehensive evaluation framework demonstrates that, in general, OOD performances vary
depending on several hyperparameters of the models, the datasets, and the detector’s feature extraction
step. Thus, we would like to promote the use of such exhaustive evaluation frameworks for future
search to assess AI systems’ safety tools properly. Another interesting question is the detection
inference-time / accuracy trade-off, which is instrumental for the practitioner.
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A Experimental Details

In this section we gather additional experimental details. For completeness we provide the used
algorithms for both TRUSTED and DIRW (see Sec. A.1), we also gather additional benchmarks details
(see Sec. A.2), hyperparameter used during training (see Sec. A.3) as well as the training curves (see
Sec. A.4).

A.1 Algorithms

In this part, we present algorithms to compute DIRW (see Algorithm 1) and TRUSTED (see Algorithm
2).

Algorithm 1 Approximation of the IRW depth
Initialization: test sample x, nproj, X = [x1, . . . , xn]

⊤.
1: Construct U ∈ Rd×nproj by sampling uniformly nproj vectors U1, . . . , Unproj

in Sd−1

2: Compute M = XU and x⊤U

3: Compute the rank value σ(j), the rank of x⊤U in M:,j for every j ≤ nproj

4: Set D = 1
nproj

∑nproj

j=1 σ(j)

Output: D̃IRW(x,X) = D
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Dataset #train #dev #test #class
SST2 67349 872 1821 2
IMDB 22500 2500 25000 2

TREC10 4907 545 500 6
20NG 15056 1876 1896 20
MNLI - - 19643 -
RTE - - 3000 -

Multi30K - - 2532 -
WMT16 - - 2999 -

Tab. 5: Statistics of the considered benchmark.

Algorithm 2 Computation of TRUSTED
Initialization: x, nproj, Sn, ŷ.

1: Compute FPM(x)

2: for y = 1, . . . , C do
Compute FPM(Strain

n,y )
3: end for
4: Compute DIRW(FPM(x), FPM(Strain

n,ŷ )) using Algorithm 1 with FPM(x), nproj and
FPM(Strain

n,ŷ )

Output: sTRUSTED(x) = DIRW(FPM(x), FPM(Strain
n,ŷ ))

A.2 Benchmark Details

We report in Tab. 5 statistics related to the datasets of our benchmark. The only difference between
our work and the one from [103] is that we considered the pair IMDB and SST2 a valid OOD pair of
IN-DS/OOD-DS as this can be seen as a background shift (see [78]).

Remark 1 We initially started to work with the appealing benchmark introduced by [60] which
introduces an alternative standard that addresses the limitation of the benchmark proposed by [100]
(e.g. there is no category overlap between training and OOD test examples in the non-semantic shift
dataset). Additionally, [60] put effort into designing a dataset that can categorize shifts as belonging
to semantic or background shift [2, 78]. However, we failed to reproduce the baseline results from
[60] even after contacting the authors.

A.3 Training Parameters

In this section, the detail the main hyper-parameters that were used for finetuning the pretrained
encoders. It is worth noting that we use the same set of hyperparameters for all the different encoders
[26, 24? ]. The dropout rate [89] is set to 0.2 [], we train with a batch size of 32, we use ADAMW
[55, 69, 4]. Additionally, we set the weight decay to 0.01, the warmup ratio to 0.06, and the learning
rate to 10−5. All the models were trained during 20k iterations with different seeds.

A.4 Training Curves

In order to understand the change of performance while finetuning the model, it is crucial to understand
when and if the different models have converged. Thus we report in Fig. 7 dev losses and dev and
test accuracy. From Fig. 7, we can observe that a pretrained encoder finetuned on 20ng takes more
time to converge compared to the same pretrained encoder finetuned on either SST2, IMDB, or
trec. Additionally, after 2k updates, both dev and test accuracy are stable on SST2, IMDB, and
trec, while for 20ng, it requires 6k steps. Last, it is worth noting (see Tab. 1) that ROB. achieves the
best accuracy overall. BERT is the second best and achieves stronger test accuracy than DIS. on the
different datasets.
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(b) BERT Cross-Entropy Loss.
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(c) BERT Test Accuracy.
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(d) DIS. Dev Accuracy.
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(e) DIS. Cross-Entropy Loss.
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(f) DIS. Test Accuracy.
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(g) ROB. Dev Accuracy.
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(h) ROB. Cross-Entropy Loss.
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(i) ROB. Test Accuracy.

Fig. 7: Dev and Test curves obtained during finetuning of the pretrained transformers on different
datasets for the three considered seeds.

B Additional Static Experimental Results

In this section, we report additional static experiment results. Formally, we aim to gain understanding:

• on the role of the IN-DS (see Sec. B.1) and on the impact of the choice of the pretrained
encoder [27].

• on the different trade-off that exists between the different metrics (see Sec. B.2)

• on the impact of performance of the detection methods depending on the OOD distribution
(see Sec. B.3).

B.1 Analysis Per In-Dataset

We present in Tab. 6 the average performance per IN-DS. On 3 out of 4 datasets TRUSTED achieves
the best results and outperforms other methods. Interestingly, the table shows the key importance of
the training corpus. As an example, we observe that detection methods applied to classifiers trained
on sst2 are less efficient (by several AUROC points) compared to other IN-DS.
A finer analysis of this phenomenon can be conducted using Tab. 7. From Tab. 7, we observe that
this phenomenon is consistent accross all the pretrained classifiers (i.e., BERT, ROB. and DIS.). We
observe that different TRUSTED does not work uniformly better on all pretrained models. For example,
the best results on 20ng are obtained for BERT while on sst2 it is obtained for DIS..
Takeaways: Both IN-DS and pretrained model choices are essential to ensure good detection
performance.
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Tab. 6: Average OOD detection performance (in %) per IN-DS.

AUROC AUPR-IN AUPR-OUT FPR Err
Score Method
20ng TRUSTED 98.4 ±1.8 96.8 ±4.8 98.0 ±4.2 8.0 ±10.5 6.4 ±6.8

DM 97.6 ±4.6 95.1 ±9.9 97.4 ±6.4 10.1 ±13.6 7.6 ±7.5

E 94.9 ±3.7 88.4 ±10.2 95.4 ±6.5 21.3 ±17.1 14.8 ±11.5

MSP 92.6 ±4.8 85.0 ±12.0 93.5 ±8.3 31.1 ±16.3 20.8 ±11.0

imdb TRUSTED 98.6 ±2.1 99.8 ±0.4 88.6 ±15.5 8.0 ±13.9 5.2 ±2.0

DM 93.3 ±9.8 98.0 ±5.4 77.3 ±24.7 19.3 ±20.6 6.4 ±2.8

E 87.7 ±9.0 97.9 ±2.7 40.0 ±24.2 64.4 ±27.3 12.8 ±8.9

MSP 89.7 ±7.5 98.2 ±2.1 43.3 ±22.5 56.2 ±22.5 12.0 ±7.8

sst2 TRUSTED 93.8 ±5.8 86.0 ±17.2 93.9 ±9.4 30.7 ±22.9 22.1 ±17.9

DM 86.3 ±12.3 71.7 ±29.8 90.5 ±12.9 43.0 ±25.2 30.4 ±22.9

E 80.8 ±10.0 70.6 ±25.9 81.9 ±17.0 76.2 ±18.9 50.1 ±21.7

MSP 81.2 ±10.0 71.3 ±25.7 82.6 ±16.1 75.8 ±17.3 50.1 ±21.4

trec TRUSTED 97.6 ±2.3 91.8 ±8.1 99.3 ±1.1 12.2 ±15.3 11.0 ±12.7

DM 99.0 ±1.2 94.9 ±6.8 99.8 ±0.4 4.4 ±7.4 4.3 ±6.2

E 96.9 ±3.3 85.6 ±13.9 99.3 ±1.0 15.5 ±15.3 13.9 ±12.7

MSP 96.2 ±3.4 85.1 ±13.7 99.1 ±1.2 16.9 ±15.8 15.2 ±13.2

B.2 Trade-off between metrics

We report Fig. 8 the different trade-off that exist between the considered metrics. Interestingly, a
high AUROC does not imply a low FPR. Similar conclusions can be drawn regarding AUPR-IN and
AUPR-OUT.
Takeaways. Fig. 8 illustrates that all metrics matters and should be considered when comparing
detection methods.
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Fig. 8: Trade-off between different metrics for all considered configurations.

B.3 Analysis Per Out-Dataset

We report on Tab. 8 the detailled results of the detection methods for different OUT-DS. It is worth
noting that TRUSTED achieves best results on 22 configurations.
Takeaways. Tab. 8 illustrates the impact of the type of OOD sample on the detection performances.

C Additional Dynamical Experimental Results

In this section, we gather additional dynamical analysis [25, 23]. We further illustrate the importance
of dynamical probing in Sec. C.1. We then conduct a dynamical study of the impact of the OOD
dataset in Sec. C.2. In Sec. C.3, we study the role of the pretrained encoder and in Sec. C.4. Last, we
gather per encoder, per IN-DS and per OUT-DS analysis.
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Tab. 7: Average OOD detection performance (in %) per IN-DS and per pretrained encoders.
AUROC AUPR-IN AUPR-OUT FPR Err

IN DS MODEL TECH
20ng BERT TRUSTED 99.9 ±0.3 99.4 ±1.4 100.0 ±0.0 0.4 ±0.9 1.0 ±1.0

DM 98.8 ±1.7 97.6 ±2.6 98.4 ±4.6 6.1 ±8.7 5.1 ±3.8

E 95.4 ±3.8 89.0 ±10.1 95.9 ±6.1 21.0 ±20.0 15.0 ±13.6

MSP 93.7 ±4.1 86.4 ±11.7 94.8 ±6.0 28.1 ±15.6 19.5 ±11.1

Dist TRUSTED 99.0 ±0.7 97.8 ±2.6 99.0 ±1.4 3.5 ±4.0 4.3 ±2.7

DM 97.7 ±4.2 96.0 ±5.6 97.0 ±9.0 10.9 ±16.7 7.8 ±8.1

E 96.4 ±3.0 91.2 ±7.8 96.9 ±4.8 15.7 ±14.9 11.6 ±10.4

MSP 93.9 ±4.1 86.8 ±11.1 95.2 ±5.6 25.6 ±15.0 17.8 ±10.5

Rob TRUSTED 96.8 ±1.7 94.0 ±6.0 95.6 ±5.8 17.2 ±10.7 12.1 ±7.0

DM 96.5 ±5.9 92.3 ±14.2 96.9 ±5.4 12.9 ±13.8 9.4 ±8.7

E 93.5 ±3.6 85.9 ±11.2 94.0 ±7.5 25.3 ±14.6 16.8 ±10.0

MSP 90.7 ±5.1 82.7 ±12.4 91.4 ±10.6 37.3 ±15.8 23.9 ±10.7

imdb BERT TRUSTED 98.9 ±1.8 99.9 ±0.2 91.1 ±14.8 5.6 ±11.1 4.7 ±1.0

DM 96.5 ±5.4 99.5 ±0.8 80.9 ±24.3 13.9 ±18.7 5.5 ±1.6

E 85.6 ±9.8 97.6 ±3.2 34.4 ±22.3 73.8 ±21.1 13.9 ±9.5

MSP 89.2 ±7.0 98.1 ±2.3 41.3 ±21.8 60.5 ±20.3 12.6 ±8.3

Dist TRUSTED 98.8 ±1.8 99.8 ±0.3 89.2 ±13.2 6.2 ±10.5 4.9 ±1.2

DM 95.0 ±6.6 99.2 ±1.0 75.9 ±26.8 20.2 ±21.3 6.3 ±2.4

E 86.2 ±9.1 97.7 ±2.9 38.6 ±25.6 69.1 ±27.5 13.3 ±9.3

MSP 88.0 ±7.8 98.0 ±2.3 39.0 ±21.6 64.1 ±17.6 12.9 ±8.2

Rob TRUSTED 98.2 ±2.7 99.7 ±0.6 86.0 ±17.8 12.1 ±17.9 5.9 ±3.0

DM 88.6 ±13.3 95.3 ±8.5 75.9 ±22.5 22.7 ±20.7 7.2 ±3.7

E 91.2 ±7.2 98.5 ±1.8 46.3 ±22.9 51.4 ±26.8 11.4 ±7.8

MSP 92.0 ±7.1 98.6 ±1.7 49.6 ±22.8 43.9 ±23.7 10.6 ±6.8

sst2 BERT TRUSTED 93.2 ±5.3 83.4 ±19.1 94.4 ±7.1 32.0 ±23.0 25.1 ±20.4

DM 90.1 ±9.4 78.1 ±26.7 91.7 ±14.2 36.8 ±23.9 25.8 ±20.5

E 81.2 ±9.2 70.4 ±26.2 82.8 ±17.0 75.5 ±15.6 49.5 ±20.4

MSP 80.2 ±9.5 69.3 ±27.0 81.7 ±16.0 80.0 ±8.9 52.7 ±20.2

Dist TRUSTED 95.1 ±3.2 87.5 ±14.4 93.8 ±11.3 26.2 ±18.7 17.8 ±11.6

DM 86.5 ±12.2 71.9 ±30.8 91.0 ±11.9 43.8 ±25.5 31.6 ±25.0

E 76.3 ±8.8 65.9 ±27.1 77.4 ±18.9 86.1 ±13.6 55.9 ±21.1

MSP 77.7 ±8.5 67.7 ±26.5 79.0 ±17.7 85.0 ±5.9 55.4 ±19.6

Rob TRUSTED 93.2 ±7.7 87.2 ±17.5 93.6 ±9.6 34.0 ±25.9 23.5 ±19.7

DM 82.3 ±13.7 65.1 ±30.4 88.9 ±12.3 48.2 ±25.1 33.7 ±22.5

E 84.9 ±10.2 75.6 ±23.4 85.5 ±13.7 67.0 ±21.6 44.8 ±22.1

MSP 85.8 ±10.3 76.8 ±22.5 87.0 ±13.3 62.5 ±22.6 42.2 ±22.2

trec BERT TRUSTED 98.6 ±1.4 95.0 ±5.5 99.6 ±0.6 7.2 ±11.9 6.7 ±9.9

DM 99.3 ±0.7 96.5 ±4.6 99.8 ±0.2 2.3 ±3.7 2.5 ±3.1

E 97.6 ±2.6 88.4 ±11.7 99.5 ±0.7 10.2 ±10.3 9.3 ±8.5

MSP 96.9 ±2.8 87.4 ±11.3 99.3 ±0.9 12.6 ±11.6 11.4 ±9.6

Dist TRUSTED 97.0 ±2.8 89.9 ±8.9 99.2 ±1.2 16.6 ±17.5 14.8 ±14.5

DM 98.6 ±1.6 93.4 ±7.5 99.7 ±0.5 7.8 ±10.6 7.3 ±8.8

E 95.9 ±4.1 82.1 ±15.6 99.1 ±1.3 20.7 ±19.1 18.3 ±16.0

MSP 94.9 ±4.4 80.8 ±16.1 98.7 ±1.5 24.3 ±19.9 21.5 ±16.5

Rob TRUSTED 97.3 ±2.1 90.9 ±8.5 99.1 ±1.2 12.2 ±14.4 11.0 ±11.5

DM 99.1 ±0.9 95.0 ±7.4 99.8 ±0.3 2.6 ±4.1 2.8 ±3.4

E 97.1 ±2.5 86.6 ±13.2 99.3 ±0.9 14.8 ±12.7 13.3 ±10.4

MSP 97.0 ±2.0 87.5 ±11.8 99.3 ±0.8 13.3 ±11.1 12.0 ±9.1

C.1 On the importance of dynamical probing

In Fig. 9, we report histograms for TRUSTED and Mahanalobis distance. Interestingly, the shape of
histograms is changing across checkpoints demonstrating the need for dynamical probing [22, 93].
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AUROC AUPR-IN AUPR-OUT FPR Err
OUT DS MODEL TECH Feature Type
20ng BERT TRUSTED 97.9 ±2.2 99.2 ±0.7 87.2 ±19.2 11.6 ±14.6 4.6 ±4.3

DM Pooled 97.4 ±2.6 98.2 ±2.2 92.0 ±10.3 13.6 ±14.8 7.7 ±7.7

E Energy 91.1 ±7.5 95.3 ±4.8 72.3 ±30.9 48.8 ±36.1 18.4 ±17.1

MSP softmax 91.1 ±6.8 95.0 ±5.1 72.7 ±28.9 49.1 ±34.1 19.4 ±17.4

Dist TRUSTED 98.7 ±1.7 99.5 ±0.7 90.7 ±14.6 6.0 ±9.9 3.3 ±2.0

DM Pooled 97.0 ±4.5 97.7 ±5.0 92.3 ±11.2 13.9 ±16.6 7.6 ±7.9

E Energy 87.7 ±10.1 93.7 ±7.6 65.7 ±32.4 56.9 ±41.0 20.7 ±20.3

MSP softmax 89.1 ±8.3 94.3 ±6.2 67.9 ±31.0 53.1 ±36.6 19.9 ±18.7

Rob TRUSTED 98.6 ±1.5 99.1 ±1.1 92.9 ±11.5 7.7 ±12.3 4.7 ±5.4

DM Pooled 91.5 ±11.0 92.5 ±12.1 86.3 ±16.0 23.9 ±28.7 12.1 ±14.9

E Energy 95.3 ±4.3 97.0 ±4.4 79.6 ±24.3 30.2 ±27.4 12.3 ±12.7

MSP softmax 94.7 ±6.8 96.2 ±8.1 79.6 ±23.8 28.0 ±24.9 11.8 ±12.3

imdb BERT TRUSTED 95.1 ±5.6 80.1 ±21.3 99.5 ±0.7 21.3 ±26.2 20.2 ±24.4

DM Pooled 90.2 ±13.4 69.5 ±35.8 98.9 ±1.7 27.9 ±36.0 26.3 ±33.6

E Energy 87.3 ±14.9 62.5 ±31.0 98.5 ±2.0 37.2 ±38.7 35.0 ±36.1

MSP softmax 86.2 ±14.6 59.5 ±30.2 98.3 ±2.0 41.7 ±37.4 39.2 ±34.8

Dist TRUSTED 96.1 ±2.6 79.9 ±13.9 99.7 ±0.2 19.1 ±15.0 18.4 ±14.3

DM Pooled 86.0 ±17.6 64.0 ±38.8 98.2 ±2.4 36.6 ±42.6 34.5 ±39.7

E Energy 84.9 ±16.6 56.1 ±31.5 98.0 ±2.6 44.5 ±39.7 42.0 ±37.0

MSP softmax 84.7 ±15.3 55.2 ±29.6 98.1 ±2.3 46.6 ±35.9 44.0 ±33.3

Rob TRUSTED 95.3 ±7.4 80.6 ±20.7 99.5 ±0.9 18.3 ±24.1 17.5 ±22.5

DM Pooled 89.5 ±16.3 68.6 ±35.0 98.6 ±2.5 25.0 ±36.9 23.5 ±34.4

E Energy 89.9 ±12.6 64.8 ±23.1 98.8 ±1.7 35.2 ±34.6 33.2 ±32.2

MSP softmax 90.4 ±11.4 65.3 ±21.9 98.9 ±1.6 34.8 ±32.2 32.8 ±30.0

mnli BERT TRUSTED 95.5 ±6.0 82.8 ±18.7 99.2 ±0.9 19.9 ±26.8 19.0 ±24.3

DM Pooled 96.5 ±4.0 82.3 ±18.8 99.3 ±0.9 14.8 ±16.2 13.7 ±14.8

E Energy 89.4 ±8.8 67.5 ±19.9 93.9 ±10.2 46.6 ±33.1 36.2 ±26.7

Dist TRUSTED 96.8 ±2.8 83.6 ±14.1 99.3 ±0.8 15.4 ±14.5 14.7 ±13.1

MSP softmax 88.6 ±9.2 65.9 ±20.5 94.7 ±7.5 49.6 ±29.6 39.8 ±25.9

DM Pooled 94.9 ±6.2 76.2 ±24.4 98.7 ±1.7 19.9 ±19.1 17.6 ±17.4

E Energy 88.4 ±10.4 66.0 ±23.3 93.1 ±10.7 48.6 ±34.4 37.2 ±28.1

MSP softmax 88.3 ±8.9 65.2 ±21.4 93.8 ±8.1 51.4 ±28.5 40.1 ±24.8

Rob TRUSTED 96.2 ±2.9 83.0 ±12.3 99.0 ±1.7 21.4 ±16.7 19.2 ±14.8

DM Pooled 90.6 ±12.4 69.9 ±29.1 97.2 ±5.6 22.9 ±22.9 19.6 ±20.5

E Energy 91.9 ±6.3 69.5 ±18.5 95.7 ±6.8 41.3 ±25.9 32.7 ±21.4

MSP softmax 91.4 ±6.4 69.2 ±17.8 96.0 ±5.7 42.2 ±23.0 34.1 ±20.4

multi30k BERT TRUSTED 98.6 ±1.6 98.0 ±2.1 98.9 ±1.5 7.3 ±9.3 6.5 ±6.0

DM Pooled 98.2 ±2.2 97.4 ±3.3 98.2 ±2.4 8.3 ±10.9 7.2 ±6.4

E Energy 91.2 ±8.6 89.5 ±13.0 80.9 ±25.9 44.7 ±32.7 22.3 ±16.7

MSP softmax 92.0 ±7.4 89.5 ±12.2 84.2 ±19.5 40.7 ±26.4 23.1 ±16.7

Dist TRUSTED 97.2 ±2.7 95.6 ±5.0 97.8 ±2.0 17.2 ±18.0 14.5 ±12.6

DM Pooled 95.5 ±8.1 93.6 ±11.0 95.2 ±6.9 19.2 ±20.1 14.2 ±12.7

E Energy 88.2 ±9.4 86.4 ±13.3 77.4 ±27.0 57.0 ±34.3 30.5 ±22.0

MSP softmax 88.6 ±7.9 84.9 ±15.4 78.2 ±22.7 56.7 ±26.5 32.1 ±21.7

Rob TRUSTED 94.6 ±8.2 93.5 ±8.0 94.3 ±8.1 22.8 ±26.9 16.1 ±15.3

DM Pooled 93.2 ±10.5 93.1 ±10.6 92.0 ±14.4 20.7 ±24.4 12.5 ±13.3

E Energy 91.4 ±9.2 89.9 ±10.6 83.3 ±19.2 38.6 ±28.9 22.3 ±17.2

MSP softmax 91.9 ±6.4 90.3 ±7.7 85.9 ±14.3 38.1 ±25.3 23.2 ±15.9

Tab. 8: Average OOD detection performance (in %) per OUT-DS and per pretrained encoders.

C.2 Analysis Per IN-Dataset

In Fig. 10, we conduct a dynamical analysis per IN-DS. We observe a variation of performance (e.g.,
up to 10 AUROC points for sst2 for DM) while probing accross time.
Takeaways: Although our method achieves strong results a key dimension when deploying OOD
detection methods is to carefully select the checkpoints when learning the classifier.

C.3 Impact of the pretrained encoder

In Fig. 11, we report the results of the dynamical analysis and study the influence of the encoder
choice on the detection performance.
Takeaways Although, TRUSTED achieves strong results on a large number of configurations. We
observe different behaviours while considering different success criterion or different pretrained
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AUROC AUPR-IN AUPR-OUT FPR Err
OUT DS MODEL TECH Feature Type
rte BERT TRUSTED 98.8 ±1.4 98.3 ±1.9 98.6 ±1.6 6.2 ±9.1 6.0 ±5.8

DM Pooled 98.6 ±1.5 97.8 ±3.0 98.8 ±1.2 6.4 ±6.9 6.0 ±4.3

E Energy 91.0 ±6.3 89.6 ±8.8 82.3 ±22.6 45.4 ±28.9 23.1 ±16.9

MSP softmax 89.3 ±8.1 87.6 ±11.0 81.3 ±20.5 50.9 ±27.5 27.4 ±18.4

Dist TRUSTED 99.0 ±0.7 98.4 ±1.6 98.3 ±3.1 4.4 ±3.9 4.9 ±2.5

DM Pooled 97.9 ±2.4 96.6 ±5.0 97.7 ±2.9 9.4 ±8.6 7.4 ±5.3

E Energy 90.2 ±7.9 89.8 ±9.9 79.6 ±24.4 47.5 ±33.5 23.4 ±19.3

MSP softmax 89.8 ±7.3 88.9 ±9.8 79.6 ±22.0 50.6 ±27.5 26.1 ±18.0

Rob TRUSTED 97.3 ±2.2 96.7 ±2.7 95.1 ±8.7 15.7 ±14.7 10.4 ±8.3

DM Pooled 92.0 ±11.3 88.9 ±17.1 92.5 ±11.3 19.1 ±19.4 11.7 ±11.5

E Energy 92.2 ±6.0 90.4 ±9.7 84.0 ±20.1 40.6 ±26.5 21.4 ±15.5

MSP softmax 91.7 ±6.5 89.8 ±10.0 84.3 ±18.8 40.8 ±24.3 22.3 ±15.4

sst2 BERT TRUSTED 98.5 ±1.8 98.1 ±2.8 95.7 ±6.2 9.1 ±15.6 8.1 ±12.1

DM Pooled 95.2 ±6.7 98.3 ±1.7 83.8 ±26.0 17.8 ±23.2 5.8 ±3.5

E Energy 89.3 ±12.9 95.7 ±3.8 72.4 ±39.8 38.3 ±38.2 11.7 ±7.9

MSP softmax 90.1 ±10.4 95.2 ±4.2 73.0 ±38.5 37.9 ±32.7 12.5 ±5.3

Dist TRUSTED 95.9 ±3.8 94.3 ±8.0 89.6 ±14.3 22.8 ±21.3 16.1 ±16.1

DM Pooled 92.3 ±8.3 96.2 ±4.3 77.9 ±29.5 28.5 ±25.8 10.2 ±7.9

E Energy 86.2 ±12.4 90.3 ±12.0 68.7 ±40.0 46.2 ±34.2 16.5 ±12.2

MSP softmax 86.0 ±11.5 90.5 ±11.5 67.2 ±40.8 50.1 ±31.7 18.6 ±12.6

Rob TRUSTED 95.4 ±3.6 95.0 ±6.0 87.9 ±19.5 27.4 ±23.3 16.1 ±14.6

DM Pooled 94.3 ±8.9 97.1 ±3.6 85.1 ±23.7 16.8 ±19.7 6.5 ±3.8

E Energy 89.4 ±10.1 93.6 ±7.3 72.9 ±37.1 42.1 ±31.7 15.9 ±11.2

MSP softmax 89.6 ±9.4 93.9 ±5.9 73.0 ±36.6 41.5 ±27.4 15.5 ±7.5

trec BERT TRUSTED 98.6 ±2.1 99.7 ±0.5 91.9 ±10.7 8.3 ±15.7 4.7 ±4.3

DM Pooled 92.4 ±9.2 97.9 ±3.6 69.2 ±25.1 31.0 ±28.5 9.6 ±6.4

E Energy 87.9 ±10.4 97.2 ±3.5 50.7 ±31.1 56.3 ±33.0 12.8 ±7.5

MSP softmax 89.9 ±6.1 97.5 ±2.0 52.1 ±25.4 52.4 ±28.3 13.3 ±7.0

Dist TRUSTED 96.8 ±4.0 99.2 ±1.1 83.3 ±14.6 20.0 ±27.0 8.2 ±5.9

DM Pooled 91.2 ±9.2 97.8 ±3.7 61.0 ±26.7 35.7 ±25.2 9.6 ±5.6

E Energy 88.0 ±9.6 97.2 ±3.1 46.1 ±29.8 57.6 ±38.0 12.9 ±8.3

MSP softmax 88.6 ±8.2 97.2 ±2.8 45.2 ±26.0 55.1 ±30.0 13.3 ±7.8

Rob TRUSTED 96.5 ±2.9 99.1 ±0.8 82.5 ±14.0 21.7 ±19.1 8.7 ±3.9

DM Pooled 92.9 ±9.4 97.7 ±4.0 80.8 ±20.5 23.7 ±22.2 8.5 ±4.6

E Energy 90.7 ±6.0 97.4 ±2.7 54.5 ±24.3 45.4 ±25.9 12.0 ±5.7

MSP softmax 89.4 ±9.1 96.8 ±3.5 53.6 ±21.7 44.6 ±23.7 12.4 ±5.5

wmt16 BERT TRUSTED 96.2 ±5.5 94.5 ±7.2 97.1 ±4.1 16.1 ±23.2 12.2 ±14.5

DM Pooled 96.6 ±4.3 94.6 ±7.6 96.9 ±3.4 13.3 ±14.5 9.8 ±9.2

E Energy 89.6 ±9.0 88.0 ±11.0 80.9 ±23.9 46.6 ±34.2 23.8 ±19.9

MSP softmax 89.1 ±9.2 86.8 ±11.6 82.0 ±19.7 47.6 ±29.4 26.0 ±19.3

Dist TRUSTED 97.3 ±2.7 95.3 ±4.5 97.6 ±2.7 11.8 ±12.4 9.8 ±7.4

DM Pooled 95.4 ±5.0 92.7 ±9.5 94.7 ±5.9 17.7 ±15.9 11.6 ±10.2

E Energy 89.6 ±9.7 87.8 ±12.2 80.5 ±23.2 45.0 ±33.3 22.9 ±19.4

MSP softmax 89.1 ±8.6 86.9 ±10.9 79.5 ±21.5 49.1 ±28.1 25.8 ±18.4

Rob TRUSTED 96.8 ±2.6 95.6 ±3.5 96.3 ±5.5 17.6 ±15.9 12.7 ±9.6

DM Pooled 90.4 ±13.5 88.4 ±17.2 91.0 ±13.9 21.4 ±21.0 12.5 ±12.0

E Energy 92.3 ±5.8 89.9 ±8.3 85.1 ±18.5 39.4 ±26.6 21.8 ±16.1

MSP softmax 91.5 ±6.3 89.0 ±9.1 85.2 ±16.7 40.8 ±24.7 23.5 ±16.3

Tab. 9: Average OOD detection performance (in %) per OUT-DS and per pretrained encoders.
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(j) Checkpoint 20k.

Fig. 9: OOD detection score histogram when the IN-DS is IMDB OUT-DS is TREC for various check-
points. Left column corresponds to TRUSTED while the right column corresponds to Mahalanobis
distance.

models. For examples, on BERT and DIS., TRUSTED is uniformly better across checkpoints when
considering Fig. 11. For ROB., TRUSTED is not better on all metrics on last checkpoint (e.g., 20k).

C.4 All Combinations

For completeness of the paper, we report all the results of the dynamical analysis for all considered
combinations in this section (see Fig. 12 Fig. 13 Fig. 14 Fig. 15). We believe this will allow the
curious reader to gain more intuition and draw nuanced conclusions from our experiments.

C.5 Futur works

Futur works include testing our method on different settings such as sequence generation, multimodal
learning or automatic evaluation [21, 36, 53, 101, 43, 28, 15].
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Fig. 10: OOD performance across different checkpoints for the different IN-DS.
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Fig. 11: OOD performance of the four considers methods across different checkpoints for the different
pretrained models.
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Fig. 12: OOD performance of the four considers methods across different OUT-DS for 20NG. Results
are aggregated per pretrained models.
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Fig. 13: OOD performance of the four considers methods across different OUT-DS for IMDB. Results
are aggregated per pretrained models.
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Fig. 14: OOD performance of the four considers methods across different OUT-DS for SST2. Results
are aggregated per pretrained models.
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Fig. 15: OOD performance of the four considers methods across different OUT-DS for TREC. Results
are aggregated per pretrained models.
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