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Abstract

We study the problem of policy optimization (PO) with linear temporal logic (LTL)
constraints. The language of LTL allows flexible description of tasks that may be
unnatural to encode as a scalar cost function. We consider LTL-constrained PO as
a systematic framework, decoupling task specification from policy selection, and
as an alternative to the standard of cost shaping. With access to a generative model,
we develop a model-based approach that enjoys a sample complexity analysis for
guaranteeing both task satisfaction and cost optimality (through a reduction to a
reachability problem). Empirically, our algorithm can achieve strong performance
even in low-sample regimes.

1 Introduction

The standard reinforcement learning (RL) framework aims to find a policy that minimizes a cost
function. The premise is that this scalar cost function can completely capture the task specification
(known as the “reward hypothesis” [55, 53]). To date, almost all theoretical understanding of RL is
focused on this cost minimization setting (e.g., [62, 32, 31, 57, 45, 9, 24, 19, 10, 3, 4, 40, 47, 48]).

However, capturing real-world task specifications using scalar costs can be challenging. For one, real-
world tasks often consist of objectives that are required, as well as those that are merely desirable. By
combining these objectives into scalar costs, one erases the distinction between these two categories
of tasks. Also, there is recent theoretical evidence that certain tasks are simply not reducible to scalar
costs [1] (see Section 2). In practice, one circumvents these challenges using heuristics such as
adding “breadcrumbs” [54]. However, such heuristics can lead to catastrophic failures in which the
learning agent ends up exploiting the cost function in an unanticipated way [49, 61, 28, 68, 44].

In response to these limitations, recent work has studied alternative RL paradigms that use Linear
Temporal Logic (LTL) to specify tasks (see Section 7). LTL is a modeling language that can express
desired characteristics of future paths of the system [11]. The notation is precise enough to allow
the specification of both the required and desired behaviors; the cost minimization is left only to
discriminate between which LTL-satisfying policy is “best”. This ensures that the main objective —
e.g., time, energy, or effort — does not have any relation to the task and is easily interpretable.

Existing work on RL with LTL constraints tends to make highly restrictive assumptions. Examples
include (i) known mixing time of the optimal policy [23], (ii) the assumption that every policy
satisfies the task eventually [64], or (iii) known optimal discount factor [26], all of which assist in
task satisfaction verification. These assumptions have complex interactions with the environment,
making them impractical if not impossible to calculate. The situation is made more complex by
recent theoretical results [66, 7] that show that there are LTL tasks that are not PAC-MDP-learnable.

In this paper, we address these limitations through a novel policy optimization framework for RL
under LTL constraints. Our approach relies on two assumptions that are significantly less restrictive
than those in prior work and circumvent the negative results on RL-modulo-LTL: the availability
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of a generative model of the environment and a lower bound on the transition probabilities in the
underlying MDP. Under these assumptions, we derive a learning algorithm based on a reduction
to a reachability problem. The reduction in our method can be instantiated with several planning
procedures that handle unknown dynamics [12, 46]. We show that our algorithm offers strong
constraint satisfaction guarantees and give a rigorous sample complexity analysis of the algorithm.

In summary, the contributions of this paper are:

1. We provide a novel approach to LTL-constrained RL that requires significantly fewer assumptions,
and offers stronger guarantees, than previous work.

2. We develop several new theoretical tools for our analysis. These may be of independent interest.
3. We empirically validate using both infinite- and indefinite-horizon problems, and with composite

specifications such as collecting items while avoiding enemies. We find that our method enjoys
strong performance, often requiring many fewer samples than our worst-case guarantees.

2 Motivating Examples

We examine two examples where standard cost engineering cannot capture the task (Figure 1). We
consider the undiscounted setting here. See [41, 1] for difficult examples for the discounted setting.

Example 1 (Infinite Loop). A robot is given the task of perpetually walking between the coffee
room and the office (Figure 1 (Left)). To achieve this behavior, both the policy and cost-function
must be history-dependent. These can be made Markovian through proper state-space augmentation
and has been studied in hierarchical reinforcement learning or learning with options [38, 56]. Options
engineering is laborious and requires expertise. Nevertheless, without the appropriate augmentation,
any cost-optimal policy of a Markovian cost function will fail at the task. We will see in Section 3
that any LTL expression comes with automatic state-space augmentation, requiring no expert input.

Example 2 (Safe Delivery). The goal is to maximize the probability of safely sending a packet from
one computer to another (Figure 1 (Right)). Policy 1 leads to a hacker sniffing packets but passing
them through, and is unsafe. Policy 2 leads to a hacker stealing packets with probability p > 0, and is
safe with probability 1− p, and is the policy that satisfies the task. For cost engineering, let R and
S be the recurring costs of the received and stolen states. For the two policies, the avg. costs are
g1 = R and g2 = pS + (1− p)R. Strangely, we must set R > S in order for g2 < g1. Fortunately,
optimizing any cost function constrained to satisfying the LTL specification does not suffer from this
counter intuitive behavior as only policy 2 has any chance of satisfying the LTL expression.

1
2

p
1-p

R

S

Figure 1: (Left) Infinite Loop. The robot must perpetually walk between the coffee room and office.
Without proper state-space augmentation, a markovian cost function cannot capture this task. (Right)
Safe Delivery. The specification is to deliver a packet without being interfered. Policy 2 should be
chosen. One would need to penalize receiving the packet significantly over having it stolen: R > S.

3 Background and Problem Formulation

We now formulate the problem. An atomic proposition is a variable that takes on a truth value. An
alphabet over a set of atomic propositions AP is given by Σ = 2AP. For example, if AP = {a, b}
then Σ = {{}, {a}, {b}, {a, b}}. ∆(X) represents the set of probability distributions over a set X .

3.1 MDPs with Labelled State Spaces

We assume that the environment follows the finite Markov Decision Process (MDP) framework given
by the tupleM = (SM,AM, PM, CM, dM0 , LM) consisting of a finite state space SM, a finite
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action space AM, an unknown transition function PM : SM × AM → ∆(SM), a cost function
C : SM×AM → ∆([cmin, cmax]), an initial state distribution d0 ∈ ∆(SM), and a labelling function
LM : SM → Σ. We take AM(s) to be the set of available actions in state s. Unlike traditional
MDPs,M has a labeling function LM which returns the atomic propositions that are true in that
state. A run inM is a sequence of states τ = (s0, s1, . . .) reached through successive transitions.

3.2 Linear Temporal Logic (LTL), Synchronization with MDPs, and Satisfaction

Now we give some basic background on LTL. For a more comprehensive overview, see [11].
Definition 3.1 (LTL Specification, φ). An LTL specification φ is the entire description of the
task, including both desired and required behaviors, and is constructed from a composition of
atomic propositions, including logical connectives: not (¬), and (&), and implies (→); and temporal
operators: next (X), repeatedly/always/globally (G), eventually (F ), and until (U ).

Examples. Consider again the examples in Section 2. For AP = {a, b}, some basic task specifica-
tions include safety (G¬a), reachability (Fa), stability (FGa), response (a → Fb), and progress
(a & XFb). For the Infinite Loop example (Figure 1 (Left)), AP = {o, c} indicating the label of the
grid location of our agent (office, coffee, or neither). The specification is “GF (o & XFc)” meaning
“go between office and coffee forever”, and is a combination of safety, reachability, and progress.
For the Safe Delivery example (Figure 1 (Right)), AP = {s} indicating the safety of a state. The
specification is “Gs” meaning “always be safe”.

LTL Satisfaction: Synchronizing MDP with LTL. By synchronizing an MDP with an LTL formula,
we can easily check if a run in the MDP satisfies a specification φ. In particular, it is possible to
model the progression of satisfying φ through a specialized automaton, an LDBA Bφ [52], defined
below. More details for constructing LDBAs are in [25, 11, 35]. We drop φ from Bφ for brevity.
Definition 3.2. (Limit Deterministic Büchi Automaton, LDBA [52]) An LDBA is a tuple B =
(SB,Σ ∪ AB, P

B,SB∗, sB0 ) consisting of (i) a finite set of states SB, (ii) a finite alphabet Σ = 2AP,
AB is a set of indexed jump transitions (iii) a transition function PB : SB × (Σ ∪ AB)→ 2S

B
, (iv)

accepting states SB∗ ⊆ SB, and (v) initial state sB0 . There exists a mutually exclusive partitioning
of SB = SBD ∪ SBN such that SB∗ ⊆ SBD, and for s ∈ SB

D, a ∈ Σ then PB(s, a) ⊆ SBD and
|PB(s, a)| = 1, deterministic. AB(s) is only (possibly) non-empty for s ∈ SBD and allows B to
transition without reading an AP. A path σ = (s0, s1, . . .) is a sequence of states in B reached through
successive transitions. B accepts a path σ if there exists some state s ∈ SB∗ in the path that is visited
infinitely often.

We can now construct a synchronized product MDP from the interaction ofM and B.
Definition 3.3. (Product MDP) The product MDP XM,B = (S,A, P, C, d0, L,S∗) is an MDP
with S = SM × SB, A = AM ∪ AB, C((m, b), a) = CM(m, a) if a ∈ AM(m) otherwise 0,
d0 = {(m, b)|m ∈ dM0 , b ∈ PB(sB0 , L

M(m))}, L((m, b)) = LM(m), S∗ = {(·, b) ∈ S|b ∈ SB∗}
accepting states, and P : S ×A → ∆(S) taking the form:

P ((m, b), a, (m′, b′)) =


PM(m, a,m′) a ∈ AM(m), b′ ∈ PB(b, L(m′))

1, a ∈ AB(b), b′ ∈ PB(b, a),m = m′

0, otherwise

A run τ = (s0, s1, . . .) = ((m0, b0), (m1, b1), . . .) in X is accepting (accepted) if (b0, b1, . . .), the
projection onto B, is accepted. Equivalently, some s ∈ S∗ in X is visited infinitely often. This leads
us to the following definition of LTL satisfaction:
Definition 3.4 (Satisfaction, τ |= φ). A run τ in X satisfies φ, denoted τ |= φ, if it is accepted.
Definition 3.5. (Satisfaction, π |= φ) A policy π ∈ Π satisfies φ with probability P[π |= φ] =
Eτ∼TP

π
[1τ |=φ]. Here, 1X is an indicator variable which is 1 when X is true, otherwise 0. TP

π is the
set of trajectories induced by π in X with transition function P .

3.3 Problem Formulation

Our goal is to find a policy that simultaneously satisfies a given LTL specification φ with highest
probability (probability-optimal) and is also optimal w.r.t. the cost function of the MDP. We consider
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(stochastic) Markovian policies Π, and define the set of all probability-optimal policies as Πmax =
{argmaxπ′∈Π P[π′ |= φ]}. We first define the gain g (average-cost) and transient cost J :

gPπ ≡Eτ∼TP
π

[
lim

T→∞

1

T

T−1∑
t=0

C(st, π(st))
∣∣∣∣τ |= φ

]
, JP

π ≡ Eτ∼TP
π

[
κτ∑
t=0

C(st, π(st))
∣∣∣∣τ |= φ

]
(1)

where κτ is the first (hitting) time the trajectory τ leaves the transient states induced by π. When P
is clear from context, we abbreviate gPπ and JP

π by gπ and Jπ , respectively.

Gain optimality for infinite horizon problems has a long history in RL [12, 46]. Complementary
to gain optimality, we consider a hybrid objective including the transient cost. For any λ ≥ 0, the
optimal policy is the probability-optimal policy with minimum combined cost:

π∗
λ ≡ arg min

π∈Πmax

Jπ + λgπ = arg min
π∈Πmax

(Jπ + λgπ)P[π |= φ] (≡ V P
π,λ). (OPT)

In other words, probability-optimal policies are those that satisfy the entirety of the task, both desired
and required behaviors, whereas V P

π,λ ≡ (Jπ + λgπ)P[π |= φ] is the normalized value function1,
corresponding to a notion of energy or effort required, with λ representing the tradeoff between gain
and transient cost. We will often omit the dependence of V on P and λ for brevity.

Example. Consider the Safe Delivery example (Figure 1 (Right)). For policy 1, P[1 |= φ] = 0 and so
1 ̸∈ Πmax. Let policy 2 be a cost 1 timestep before stolen or receipt, then g2 = R is the (conditional)
gain, J2 = 1 is the (conditional) transient costs, P[2 |= φ] = 1− p, and V2 = (1 + λR)(1− p).
Problem 1 (Planning with Generative Model/Simulator). Suppose access to a generative model of the
true dynamics P from which we can sample transitions s′ ∼ P (s, a) for any state-action pair (s, a) ∈
S ×A.2 With probability 1− δ, for some errors ϵφ, ϵV > 0, find a policy π ∈ Π that simultaneously
has the following properties: (i) |P[π |= φ]− P[π∗ |= φ]| < ϵφ (ii) |Vπ − Vπ∗ | < ϵV .

4 Approach

4.1 End Components & Accepting Maximal End Components

Our analysis relies on the idea of an end component: a recurrent, inescapable set of states when
restricted to a certain action set. It is a sub-MDP of a larger MDP that is probabilistically closed.

Definition 4.1. (End Component, EC/MEC/AMEC [11]) Consider MDP (S,A, P, C, d0, L,S∗). An
end component (E,AE) is a set of states E ⊆ S and acceptable actions AE(s) ⊆ A(s) (where
s ∈ E) such that ∀(s, a) ∈ E × AE then Post(s, a) = {s′|P (s, a, s′) > 0} ⊆ E. Furthermore,
(E,AE) is strongly connected: any two states in E is reachable from one another by means of actions
in AE . We say an end component (E,AE) is maximal (MEC) if it is not contained within a larger
end component (E′,AE′), ie. ∄(E′,AE′) EC where E ⊆ E′,AE(s) ⊆ AE′(s) for each s ∈ A. A
MEC (E,AE) is an accepting MEC (AMEC) if it contains an accepting state, ∃s ∈ E s.t. s ∈ S∗.

4.2 High-Level Intuition

The description of our approach, LTL Constrained Planning (LCP), in Section 4.4 is rather technical
in order to yield theoretical guarantees. We thus first summarize the high-level intuitions.

Solution Decomposition. Consider the accepting states s∗1, s
∗
2 in Figure 2 (Left), which are the states

we need to visit infinitely often to satisfy the specification. First, let us identify the accepting maximal
end components (AMECs) of s∗1 and s∗2: the state sets A1 and A2 (resp.) and their corresponding
action sets AA1

and AA2
(the blue arrows in A1 and A2). Note that these AMECs do not include the

yellow action in Figure 2 (Left), which has a chance of leaving A1 and getting stuck in A3.

Our solution first runs a transient policy until reaching A1 or A2, and then switches to a (probability-
optimal) recurrent policy that stays within A1 or A2 (resp.) while visiting s∗1 or s∗2 (resp.) infinitely
often. A probability-optimal recurrent policy will select actions in AA1 and AA2 to visit s∗1, s

∗
2

1Normalized objectives are not unusual in RL, e.g. in discounted settings, multiplication by (1− γ)
2The use of a generative model is increasingly common in RL [24, 40, 3, 58], and is applicable in many

settings where such a generative model is readily available as a simulator (e.g., [21]).

4



A3

s*
1 s*

2

β

1− β
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(a) Abstract Diagram

s*

(b) Example, Infinite Loop

s*

(c) Example, Safe Delivery

Figure 2: Product MDP diagrams. (Left) The goal of LTL Constrained Policy Optimization can be
reduced to a reachability problem. We want to reach A1 or A2 from s0 and then follow the blue
arrows with some distribution. A3 with the blue arrows is a rejecting end component because it does
not contain an accepting state s∗. For β < 1 , the yellow action is not in the allowable action set
of A1 because there is a risk of entering A3, strictly decreasing our probability of LTL satisfaction.
(Center) Example for Infinite Loop, Figure 1 Left. (Right) Example for Safe Delivery, Figure 1 Right.

infinitely often (e.g., the uniform policies with the AMECs (A1,AA1
) and (A2,AA2

)). Finding a
transient policy from s0 to A1, A2 can be viewed as a reachability problem, which we can solve via a
Stochastic Shortest Path (SSP) problem and leverage recent literature [58, 34].

Cost Optimality. As stated in OPT, the goal is to find a cost-optimal policy within the set of
probability-optimal policies. For instance, the uniform policy over AA1

and AA2
(the blue arrows

in Figure 2 (Left) is probability optimal, but may not be cost optimal. Similarly, the unconstrained
cost-optimal policy may not be probability optimal. Consider just A1 for the moment. Suppose
the cost of the arrows between the white nodes is 4 while the other costs are 7. Then the uniform
(probability-optimal) policy in A1 over AA1 has cost 1

2

(
4+4
2

)
+ 1

2

(
7+7+4

3

)
= 5. The gain-optimal

policy that deterministically selects the actions between the white nodes π̃ has cost
(
4+4
2

)
= 4,

but is not probability optimal. If we perturb π̃ to make it even slightly stochastic (but still mostly
deterministic, i.e η-greedy with η ≈ 0), then it will be arbitrarily close to gain optimality and also
recover probability optimality. This is a preferable probability-optimal policy over the uniform policy.

Overall Procedure. The high-level procedure is: (i) identify the AMECs (e.g. (A1,AA1
), (A2,A2))

by filtering out bad actions like the yellow arrow; (ii) find a cost-optimal (optimal gain cost) recurrent
policy in each AMEC that visits some s∗ infinitely often; (iii) instantiate an SSP problem that finds a
cost-optimal (optimal transient cost) transient policy from s0 to A1 ∪A2 and avoids A3; (iv) return
a policy that stitches together the policies from (ii) and (iii). See Section 4.4 for the algorithmic
details. We show in Section 5 that this solution gives the optimal solution to OPT.

4.3 Additional Assumptions and Definitions

Perhaps surprisingly, when planning with a simulator (i.e., generative model), even infinite data is
insufficient to verify an LTL formula without having a known lower-bound on the lowest nonzero
probability of the transition function P [41]. Without this assumption, LTL constrained policy
learning is not learnable [66]. We thus begin by assuming a known lower bound on entries in P .3

Assumption 1 (Lower Bound). We assume we have access to a lower bound β > 0 on the lowest
non-zero probability of the transition function P (Sec. 3.1):

0 < β ≤ min
s,a,s′∈S×A×S

{P (s, a, s′)|P (s, a, s′) > 0}. (2)

We assume that all the costs are strictly positive, avoiding zero-cost (or negative-cost) cycles that trap
a policy. Leveraging cost-perturbations and prior work [58] can remove the assumption.
Assumption 2 (Bounds on cost function). The minimum cost cmin > 0 (Sec. 3.1) is strictly positive.

Let D = {(s, a, s′)} be all the collected samples (s, a, s′) while running the algorithm. At any
point, P̂ (s, a, s′) = |{(s,a,s′)∈D}|

|{(s,a)∈D}| is the empirical frequency of visiting s′ from (s, a). We introduce

3Our assumptions are consistent with the minimal requirements studied by [41]
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an event E and error ψ(n) to quantify uncertainty on P̂ (s, a, s′) based on current data: n(s, a) =
|{(s, a) ∈ D}|. E is based on empirical Bernstein bounds [42], and holds w.p. 1− δ (Lemma B.1).
Definition 4.2 (High Probability Event). A high probability event E :

E = {∀s, a, s′ ∈ S ×A× S,∀n(s, a) > 1 : |(P (s, a, s′)− P̂ (s, a, s′))| ≤ ψsas′(n) ≤ ψ(n)},

where ψsas′(n) ≡
√

2P̂ (s, a, s′)(1− P̂ (s, a, s′)))ξ(n) + 7
3ξ(n), ψ(n) ≡

√
1
2ξ(n) +

7
3ξ(n), and

ξ(n) ≡ log( 4n
2|S|2|A|

δ )/(n− 1).

Remark 4.1. For some ρ > 0, if we require |P (s, a, s′)− P̂ (s, a, s′)| ≤ ρ then we need n(s, a) =
ψ−1(ρ) samples for state-action pair (s, a). See Lemma B.2 for the quantity ψ−1(ρ).

Definition 4.3 (Plausible Transition Function). The set of plausible transition functions is given by

P = {P̃ : S ×A → ∆(S)|

{
P̃ (s, a, s′) = P̂ (s, a, s′), P̂ (s, a, s′) ∈ {0, 1}
P̃ (s, a, s′) ∈ P̂ (s, a, s′)± ψsas′ ∩ [β, 1− β], otherwise

} (3)

Let P(s, a) ≡ {P (s, a, ·)|P ∈ P} be the possible transition distributions for state-action pair (s, a).
We denote Pπ(s, s

′) = Ea∼π[P (s, a, s
′)] as the Markov chain given dynamics P with policy π, and

can be thought of as a |S| × |S| matrix Pπ = {pij}|S|
i,j=1.

4.4 Main Algorithm: LTL Constrained Planning (LCP)

Algorithm 1 LTL Constrained Planning (LCP)
Param: Error ϵV > 0, Error ϵφ > 0, Tolerance δ > 0, Lower bound β > 0 (see Assumption 1)
1: Globally, track P̂ (s, a, s′) = |{(s,a,s′)∈D}|

|{(s,a)∈D}| // Empirical estimate of P

2: ((A1,AA1), . . . , (Am,AAk ))← FindAMEC((S,A, P̂ ))
3: for i = 1, . . . , k do
4: Set πi, gi ← PlanRecurrent((Ai,AAi),

ϵV
7λ

) // Plan gain-optimal policy πi for Ai

5: Set π0 ← PlanTransient(((A1, g1), . . . , (Ak, gk)),
2ϵV
9

) // Plan shortest paths policy π0 to ∪k
i=1 Ai

6: return π = ∪k
i=0πi

Our approach, LTL Constrained Planning (LCP), has three components, as shown in Algorithm 1 and
described below. Recall from Problem 1 that the policy optimization problem OPT is instantiated
over a product MDP (Def. 3.3), and that we are given a generative model of the true dynamics P
from which we can sample transitions s′ ∼ P (s, a) for any state/action pair.

Finding AMECs (FindAMEC). After sampling each state-action pair ϕFindAMEC = O( 1β ) times (see
Prop. B.4), by Assumption 1, we can verify the support of P . We can compute all of the MECs using
Algorithm 47 from [11]. Among these MECs, we keep the AMECs, which amounts to checking if
the MEC (Ai,AAi

) contains an accepting state s∗ ∈ S∗ from the given product MDP.

PlanRecurrent (PR). To plan in each AMEC (A,AA) (i.e., find the optimal recurrent

Algorithm 2 PlanRecurrent (PR)
Param: AMEC (A,AA), error ϵPR > 0

1: Set ρ← 2ψ(ϕFindAMEC(β)) // ρ ∼ ∥P − P̃∥−1
1

2: repeat
3: Set ρ← ρ

2

4: Sample ψ−1(ρ) times ∀(s, a) ∈ A×AA

5: v′, v, P̃ ← VI(Lα
PR, dPR, ϵ

L
PR) // v′ = Lα

PRv

6: until ρ > ϵPR(1−∆(P̃ ))
3|A|cmax

// ∥P − P̃∥1 small

7: Set policy π ← η-greedy policy w.r.t. v′

8: Set gain gπ ← 1
2
(max(v′ − v) + min(v′ − v))

9: return π, gπ

policy), we use Alg. 2 with (extended) relative
value iteration (VI, Alg. 4 in appendix) using the
optimistic Bellman operator Lα

PR (see Table 1, we
discuss α in next paragraph). Let πv denote the
greedy policy w.r.t. the fixed point v = Lα

PRv
(v is the optimistic value estimate). Using the
η-greedy policy, π ≡ (1 − η)πv + ηUnif(AA)
(Alg. 2, Line 7), together with Pπ, makes A re-
current: s∗ ∈ A is visited infinitely often and
P[π |= φ|s0 ∈ A] = 1. Since η can be arbitrarily
small (Lemma B.7), then gπ ≈ gπv

and π is both
cost and probability optimal. As intuited in Sec-
tion 4.2, π has full support over AA but is nearly

deterministic.4

4Interestingly, typical RL settings admit a fully deterministic optimal policy, but for LTL constrained policy
optimization the optimal policy may not be deterministic (although can be very nearly so).
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Table 1: Subroutine Operators and Parameters for Value Iteration

Op/Param Description

Lα
PRv(s) mina∈AA(s)

(
C(s, a) + αminp∈P(s,a) p

T v
)
+ (1− α)v(s) ∀s ∈ A

dPR(vn+1, vn) < ϵLPR maxs∈A(vn+1(s)− vn(s))−mins∈A(vn+1(s)− vn(s)) < 2ϵPR
3

LPTv(s)

{
min

{
mina∈AA(s)

(
C(s, a) + minp∈P(s,a) p

T v
)
, V̄ /ϵφ

}
, s ∈ S \ ∪k

i=1Ai

λgi, s ∈ Ai

dPT(vn+1, vn) < ϵLPT ∥vn+1 − vn∥1 < cminϵPTϵφ/(4V̄ )

VI in Line 5 of Alg. 2 is an iterative procedure (Alg. 4 in appendix), and terminates via dPR < ϵLPR
(Table 1). Convergence of extended VI is guaranteed [46, 29, 22], so long as the dynamics, P̃ =
argminp∈P(s,a) p

T v, achieving the inner minimization of Lα
PR are aperiodic – hence the aperiodicity

transform α ∈ (0, 1) in Lα
PR [46]. Computing P̃ can be done efficiently [29] (Alg. 5 in appendix). For

stability, we shift each entry of vn by the value of the first entry vn(0) [12].

Alg. 2 returns the average gain cost gπ of policy π when we have enough samples for each state-action
pair in (A,AA) to verify that n > ψ−1

(
ϵPR(1−∆(P̃π))

3|A|cmax

)
where ∆(P̃π) =

1
2 maxij

∑
k |p̃ik − p̃jk|.

Here, ∆(P̃π) is an easily computable measure on the ergodicity of the Markov chain P̃π [18]. We
track ψ(n) (recall Def. 4.2) via a variable ρ and sample ψ−1(ρ) ≈ 1

ρ2 (see Lemma B.2) samples
from each state-action pair in (A,AA) (Alg. 2, Line 4). We halve ρ each iteration (Alg. 2, Line 3)
and convergence is guaranteed because ρ will never fall below some unknown constant ϵPR(1−∆̄A)

6|A|cmax

(see Lemma B.8); the halving trick is required because ∆̄A is unknown a priori.
Proposition 4.2 (PR Convergence & Correctness, Informal). Let πA be the gain-optimal policy in
AMEC (A,A). Algorithm 2 terminates after at most log2

(
6|A|cmax

ϵPR(1−∆̄A)

)
repeats, and collects at most

n = Õ( |A|2c2max

ϵ2PR(1−∆̄A)2
) samples for each (s, a) ∈ (A,AA). The η-greedy policy π w.r.t. v′ (Alg. 2, Line

5) is gain optimal and probability optimal: |gπ − gπA
| < ϵPR, P[π |= φ|s0 ∈ A] = 1.

Algorithm 3 PlanTransient (PT)

Param: States & gains: {(Ai, gi)}ki=1, err. ϵPT > 0
1: Set VT (s) = λgi for s ∈ Ai // Terminal costs
2: Sample ϕPT times ∀(s, a) ∈ (S \ ∪Ai)×A
3: v′, v, P̃ ← VI(LPT, dPT, ϵ

L
PT, VT ) // v′ = LPTv

4: Set π ←greedy policy w.r.t v′

5: return π

PlanTransient (PT). This is the stochastic
shortest path (SSP) reduction step that finds
a policy from the initial state s0 to the
AMECs (Alg. 3). The main algorithmic tool
used by PlanTransient is similar to that of
PlanRecurrent: it also uses extended value iter-
ation (VI, Alg. 4 in appendix) but with a different
optimistic Bellman operator LPT (Table 1), and
then returns a (fully deterministic) greedy policy

w.r.t. the resulting optimistic value v (Alg. 3, Line 4). LPT is used to calculate the highest probability,
lowest cost path to the AMECs (Alg. 3, Line 3).

Since rejecting end components might exist (see A3 from Figure 2 (Left)), a trajectory may end up
stuck and accumulate cost indefinitely, and so we must bound ∥v∥∞ < V̄ /ϵφ to prevent blow up.
In Prop. B.13, we show how to select V̄ such that π will reach the target states (in this case, the
AMECs), first with high prob and then with lowest cost. The existence of such a bound on ∥v∥∞ was
shown to exist, without construction, in [34]. In practice, choosing a large V̄ is enough.

The terminal costs VT (Alg. 3, Line 1) together with Bellman equation LPT has value function
Ṽπ ≈ p(Jπ + 1

p

∑k
i=1 pigπi

) + (1 − p)V̄ /ϵφ ≈ Vπ, relating to Vπ (OPT), see Section A.1. Here,

pi = P[π reaches Ai] ≡ Eτ∼TP
π
[1∃s∈τ s.t s∈Ai

] and p =
∑k

i=1 pi. VI converges when dPT < ϵPT
(see Table 1). Convergence of extended VI for SSP is guaranteed [58, 34]. The number of samples

required for each state-action pair (s, a) ∈ (S \ ∪Ai)×A is ϕPT = ψ−1
(

cminϵPTϵ
2
φ

14|S\∪k
i=1Ai|V̄ 2

)
.

Proposition 4.3 (PlanTransient Convergence & Correctness, Informal). Denote the cost- and
prob-optimal policy as π′. After collecting at most n = Õ( |S\∪k

i=1Ai|2V̄ 4

c2minϵ
2
PTϵ

4
φ

) samples for each (s, a) ∈
(S \ ∪ki=1Ai)×A, the greedy policy π w.r.t. v′ (Alg. 3, Line 3) is both cost and probability optimal:

∥Ṽπ − Ṽπ′∥ < ϵPT, |P[π reaches ∪ki=1 Ai]− P[π′ reaches ∪ki=1 Ai]| ≤ ϵφ.
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5 End-To-End Guarantees

The number of samples necessary to guarantee an (ϵV , ϵφ, δ)-PAC approximation to the cost-optimal
and probability-optimal policy relies factors: β (lower bound on the min. non-zero transition
probability of P ), {cmin, cmax} (bounds on the cost function C), ∆̄Ai

(worst-case coefficient of
ergodicity for EC (Ai,AAi

)), V̄ (upper bound on the value function), and λ (tradeoff factor).
Theorem 5.1 (Sample Complexity). Under the event E , Assumption 1 and 2, after

n = Õ
(
1

β
+

1

ϵ2V

(
|S|2V̄ 4

c2minϵ
4
φ

+ λ2
k∑

i=1

|Ai|2c2max

(1− ∆̄Ai
)2

))
samples5 are collected from each state-action pair, the policy π returned by Algorithm 1 is, with
probability 1− δ, simultaneously ϵV -cost optimal and ϵφ-probability optimal, satisfying:

(i) |P[π |= φ]− P[π∗ |= φ]| ≤ ϵφ (ii) ∥Vπ − Vπ∗∥∞ < ϵV . (4)

With a sufficiently large λ (which may not be verifiable in practice), π is also gain optimal.
Corollary 5.2 (Gain (Average Cost) Optimality). There exists λ∗ > 0 s.t. for λ > λ∗, the policy π
returned by Alg. 1 satisfies (4), gπ = argminπ′∈Πmax

gπ′ , and is probability and gain optimal.

The high-level structure of our analysis follows the algorithm structure in Section 4.4, via composing
the constituent guarantees. To complete the analysis, we develop some technical tools which may be
of independent interest, including a gain simulation Lemma B.8 and an η-greedy optimality Lemma
B.7. For ease of exposition, we also ignore paths between AMECs (see Appendix D.2).

6 Empirical Analysis
We perform experiments in two domains: (1) Pacman domain where an agent find food and indefinitely
avoids a ghost; (2) discretized version of mountain car (MC) [14] where the agent must reach the flag.
Our goal is to understand whether: (i) our LCP approach (Alg.1) produces competitive polices; (ii)
LCP can work in continuous state spaces through discretization; (iii) LCP can enjoy efficient sample
complexity in practice. For a baseline, we use Logically Constrained RL (LCRL, [26]), which is a
Q-learning approach to LTL-constrained PO in unknown MDPs. We also do heavy cost shaping to
LCRL as another baseline. See App E for more details, experiments, and figures.

6.1 Results

Competitiveness of the policy in full LTL specs? The probability of LCP satisfying the LTL
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Figure 3: Results. (Left Column) Pacman. φ is to
eventually collect food and always avoid the ghost. We
let the system run for a maximum of 100 timesteps.
(Right Column) Discretized Mountain Car (MC). φ is
to eventually reach the flag.

spec in Figure 3 (Left) approaches 1 much
faster than the two baselines. The returned
policy collects the food quickly and then
stays close, but avoids, the ghost. Any pol-
icy that avoids the ghost is equally good,
as we have not incentivized it to stay far
away. LCRL redefines cost as 1 if the LTL
is solved and 0 otherwise, which is too
sparse and learning suffers. Indeed, shaped
LCRL performs better than straight LCRL.

Performance in continuous state space?
Similarly, the probability of satisfying the
LTL spec in Figure 3 (Right) goes up to
1. However, here the LCRL (shaped) base-
line performs relatively well as it is being
given “breadcrumbs” for how to solve the
task. Our algorithm performs well without
needing any cost shaping. Standard LCRL fails to learn. This experiment demonstrates that our
method can be used even in discretized continuous settings.

5The lower bound relating to β from [41] is Ω( log(2δ)
log(1−β)

) whereas ours is Õ( 1
β
). We conjecture that Ω̃( 1

β
)

samples is required. See Appendix Section C.
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Sample Complexity? Our theory is quite conservative w.r.t. empirical performance. In Pacman
(Figure 3, Left), Thm. 5.1 suggests ≈ 350 samples per (s, a) pair just to calculate the AMECs.
Empirically, LCP finds a good policy after 11 samples per (s, a) pair (∼ 66k/6k samples/pair).

Other Considerations. One of the strengths and potential drawbacks of LTL is its specificity. If
a φ, for a truly infinite horizon problem, is to “eventually” do something, then accomplishing the
task quickly is not required. As a finite horizon problem, in MC (Fig. 3, Right) SSP finds the fastest
path to the goal. In contrast, since any stochastic policy with full support will “eventually” work, the
policy returned by LCP for Fig 1 (Left) (Fig. 2 Center, & App Fig. 7) may take exponential time to
complete a single loop. Two straightforward ways to address this issue are: (a) including explicit
time constraints in φ; and (b) cost shaping to prefer policies reaching some s∗ quickly and repeatedly.
Unlike standard cost-shaping, φ satisfaction is still guaranteed since the cost is decoupled from φ.

7 Related Work

Constrained Policy Optimization. One attempt at simplifying cost functions is to split the desired
behaviors from the required behaviors. The desired behaviors remain as part of the cost function while
the required behaviors are treated as constraints. Recent interest in constrained policy optimization
within the RL community has been related to the constrained Markov Decision Process (CMDP)
framework [6, 39, 2, 43]. This framework enables clean methods and guarantees, but enforces
expected constraint violations rather than absolute constraint violations. Setting and interpreting
constraint thresholds can be very challenging, and inappropriate in safety-critical problems [38].

LTL + RL. Recently, LTL-constrained policy optimization has been developed as an alternative to
CMDPs [41]. Unlike CMPDs, the entire task is encoded into an LTL expression and is treated as the
constraint. Q-learning variants when dynamics are unknown and Linear Programming methods when
dynamics are known are common solution concepts [50, 26, 13, 16, 20]. The Q-learning approaches
rely on proper, unknowable tuning of discount factor for their guarantees. Theoretically oriented
works include [23, 64]. While providing PAC-style guarantees, the assumptions made in these works
rely on unknowable policy-environment interaction properties. We make no such assumptions here.

Another solution technique is employing reward machines [60, 17, 63] or high-level specifications
that can be translated into reward machines [30]. These works are generally empirical and handle
finite or repeated finite problems (episodic problems at test time); they can only handle a smaller
set of LTL expressions, specifically regular expressions. Our work handles ω-regular expressions,
subsuming regular expressions and requires a nontrivial leap, algorithmically and theoretically, to
access the broader set of allowable expressions. Many problems are ω-regular problems, but not
regular, such as liveness (something good will happen eventually) and safety (nothing bad will happen
forever). The works that attempt to handle full LTL expressibility redefine reward as 1 if the LTL is
solved and 0 otherwise; the cost function of the MDP is entirely ignored.

Verification and Planning. As an alternative to our approach, one might consider LTL satisfaction
verification and extend it to an optimization technique by checking every policy (which will naively
take an exponential amount of samples to verify a single policy [15, 8]). Many verification approaches
exist [36, 11, 5, 67, 37, 27] and among the ones that do not assume known dynamics, the verification
guarantees rely on quantities as difficult to calculate as the original verification problem itself [8].

8 Discussion

We have presented a novel algorithm, LCP, for policy optimization under LTL constraints in an
unknown environment. We formally guarantee that the policy returned by LCP simultaneously has
minimal cost with respect to the MDP cost function and maximal probability of LTL satisfaction.
Our experiments verify that our policies are competitive and our sample estimates conservative.

The assumptions we make are strong, but to the best of our knowledge, are the most relaxed amongst
tractable model-based algorithms proposed for this space. Model-free algorithms (Q-learning) have
less stringent assumptions but do not come with the kind of guarantees that our work has and largely
ignore the cost function, solving only part of the problem. An interesting future direction would be to
extend our work to continuous state and action spaces and settings with function approximations.

9



Acknowledgements. Cameron Voloshin is funded partly by an NSF Graduate Fellowship and a Kortschak
Fellowship. This work is also supported in part by NSF #1918865, ONR #N00014-20-1-2115, and NSF
#2033851.

References
[1] David Abel, Will Dabney, Anna Harutyunyan, Mark K Ho, Michael Littman, Doina Precup, and Satinder

Singh. On the expressivity of markov reward. In Advances in Neural Information Processing Systems,
2021.

[2] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained Policy Optimization. In
Proceedings of the 34th International Conference on Machine Learning, 2017.

[3] Alekh Agarwal, Sham Kakade, and Lin F Yang. Model-based reinforcement learning with a generative
model is minimax optimal. In Conference on Learning Theory, 2020.

[4] Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. Optimality and approximation with
policy gradient methods in markov decision processes. In Conference on Learning Theory, 2020.

[5] Gul Agha and Karl Palmskog. A survey of statistical model checking. ACM Trans. Model. Comput. Simul.,
28(1), jan 2018.

[6] Eitan Altman. Constrained Markov Decision Processes: Stochastic Modeling. Routledge, Boca Raton, 1
edition, December 2021.

[7] Rajeev Alur, Suguman Bansal, Osbert Bastani, and Kishor Jothimurugan. A framework for transforming
specifications in reinforcement learning. arXiv preprint arXiv:2111.00272, 2021.
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