
α-ReQ : Assessing representation quality by
measuring eigenspectrum decay

Kumar Krishna Agrawal†
UC Berkeley

CA, USA

Arnab Kumar Mondal†
Mila & McGill University

Montréal, QC, Canada

Arna Ghosh†

Mila & McGill University
Montréal, QC, Canada

Blake A. Richards
Mila, Montreal Neurological Institute & McGill University

Montréal, QC, Canada
Learning in Machines and Brains Program, CIFAR

Toronto, ON, Canada

Abstract

Self-Supervised Learning (SSL) with large-scale unlabelled datasets enables learn-
ing useful representations for multiple downstream tasks. However, efficiently
assessing the quality of such representations poses nontrivial challenges. Existing
approaches train linear probes (with frozen features) to evaluate performance on a
given task. This is expensive both computationally, since it requires retraining a
new prediction head for each downstream task, and statistically, which requires
task-specific labels for multiple tasks. This poses a natural question, how do we
efficiently determine the "goodness" of representations learned with SSL across a
wide range of potential downstream tasks? In particular, a task-agnostic statisti-
cal measure of representation quality that predicts generalization without explicit
downstream task evaluation would be highly desirable.
In this work, we analyze characteristics of learned representations fθ in well-trained
neural networks with canonical architectures & across SSL objectives. We ob-
serve that the eigenspectrum of the empirical feature covariance Cov(fθ) can be
well approximated with the family of a power-law distribution. We analytically
and empirically (using multiple datasets, e.g. CIFAR, STL10, MIT67, ImageNet)
demonstrate that the decay coefficient α serves as a measure of representation
quality for tasks that are solvable with a linear readout, that is, there exist well-
defined intervals for α where models exhibit excellent downstream generalization.
Furthermore, our experiments suggest that key design parameters in SSL algo-
rithms, such as BarlowTwins [1], implicitly modulate the decay coefficient of the
eigenspectrum (α). As α depends only on the features themselves, this measure for
model selection with hyperparameter tuning for BarlowTwins enables the search
with less compute.

1 Introduction

The recent success of self-supervised learning (SSL) has changed the landscape of deep learning
significantly. With well-engineered architectures and training objectives, SSL models learn useful
representations from large datasets without relying on any labels [1, 2, 3]. Despite this progress,
quantifying the representation quality for models trained with SSL is still an open problem. The

†
These authors contributed equally to this work

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



Figure 1: (A) One approach to evaluate representation quality is tracking the eigenspace of feature co-
variance matrix Σn(f) = 1/n

∑n
i=1 f(xi)f(xi)

⊤ . Analysing populations of neural activation [6, 7],
suggests that the eigenspectrum for Σn(f) can be approximated by power-law, where λi ∝ i−α. (B)
For a ResNet-50 model pretrained on ImageNet, we extract activations from an intermediate layer. We
plot the eigenvalue spectrum {λ1, ..., λd} for covariance matrix Σn(resnet50(feats=‘block4’))
in log-log scale. Further, fitting a linear regressor we estimate the decay coefficient α̂.

most obvious (and common) solution is to assess performance of models using these representations
on downstream tasks. However, if the goal is general representations that can be used across many
domains, then this either requires a large investment of time and energy to be done well (in order
to assess performance on many tasks and datasets). Alternatively, if models are assessed on only a
small number of datasets and tasks, then it is hard to be confident in the assessment. Thus, we are left
with a question: Can we assess the quality of learned representations without explicitly evaluating the
performance on downstream tasks? To answer this question, we must formally define the “quality” of
representations and subsequently examine statistical estimators that measure this property without
needing downstream evaluation. Beyond theoretical interest, such a metric would be highly desirable
for model selection and also useful for designing new SSL algorithms.

In search of such a metric, we turn our attention to one of the more efficient learning machines in
existence – the mammalian brain. The hierarchical and distributed organization of neural circuits,
especially in the cortex, provides neural representations that support a wide array of behaviours across
many domains. For example, representations in primary visual cortex (V1) of mammalian brains are
used by animals to support downstream behaviours ranging from object categorization to movement
detection and motor control [4, 5]. This berth of downstream uses of V1 representations is desirable
for artificial vision systems trained with SSL. Thus, understanding the properties of representations
in V1 is a reasonable starting point for seeking a general metric of representation quality.

Recent breakthroughs in systems neuroscience enable large-scale recordings of neural activity. By
recording and analyzing the response to visual stimuli, [6, 7] find that activations in the mouse and
macaque monkey V1 exhibit a characteristic information geometric structure. In particular, these
representations are high-dimensional, yet the amount of information encoded along the different
principal directions varies significantly. Notably, this variance (computed by measuring the eigen-
spectrum of the empirical covariance matrix) is well-approximated by a power-law distribution with
decay coefficient ≈ 1, i.e., the nth eigenvalue of the covariance matrix scales as 1/n.

Motivated by these results, we explore the use of the decay rate of the empirical eigenspectrum to
characterize representation quality in neural networks trained with SSL (Fig. 1a). Across diverse
model architectures, pretraining objectives, and downstream classification tasks, we empirically
observe an eigenspectrum decay in the representation covariance matrix that roughly follows a
power-law distribution (see e.g. Fig. 1b). We also find that the coefficient of this decay, denoted
by α, is informative of downstream generalization performance. Importantly, α can efficiently be
calculated without any labels, and thereby, could be incorporated into existing SSL pipelines for
efficient model selection on fixed compute budget. Our core contributions in this paper are:

1. α as a potential metric We observe that canonical pretrained architectures have representa-
tions which loosely conform to a power-law distribution in their covariance eigenspectrum.
Under an assumption of a power-law distribution, we prove that the convergence rate and
upper bound on generalization error are related to decay-coefficient (α) of the corresponding
power-law distribution, with best values of α being neither too large nor too small.

2



2. α as a label-free measure for representation quality: We empirically validate our theoret-
ical results by demonstrating a relationship between α and downstream generalization. In
particular, we find that either too high or too low an α value implies poor generalization,
both in-distribution and out-of-distribution. Generally, the best representations are those
where α is in a range that is close to 1, as observed in V1 of the real brain. Furthermore,
these results hold irrespective of the choice of network architecture or pretraining objective.

3. α for model selection in SSL: We establish α as a reliable metric for model selection in
a specific case of SSL, Barlow Twins [1]. Notably, we show that α allows us to identify
model hyper-parameters that lead to representations that generalize well without any labels,
more so than the actual loss function used to train the network.

Altogether, our results show that α is a promising task/architecture/data agnostic metric for assessing
representation quality in SSL. We publicly release our results and code

†
.

2 Theoretical Framework to Assess Representations in SSL

We are interested in evaluating the quality of high dimensional representations learned by neural
networks. Formally, we consider the overparameterized setting, with datasets X ⊂ Rd, and learned
mappings f : Rd → RD such that f(x) is a vector of D-dimensional features.

We consider DNNs as our function approximators, where each architecture implicitly defines a
function class F = {fθ : θ ∈ Θ} where Θ ⊂ Rp is the feasible set of model parameters (e.g bounded
Θ, [−B,B]

p for some B ∈ R). The search for good representations poses the following optimization
problem: with a dataset Dpretrain from some data distribution Ppretrain (potentially with labels),
search for optimal parameters θ∗ such that with pretrain objective Lpretrain(f ,D)

θ∗ = arg min
fθ∈F

Lpretrain(fθ, Dpretrain) (1)

The above optimization problem is usually non-convex, and often uses gradient based optimizer to
find an approximate solution θ̂. Typically, to measure the quality of fθ̂, researchers evaluate the
quality of representations on a downstream task Ddownstream with a linear readout using some metric
R(linear(fθ̂), Ddownstream). A concrete example is pretraining a VGG-16 model (F ) on ImageNet
dataset (Dpretrain) and evaluating the learned representations using classification accuracy (R) by
learning a linear classifier on the MIT67 dataset (Ddownstream). For the rest of the paper, we denote
feature maps as fθ(x) ∈ RD where fθ : X → RD, and the readout network as gϕ : RD → Rk, where
k is the target dimensionality. For simplicity of analysis, we consider linear readouts unless explicitly
mentioned, i.e. gϕ(x) = xTϕ.

2.1 Covariance estimation and eigenspectrum

For a parameterized function fθ : X → RD (assume centered), the (n-sample) empirical covariance
matrix is defined as:

Σn(fθ) =
1

n

n∑
i=1

fθ(xi)fθ(xi)
T

The eigenspectrum of Σn(fθ) informs us about the variance explained by each principal component of
the space spanned by representations fθ(x). Using the spectral decomposition theorem on symmetric
matrices, Σ = UΛUT , where Λ is a diagonal matrix with nonnegative entries, and U is a matrix
whose columns are the eigenvectors of Σ. Without loss of generality we assume that λ1 ≥ λ2... ≥ λm,
where m = min(n,D) is the rank of Σn(fθ).

2.2 Eigenspectrum Decay in Deep Representation Learning

Recent work in characterizing representation structure in canonical DNNs has demonstrated that the
covariance eigenspectrum roughly follows a power-law [8, 9, 10]. Specifically, the eigenspectrum

†
https://github.com/kumarkrishna/fastssl

3

https://github.com/kumarkrishna/fastssl


of a covariance matrix follows a power-law distribution PL(α), or zeta distribution if for λj ∈
[λmin, λmax], the eigenvalues λj are all nonnegative, and

λj ∝ j−α

for some α > 0. Here, α is the slope of the power law, and is referred to as the coefficient of decay of
the eigenspectrum. Intuitively, small α (typically α ≤ 1) suggests a dense encoding, while a high α
(rapid decay) corresponds to a sparse encoding.

Insights from High-Dimensional Linear Regression : Recent work in theoretical machine learning
has connected bounds on generalization error for a linear regression problem to the eigenspectrum of
the feature covariance matrix. Specifically, in the infinite-dimensional setting with D → ∞, [11]
studied the linear regression setting with Gaussian features, and proved that if the eigenspectrum
follows a power-law distribution (up to polylogarithm factors), the min-norm solution provides
good generalization performance iff α = 1. The asymptotic regime of infinite width is an excellent
framework to study theoretical properties of DNN representations. However, despite having a large
number of parameters, practical DNNs always possess finite dimensional representations, making it
important to investigate the implications of such results in finite width models. In particular, for the
finite dimensional setting we try to answer: Does α sufficiently larger or smaller than 1, still allow
efficient learning and strong generalizability?

To answer this question, we narrow our focus to gradient-based optimization techniques usually used
to train DNNs. In particular, from the optimization perspective, Advani et al. showed that for deep
linear regression in high dimensions, the time required for training and the steady-state generalization
error are both O( 1

λmin
) [12]. A key difference from our work is that they assume the inputs are drawn

from an isotropic Gaussian distribution. Instead, we investigate the generalization of linear regression
on fθ(x), which has a power law structure in its covariates. We show that the training convergence
time grows exponentially with α using the following theorem:
Theorem 2.1. Let ŷ = fθ(x)

Tψ be an overparameterized linear regression problem where ψ is
learned using gradient descent in order to optimize the training error, Ex,y[(y − fθ(x)

Tψ)2], where
(x, y) ∼ Dtrain. If we assume a power-law distribution in the eigenspectrum of representations at
fθ, i.e. λn = c

nα ∀n ≥ n∗, where n∗ ∈ {1, 2...N}, then the time required by gradient descent to
minimize the training error, Tconvergence = O(Nα) where N is number of training samples.

The outline of the proof builds on key results relating to gradient descent dynamics from [13]. We
show that gradient descent updates, when ψ is initialized to 0, yield a recursive relation for ψ(k), i.e.
ψ after k update steps. Plugging this relation in the gradient formulation, we show that the update step
length along the nth principal direction of fθ(x) shrinks exponentially with a decay rate proportional
to λn. Therefore, the time to convergence in training is controlled by the smallest eigenvalue which,
by design, follows the power law. In sum, Theorem 2.1 provides an explanation against arbitrarily
large values of α.

Next we show that α can’t be arbitrarily small as the upper bound on generalization error is higher
for smaller values of α.
Theorem 2.2. Let ŷ = fθ(x)

Tψ be a linear regression problem as before. Let us further assume that
fθ(x) ∀x ∼ Dtrain is a representative subset of the inputs from true data distribution: (x, y) ∼ D.
Assuming a power-law distribution in the eigenspectrum of representations at fθ, i.e. λn = c

nα ∀n ≥
n∗, where n∗ ∈ {1, 2...N}, the generalization error after T weight update steps, G(T ) is:

G(T ) := Ex,y∼D[(y − fθ(x)
Tψ)2] ≤ O

(
rd̂(Σ(fθ)

)
where rd̂(Σ(fθ)) =

∑m
i=d̂ λi∑m
i=1 λi

=

∑m
i=d̂ i

−α∑m
i=1 i

−α
(2)

Here, m = min(n,D) is the rank of Σn(fθ).

Notably, rd̂(Σ(fθ)) can be thought of as a measure of effective rank of the covariance matrix and
grows with decreasing values of α. Therefore, the upper bound for generalization error is higher
for lower α. Taken together, Theorems 2.1 and 2.2 suggest that α can neither be too high nor too
low and there exists a tradeoff region which results in efficient learning and strong generalizability,
where these representations form a good basis for gradient-based optimization on downstream task
performance.

4



Figure 2: Overparameterized linear regression, with inputs drawn from Gaussian distribution with
power-law in the covariance matrix. Models are trained with gradient descent with initialization
ψ0 = 0. Note that α > 1 particularly suffers from high train, test MSE loss, with low generalization
error with α ≈ 1.

Another motivating example Before exploring the link between α and generalization performance
of deep networks, we validate our theorems in a simple linear regression setting.

We first consider its relationship to the finite dimensional regression setting as in [11]. Specifically,
Theorem 6 of their paper states that the conditions for “benign overfitting”, wherein a model can
perfectly fit noisy training data without any subsequent loss of performance on testing data, may be
looser in finite dimensions as opposed to the necessary and sufficient condition of α = 1 in infinite
dimensions. To empirically test this in the finite high dimensional setting, we examine linear least
squares regression using different covariate structures for the input data. Formally, we consider
covariates {xi}Ni=1, such that xi ∈ Rd is sampled from a Gaussian distribution with covariance
structure Σ = diag{λ1, ...λd} where λj ∼ PL(α), i.e λj ∝ cj−α. We assume access to the
corresponding labels {yi}Ni=1 generated under a teacher function θ∗, such that yi = xTi θ

∗ + ϵi. We
find that in this scenario there is a clear relationship between the proximity of α to 1 and the presence
of benign overfitting. As shown in Fig. 2, when α is close to 1, the training loss is low, but the
validation loss is also low. Thus, when α is close to 1, the generalization properties are at their best.
This example thus provides another hint that α is a potential measure for how well a model will be
able to generalize.

3 Experimental Setup
Our theoretical results suggest the following: for representations with power-law characteristics, the
decay-coefficient (α) effects the adaptivity, where the convergence rate of linear regression with
gradient descent scales exponentially O(nα) with α. On the other hand, if trained sufficiently long,
the upper bound for generalization error improves with larger α. Together, these items imply that
if one wants to use gradient descent to train a downstream task then α for the representations used

Figure 3: α is predictive of out-of-distribution object recognition performance. α is strongly
correlated to object recognition performance on STL10 across different architectures and pretraining
loss functions.

5



Figure 4: α is predictive of out-of-distribution object recognition performance. α is strongly
correlated to object recognition performance on MIT67 across different architectures and pretraining
loss functions.

should be neither too large nor too small, i.e. high quality representations are those with α in a
“Goldilocks” zone. Building on these insights, we now design experiments to empirically study the
potential for α to be used as a representation quality metric. We do so by measuring the relationship
between α and the standard metric of representation quality, i.e. downstream task generalization
performance. In this work, we restrict our scope to vision tasks, specifically object classification and
scene recognition. In particular, our experiments:

• measure the eigenspectrum decay & generalization : We systematically evaluate in-
distribution and out-of-distribution generalization, and simultaneously, we also measure α,
across diverse choices for network architectures, pretraining learning objectives, and across
multiple datasets. We then look at whether α values near some neighbourhood around 1 are
indeed predictive of representations that generalize well to downstream tasks.

• explore α as a metric for model-selection in SSL: Measuring α is label-free and computa-
tionally inexpensive, as it requires a single forward-pass on the downstream dataset. We thus
ask, is α predictive of generalization capabilities for current SSL algorithms, and if so, can
it be used for model selection? We run extensive ablations on design of the BarlowTwins
[1] algorithm in an effort to answer this question.

3.1 Measuring eigenspectrum Decay & Generalization

Evaluation Protocol: To measure α for the learned representation f(xi), we first extract features
from intermediate layers of a DNN pretrained on Dpretrain and estimate the corresponding covariance
matrix Σn(f). Next, we compute the full set of numerical eigenvalues, and estimate α by a fitting a
linear model on the eigenspectrum in log-log scale. Our pretrained models are taken from PyTorch
Hub [14] and timm [15]. Given that we observed no significant difference between the observed α
values in the train and test sets, we refer to this empirical estimate as the α for the dataset.

To estimate the capacity of intermediate representations in solving the downstream task, we train
a linear readout layer, g(.), from representations to target logits. Intuitively, this comes down to
establishing a relationship between the manifold geometry and linear separability of representations
[16]. Thereafter, we observe the correlation between estimated α and the linear readout performance.
Notably, we also tried non-linear g(.) and observed a similar trend in results (see Appendix B.1).

Inductive bias of Model Architecture In this section, we investigate the relationship between α
of the representation covariance matrix and object/scene recognition performance in DNNs with
different backbones and the role of depth. In order to do so, we examine varying depth configurations
within network architectures across three generations of models on the STL10 and MIT67 dataset
[17]. We choose both object and scene recognition task as they fundamentally differ in the nature
of the features that must be extracted to perform well. For scene recognition, the model focuses on
global features in the entire image, while for object recognition, the model focuses on local features
of the image containing the object[18].

6



We examine deep Convolutional Neural Networks (CNNs) without any residual connection as our
first family of models. Specifically, we choose three different configurations of VGG-Net [19],
namely VGG-13, VGG-16 and VGG-19. We inspect representations that are input to the dropout
and MaxPool layers during the forward pass of the network. Second, we consider Deep Residual
Networks [20] which are widely used in computer vision. We inspect the representations that are
input to each of the residual blocks as well as the Adaptive average pool in ResNet-13, ResNet-50
and ResNet-101 during their respective forward passes. Finally, owing to the recent success of
transformers in object recognition tasks we consider Vision Transformers (ViT) [21] as the third
family of models, namely ViT-Base/8 , ViT-Large/16 and ViT-Huge/14. Unlike VGG and ResNet, we
only look at features in the intermediate layers because it summarizes the entire input image and is
used in practice for class prediction. For all model architectures, we use the weights obtained from
pretraining on ImageNet.

Fig. 3 and Fig. 4 illustrate the relation between performance and α for all the nine architectures
across intermediate layer representations, as described above. We found that, while most intermediate
representations in CNNs (with or without residual connections) exhibit α < 1, representations in ViTs
mostly exhibit α > 1. Nevertheless, representations extracted from the deepest layers of all the models
exhibit α close to 1, irrespective of the total depth of each model (see Appendix B). Furthermore, the
performance on downstream task increases with depth. This is unsurprising because all networks
were trained to perform object recognition on ImageNet [22] and thereby would have leveraged
hierarchical processing to learn features that are tuned towards object recognition. Surprisingly
enough, we observe a strong significant correlation between α and performance on the STL10 dataset,
i.e. a different data distribution than the training dataset, across layers and model architectures
(ρ = −0.922, ∗p < 0.05 for representations exhibiting α > 1 and ρ = −0.922, ∗p < 0.05 for
representations exhibiting α < 1). It is worth noting here that the correlation was weaker for the
earliest layers of each model. We believe that early layers learn more task invariant features that
reflect the statistics of natural images [23, 24] and therefore lack task relevant information in their
representations. Taken together, this observation confirms our hypothesis that α is a good indicator of
out-of-distribution generalization performance when representations possess task relevant information.
Thus, α has a necessary but not sufficient relationship with generalization (Appendix C).

Learning objective In this section, we first aim to understand how the α value changes across
the layers of a fixed architecture DNN when trained with different learning objectives. We take a
ResNet-50 model [20] pre-trained using three different SSL algorithms, namely SimCLR [2], BYOL
[25] and Barlow Twins [1], and the supervised learning loss objectives on ImageNet-1k[22] dataset.
We use a similar procedure as before to extract representations from the network and estimate α.

Similar to results in the previous section, all networks irrespective of the pretraining loss function,
exhibit α closer to 1 in the deeper layers in contrast to intermediate layers (see Appendix Fig. 9). This
surprising result indicates that although the pre-training loss function was different, representations
extracted from deepest layers are reflective of the object/scene semantics in natural images. Further-
more, Fig. 3 and Fig. 4 illustrate the strong correlation between α and generalization performance
on STL10 and MIT67 across all pre-training loss functions. Together with results from the previous
section, we validate our hypothesis that the representations that demonstrate good out-of-distribution
generalization performance are characterized by α in the neighbourhood of 1. This suggests that high
quality representations are indeed those with α in this region.

3.2 Label-agnostic metric for Model selection

With empirical evidence of α being a good measure for generalization, we now wish to study its
suitability as a metric for identifying the best among models pretrained with SSL algorithms. A label-
free metric like α could be beneficial when we don’t have access to the downstream task annotations,
and the SSL loss is not useful to distinguish models with good generalization performance (see
Fig. 5). To investigate this, we exhaustively ablate the relationship between α and model performance
across a wide range of hyper-parameters for a representative non-contrastive SSL algorithm.

Current SSL algorithms struggle with dimension collapse (characterized by large α), due to patholo-
gies in training dynamics. To study α across a wide-range of values, for our model selection
experiments, we pick the Barlow Twins[1], a non-contrastive SSL algorithm that explicitly optimizes
to avoid dimension collapse. In particular, the Barlow Twins learning objective (LBT) proposes
imposing a soft-whitening constraint :

7



Figure 5: α as a metric to inform model selection. The SSL loss (training for same number of
gradient steps) is no longer useful to distinguish models with superior downstream performance.
However, decay coefficient α shows strong correspondence to downstream test accuracy over a large
hyperparameter ranges. Measuring in-distribution generalization for (A-C) BarlowTwins trained and
evaluated on CIFAR10. (D-F) BarlowTwins trained and evaluated on STL10.

LBT =

d∑
i=1

(1− C(fθ)ii)2︸ ︷︷ ︸
invariance

+ λ

d∑
i=1

d∑
j ̸=i

C(fθ)2ij︸ ︷︷ ︸
redundancy-reduction

s.t. C(fθ)ij =
∑

n fθ(x
A)ifθ(x

B)j√∑
n fθ(x

A)2i
∑

n fθ(x
B)2j

(3)

Notably with sufficient large λ, the model would impose an α = 0 constraint on the representations
[26]. Despite the intuitive connection between α and λ, it is unclear whether this relationship holds
across a wide-range of values for model hyperparameters. To empirically establish this connection,
we vary λ (redundancy coeffiecient), projection head dimensionality and learning rate, and train a
ResNet50 encoder using Barlow Twins learning objective. We provide the results for CIFAR10 [27]
and STL10 [28] in Fig. 5 demonstrating that α is a strong indicator of in-distribution generalization
performance across a large range of hyperparameter ranges of LBT . We defer the reader to Appendix
Fig. 14 & Fig. 15 for similar trends in optimization hyperparameters. Furthermore, α is predictive
of out-of-distribution generalization performance in these settings (see Appendix B.3). The same
relation also holds in contrastive SSL frameworks, specifically for SimCLR [2] (see Appendix B.4).

Table 1: We report the compute time for CIFAR10, STL10, and
ImageNet. While CIFAR10 and STL10 are trained for 200 epochs
for downstream classification ImageNet is trained for 100 epochs.
(tested in 1 A100)

Dataset w/ eigenspectrum w/ linear perf.
coefficient (α) probe gains

CIFAR10 (s) 3± 0.2 48± 7 ∼ 16×
STL10 (s) 5± 0.5 80± 10 ∼ 16×
ImageNet (mins) 4± 0.8 58± 5 ∼ 15×

Model Selection on a Compute Bud-
get: With a constrained compute bud-
get, using α for model selection is
significantly cheaper than evaluating
the representations on a suite of down-
stream tasks. To illustrate this, con-
sider the standard alternative of train-
ing a linear classifier on the represen-
tations and evaluating test accuracy.
Compared to training a linear probe,
which requires multiple epochs of for-
ward & backward passes through the
training dataset’s features, to achieve
reasonable estimates of downstream accuracy, computing α requires a single PCA step on the valida-
tion dataset’s features. In Table 1, we contrast the compute times for α and evaluating a linear probe.
A detailed algorithm to use α for model selection is provided in Algorithm 1 and its complexity
analysis in Appendix B.6.

8



Algorithm 1 Model selection using α

# M: Number of models that can be trained in parallel
# H: Number of sequential steps of model training
# K: Number of top models to log in memory for model selection

αmin = 0
αmax = ∞
models_dict = {}

for iter in range(H):
# train M models in parallel , each with different hyperparam config
trained_models = train_SSL_models(num_parallel_models=M)

# evaluate α for the trained models
alpha_trained_models = evaluate_alpha(trained_models)
best_trained_models = {model: alpha for model , alpha in

alpha_trained_models if alpha ∈ [αmin,αmax]}
models_stat = {model: run_linear_eval(model) for model , alpha in

best_trained_models.items()}

# Update αmin and αmax
αmin = max({αm | αm > αj & accm ≥ accj ∀ m, j ∈ models_stat })
αmax = min({αm | αm < αj & accm ≥ accj ∀ m, j ∈ models_stat })

# Trim models_stat to keep only top K models
threshold = get_best_models(model_statistics , topk=K)
models_stat = {model: acc for model , acc in models_stat.items() if acc >

threshold}

# Return best model performance from the ‘selected ’ models
best_model_acc = max({accm ∀ m ∈ models_stat })
return best_model_acc

4 Related Work

Evaluating representations and model quality We note a substantial body of work aiming to
empirically characterize the structure of emergent representations in DNN without requiring labels
[29, 30]. One such index that quantifies the similarity of representations across layers (of the same or
different models) is Centered Kernel Alignment (CKA) [23]. While CKA does not provide explicit
guidance for downstream performance, [31] shows that the in-distribution generalization gap can be
predicted using a different index based on the model’s parameters. In particular, they show that the
Empirical Spectral Density (ESD) of weight matrices for many DNNs obey a power-law, with the
decay coefficient being predictive of in-distribution performance. In the present work, we explore
similar indices that potentially correlate with out-of-distribution generalization by examining the
eigenspectrum of activations.

Generalization in Overparameterized Models Modern neural networks often have significantly
more parameters than the number of training samples, challenging the classical understanding of the
bias-variance tradeoff. Overparameterization permits neural networks to overfit to noise in training
data without impairing their generalization to unseen data. In recent work, Bubeck et al. proved that
overparameterization is a necessary condition for smooth interpolation in neural networks [32].

Furthermore, this benign overfitting phenomenon in an overparameterized linear regression problem
has been linked to the power law coefficient of the input covariance matrix [11]. Specifically, Bartlett
et al. showed that benign overfitting is possible for an infinite-dimensional linear regression problem
iff the eigenspectrum satisfies a power law (up to polylog factors). More recently, Lee et al. found
that the tail eigenvalues of infinite-width network kernels exhibit a power law decay [33]. Following
this, Tripuraneni et al. explored high-dimensional random feature regression settings and analytically
showed a dependence between the eigenspectrum decay rate of the feature covariance matrix and
generalization error [34]. While these characterizations provide a theoretical understanding of
generalization error in the asymptotic or random feature settings, corresponding questions in the
finite-dimensional DNN trained with gradient descent are open problems.

For deep linear networks trained using gradient descent, the eigenvalues of input covariance determine
the generalization error dynamics [12]. Advani et al. demonstrated that small eigenvalues determine
the convergence of training dynamics as well as the overfitting error at convergence. For overpa-

9



rameterized 2-layer neural networks, Arora et al. provided a fine-grained analysis of generalization
bounds [35]. In contrast, we study modern DNN architectures and explore the covariance structure of
their learned features on visual recognition tasks.

5 Discussion

Summary Our experiments suggest a strong correlation between the decay coefficient for sample
eigenspectrum of representations, α, and both in-distribution and out-of-distribution generalization
performance on tasks central to computer vision.

Representation Quality in High-Dimensional SSL We demonstrate that assessing the quality of a
pretrained model with our label-free metric (α) is consistent with downstream generalization. While
being computationally efficient, our procedure removes the dependence on labels, making the model
selection more robust and amenable for privacy critical applications.

Necessary, but not sufficient condition Notably, a task-agnostic measure like α is a necessary but
not sufficient condition for assessing good performance. To elaborate on this point, let us present
a thought experiment. Suppose we have our ideal representation space that satisfies our claims of
exhibiting alpha close to the Goldilocks zone. If we perform a set of permutation operations on
individual datapoint representations, the structure of the representation space remains the same, but
the mapping from representation to label is now destroyed. In doing this set of permutations, we
have now arrived at a different set of representations that would exhibit the same (or similar) alpha
but demonstrate a lower task performance when measured using a linear readout layer. A similar
argument is presented as theorem C.1 in [36]. Extending the conclusions of this thought experiment
to our observations, it is clear that we could have models with similar alpha values but distinctly
different performances. But an alpha value that is not in the Goldilocks zone would be associated
with inferior model performance. This property is the core of our claim and allows us to propose
alpha as a measure for model selection in SSL pipelines.

Redundancy in ViT representations Unlike other models that we considered, representations
from early layers of ViT had a rapid eigenspectrum decay with α >> 1 (see Fig. 3 and Fig. 4).
The transformer architecture has a notable difference by design, i.e. early layers possess global
receptive field context via self-attention on patch embeddings. Raghu et al. found that early ViT
layers incorporate both local and global information [30]. Based on these insights, one intuitive
interpretation of our results is that the representations have a low effective rank and encode redundant
information relevant across multiple scales.

Limitations While the role of α and its relationship to generalization performance is better understood
in the asymptotic setting for linear regression, similar questions in finite-dimensional nonlinear models
are unanswered. It is also worth noting that the empirical correlation was weaker for the earliest
layers in each model. We believe that early layers learn more task invariant features such as corners
and edges [23, 24], and thereby lack rich semantic information for the fine-grained downstream task.
In this case, distinguishing between poorly-trained models may be inconsistent with α.

Future Directions Learning efficiently at scale from unlabelled datasets poses an exciting open
problem in deep representation learning. We hope this work encourages new perspectives into model
selection for SSL pipelines and informs the design of learning objectives and model architectures
to learn task-agnostic, adaptive features. Understanding the behaviour of α (notably, a scale-
invariant metric) in high-dimensional representation learning might provide insight into developing a
theoretically grounded understanding of generalization in deep neural networks.

Acknowledgements

The authors would like to thank Zahraa Chorghay and Colleen Gillon for their aesthetic contribution
to the manuscript and figures. This research was enabled in part by support provided by Mila
and Compute Canada. This work was supported by Vanier Canada Graduate scholarship (AG);
Healthy Brains, Healthy Lives (AG & BAR); NSERC, Grant No. RGPIN-2020-05105 and RGPAS-
2020-00031 (BAR); and CIFAR, Canada AI Chair & Learning in Machines and Brains Fellowship
(BAR).

10

www.computecanada.ca


References
[1] Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-

supervised learning via redundancy reduction. In International Conference on Machine Learn-
ing, pages 12310–12320. PMLR, 2021.

[2] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations. In International conference on machine
learning, pages 1597–1607. PMLR, 2020.

[3] Yuandong Tian, Lantao Yu, Xinlei Chen, and Surya Ganguli. Understanding self-supervised
learning with dual deep networks. arXiv preprint arXiv:2010.00578, 2020.

[4] Daniel J Felleman and David C Van Essen. Distributed hierarchical processing in the primate
cerebral cortex. Cerebral cortex (New York, NY: 1991), 1(1):1–47, 1991.

[5] Claus C Hilgetag and Alexandros Goulas. ‘hierarchy’in the organization of brain networks.
Philosophical Transactions of the Royal Society B, 375(1796):20190319, 2020.

[6] Carsen Stringer, Marius Pachitariu, Nicholas Steinmetz, Matteo Carandini, and Kenneth D Har-
ris. High-dimensional geometry of population responses in visual cortex. Nature, 571(7765):361–
365, 2019.

[7] Nathan CL Kong, Eshed Margalit, Justin L Gardner, and Anthony M Norcia. Increasing neural
network robustness improves match to macaque v1 eigenspectrum, spatial frequency preference
and predictivity. PLOS Computational Biology, 18(1):e1009739, 2022.

[8] J Nassar, P Sokol, S Chang, and K Harris. On 1/n neural representation and robustness. Advances
in Neural Information Processing Systems (NeurIPS), 2020.

[9] Zijian Jiang, Jianwen Zhou, and Haiping Huang. Relationship between manifold smoothness
and adversarial vulnerability in deep learning with local errors. Chinese Physics B, 30(4):048702,
2021.

[10] Zeke Xie, Qian-Yuan Tang, Yunfeng Cai, Mingming Sun, and Ping Li. On the power-law
spectrum in deep learning: A bridge to protein science. arXiv preprint arXiv:2201.13011, 2022.

[11] Peter L Bartlett, Philip M Long, Gábor Lugosi, and Alexander Tsigler. Benign overfitting in
linear regression. Proceedings of the National Academy of Sciences, 117(48):30063–30070,
2020.

[12] Madhu S Advani, Andrew M Saxe, and Haim Sompolinsky. High-dimensional dynamics of
generalization error in neural networks. Neural Networks, 132:428–446, 2020.

[13] Vatsal Shah, Anastasios Kyrillidis, and Sujay Sanghavi. Minimum norm solutions do not always
generalize well for over-parameterized problems. stat, 1050:16, 2018.

[14] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019.

[15] Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019.

[16] SueYeon Chung, Daniel D Lee, and Haim Sompolinsky. Classification and geometry of general
perceptual manifolds. Physical Review X, 8(3):031003, 2018.

[17] Ariadna Quattoni and Antonio Torralba. Recognizing indoor scenes. In 2009 IEEE Conference
on Computer Vision and Pattern Recognition, pages 413–420, 2009.

11

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models


[18] A Oliva and A Torralba. Chapter 2 building the gist of a scene: the role of global image features
in recognition. Progress in Brain Research, pages 23–36, 2006.

[19] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[21] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.
An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[22] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pages 248–255, 2009.

[23] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
network representations revisited. In International Conference on Machine Learning, pages
3519–3529. PMLR, 2019.

[24] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
European conference on computer vision, pages 818–833. Springer, 2014.

[25] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent-a new approach to self-supervised learning. Advances in Neural
Information Processing Systems, 33:21271–21284, 2020.

[26] Bobby He and Mete Ozay. Exploring the gap between collapsed & whitened features in self-
supervised learning. In International Conference on Machine Learning, pages 8613–8634.
PMLR, 2022.

[27] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Master's thesis, 2009.

[28] Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsuper-
vised feature learning. In Proceedings of the fourteenth international conference on artificial
intelligence and statistics, pages 215–223. JMLR Workshop and Conference Proceedings, 2011.

[29] Thao Nguyen, Maithra Raghu, and Simon Kornblith. Do wide and deep networks learn the
same things? uncovering how neural network representations vary with width and depth. arXiv
preprint arXiv:2010.15327, 2020.

[30] Maithra Raghu, Thomas Unterthiner, Simon Kornblith, Chiyuan Zhang, and Alexey Dosovitskiy.
Do vision transformers see like convolutional neural networks? Advances in Neural Information
Processing Systems, 34, 2021.

[31] Charles H Martin, Tongsu Serena Peng, and Michael W Mahoney. Predicting trends in the
quality of state-of-the-art neural networks without access to training or testing data. Nature
Communications, 12(1):1–13, 2021.

[32] Sébastien Bubeck and Mark Sellke. A universal law of robustness via isoperimetry. arXiv
preprint arXiv:2105.12806, 2021.

[33] Jaehoon Lee, Samuel Schoenholz, Jeffrey Pennington, Ben Adlam, Lechao Xiao, Roman Novak,
and Jascha Sohl-Dickstein. Finite versus infinite neural networks: an empirical study. Advances
in Neural Information Processing Systems, 33:15156–15172, 2020.

[34] Nilesh Tripuraneni, Ben Adlam, and Jeffrey Pennington. Covariate shift in high-dimensional
random feature regression. arXiv preprint arXiv:2111.08234, 2021.

12



[35] Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of op-
timization and generalization for overparameterized two-layer neural networks. In International
Conference on Machine Learning, pages 322–332. PMLR, 2019.

[36] Nikunj Saunshi, Jordan Ash, Surbhi Goel, Dipendra Misra, Cyril Zhang, Sanjeev Arora, Sham
Kakade, and Akshay Krishnamurthy. Understanding contrastive learning requires incorporating
inductive biases. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang
Niu, and Sivan Sabato, editors, Proceedings of the 39th International Conference on Machine
Learning, volume 162 of Proceedings of Machine Learning Research, pages 19250–19286.
PMLR, 17–23 Jul 2022.

13



A Appendix

A.1 Proofs

In this section, we present a formal proof of Theorem 2.1. In order to do so, we will use a lemma
pertaining to iterative expression of the linear regression parameters over training epochs. This lemma
is inspired by the results presented in [13]
Lemma A.1. Let ŷ = xTw be a finite dimensional linear regression problem where w is learned
using gradient descent in order to optimize the training error,

L = Ex,y[(y − ŷ)2] = Ex,y[(y − xTw)2] (4)

where (x, y) ∼ Dtrain, i.e. the training dataset. Then wk, i.e. w after training for k epochs can be
written as

wk = XT (XXT )−1
[
I − (I − ηXXT )k

]
Y (5)

where X,Y indicate the entire training dataset, i.e. X ∈ RN×d and Y ∈ RN

Proof. We start with the gradient of the regression loss function for a defined training set denoted by
(X,Y ) in a vectorized notation:

F (wk) = |Y −Xwk|2

=⇒ ∇F (wk) = XT (Xwk − Y ) (6)
(7)

We assume that the weights are initialized at 0, i.e. w0 = 0. Using the gradient descent update:

wk+1 = wk − η∇F = wk − ηXT (Xwk − Y ) = (I − ηXTX)wk + ηXTY

w1 = (I − ηXTX)wo + ηXTY = ηXTY

Let wk = ηXTukY =⇒ u1 = I

w2 = ηXTu2Y

= (I − ηXTX)ηXTY + ηXTY = ηXT [(I − ηXXT ) + I]Y

=⇒ u2 = (I − ηXXT ) + I

uk = (I − ηXXT )uk−1 + I =

k∑
i=0

(I − ηXXT )i−1

= (I − (I − ηXXT ))−1(I − (I − ηXXT ))

k∑
i=0

(I − ηXXT )i−1

= (ηXXT ))−1(I − (I − ηXXT ))

k∑
i=0

(I − ηXXT )i−1

=
1

η
(XXT )−1

k∑
i=0

[(I − ηXXT )i−1 − (I − ηXXT )i]

=
1

η
(XXT )−1[I − (I − ηXXT )k]

=⇒ wk = ηXTukY = XT (XXT )−1[I − (I − ηXXT )k]Y (8)

This proves Lemma A.1. We will now use this lemma to prove Theorem 2.1. From this result, we can
also write:

∆wk = ηXT (I − ηXXT )kY (9)

We restate the theorem from the main text. Note that the notations are simplified here from the
theorem statement to improve readability.

14



Theorem A.2. Let Ŷ = XTw be a finite dimensional linear regression problem where w is learned
using gradient descent. If we assume power law distribution in eigenspectrum of X , i.e. λn =
c
nα ∀n ∈ {1, 2...N}, then the time required by gradient descent to minimize the training error,
Tconvergence = O(Nα)

Proof. Using result from Lemma A.1, it is clear that the gradient converges to 0 if λ1 < 1
η where λ1

is the leading eigenvalue of XXT .

Thus, η < 1
λ1

, i.e. small learning rate setting. So, we set η = η̂
λ1

where η̂ < 1. Plugging this in
Eq. (9)

∆wk =
η̂

λ1
XT (I − η̂

λ1
XXT )kY (10)

Let X = U ∧ 1
2 V T denote the singular value decomposition (SVD), which implies XXT = U ∧UT .

Using the SVD, we get (I − η̂
λ1
XXT )k = (I − η̂

λ1
U ∧ UT )k. It is worth noting that eigenvalues

and eigenvectors of (I − η̂
λ1
U ∧ UT ) are related to that of XXT as shown below:

(I − η̂

λ1
U ∧ UT )ui = ui −

η̂

λ1
(U ∧ UTui)

= ui −
η̂

λ1
λiui [Using UTU = I]

=⇒ (I − η̂

λ1
U ∧ UT )ui = (1− η̂

λ1
λi)ui (11)

Using Eq. (11), we can write (I − η̂
λ1
U ∧ UT ) in the eigendecomposition form as U ∧̃UT where

λ̃i = 1− η̂ λi

λ1
. Thus,

(
I − η̂

λ1
U ∧ UT

)k

= U ∧̃k
UT . Plugging this in Eq. (10), we get:

∆wk =
η̂

λ1
V ∧ 1

2 UTU ∧̃k
UTY =

η̂

λ1
V ∧ 1

2 ∧̃k
S (12)

where S = UTY ∈ RN . For the ith element, we get ∆w
(i)
k = η̂

λ1

∑
j vi,j

√
λj λ̃j

k
Sj =

η̂
λ1

∑
j vi,j

√
λj(1 − η̂

λj

λ1
)kSj . Since all other factors remain constant across training, i.e. do

not change with k, the convergence of gradient descent depends on the factors
(
1− η̂

λj

λ1

)k

. Note

that we define gradient descent to converge when ∆w
(i)
k ≈ 0 ∀ i. Therefore, the limiting factor that

determines rate of convergence is (1 − η̂
λj

λ1
)k, which in turn is limited by the smallest eigenvalue

factor: λN

λ1
.

Assuming λN

λ1
≪ 1 =⇒ η̂ λN

λ1
≪ 1 as η̂ < 1 =⇒ (1− η̂ λN

λ1
)k ≈ 1− kη̂ λN

λ1
.

Hence the convergence time, k∗ = O(η̂ λ1

λN
) = O( λ1

λN
)

If λi follows power law, i.e, λi = ci−α and λN

λ1
= N−α then k∗ = O(Nα) i.e. k∗ grows exponen-

tially with α.

Theorem A.3. Let ŷ = fθ(x)
Tψ be a linear regression problem as before. Let us further assume that

fθ(x) ∀x ∼ Dtrain is a representative subset of the inputs from true data distribution: (x, y) ∼ D.
Assuming a power-law distribution in the eigenspectrum of representations at fθ, i.e. λn = c

nα ∀n ≥
n∗, where n∗ ∈ {1, 2...N}, the generalization error after T weight update steps, G(T ) is:

G(T ) := Ex,y∼D[(y − fθ(x)
Tψ)2] ≤ O

(
rd̂(Σ(fθ)

)
where rd̂(Σ(fθ)) =

∑m
i=d̂ λi∑m
i=1 λi

=

∑m
i=d̂ i

−α∑m
i=1 i

−α
(13)

Here, m = min(N, d) is the rank of ΣN (fθ).

Proof. We start with the gradient of the regression loss function for a defined training set denoted by
(Xs, Ys) in a vectorized notation where X ∈ RN×d and Y ∈ RN . For the brevity of notation let us

15



denote fθ(x) by x. The loss/error for the regression problem can be given by:

E =
1

2
(Ys −Xsϕ)

T (Ys −Xsϕ)

This gives gradient of weight vector as:

=⇒ ∆ϕ = −η∇ϕE = ηXTY − ηXTXϕ (14)

where η is the learning rate. Now, let the true labels be generated by Ys = Xsϕ
∗ + ϵ where ϵ

is a random variable denoting noise. Also, let Xs = Us ∧
1
2 V T which gives XT

s Xs = V ∧ V T

and XT
s Ys = V ∧ 1

2 UT
s Y = V ∧ 1

2 S̃ where S̃ = UT
s Y = UT

s (Us ∧
1
2 V Tϕ∗ + ϵ) = ∧ 1

2Z∗ + ϵ̃,
Z∗ = V Tϕ∗ and ϵ̃ = UT

s ϵ. Let ϕ = V Z, i.e. expressing ϕ using the eigenbasis V of XTX and Z as
the new parameters. This gives:

∆Z = V T∆ϕ = ηV T (V ∧ 1
2 S̃ + V ∧ V Tϕ) = η(∧ 1

2 S̃ − ∧Z) (15)

=⇒ ∆Z = η ∧ (Z∗ − Z) + η ∧ 1
2 ϵ̃ (16)

This implies no mixing between the eigenmodes. Solving Eq. (16) we get:

Z∗
i − Zi(t) = (Z∗

i − Zi(0))e
−ηλit − ϵ̃i√

λi
(1− e−ηλit) (17)

Now, let ϕ∗ − ϕ = δ and Z∗ −Z = ρ = V T δ, which gives ρi(t) = ρi(0)e
−ηλit − ϵ̃i√

λi
(1− e−ηλit).

Then the generalization error is:

G =< (ϕ∗ − ϕ)TXTX(ϕ∗ − ϕ) >=< ρT ∧ ρ >=<
m∑
i=1

λiρ
2
i >=

m∑
i=1

λi < ρ2i > (18)

where X is the datapoints from the total dataset for which we care about the generalization error
and m is the rank of the covariance matrix, XTX . Without loss of generality, we can assume
m = min(N, d). Note that ⟨.⟩ denotes the expectation over different network weight initialization
and label noise. We define Xs to be a reliable sample of dataset X if both XTX and XT

s Xs have
the same eigenvectors, i.e. V . Therefore, we could write XTX = XT

s Xs in Eq. 18. Note that
the reliability of the sample indicates the inherent structure of the data, i.e. the variance along
the principal components in the data space have been captured by Xs. Subsequently, we get the
expression for generalization error for a fixed training budget upto time/epoch (T):

G(T ) =
m∑
i=1

λiσ
2
ρe

−2ηλiT + σ2
ϵ (1− e−ηλiT )2 (19)

where σρ indicates the noise due to weight initialization and σϵ indicates the noise in labels. It is
clear from Eq. (19) that directions corresponding to larger eigenvalues converge faster and contribute
to the generalization error through second term. Let us, therefore, assume that the top d̃ eigenmodes
have converged. Therefore, e−ηλiT ≤ c0 ∀i ≤ d̃ < m, where c0 is some small number. Hence,

e−ηλiT ≤ c0 ∀i ≤ d̃ and e−ηλiT > c0 ∀i > d̃

=⇒ e−2ηλiT ≤ c20 ∀i ≤ d̃ and (1− e−ηλiT )2 ≤ (1− c0)
2 ∀i > d̃

Also (1− e−ηλiT )2 ≤ 1 ∀i ≤ d̃ and e−2ηλiT ≤ 1 ∀i > d̃ (20)

Plugging inequalities from Eq. (20) in Eq. (19), we can upper bound the generalization error:

d̃∑
i=1

λiσ
2
ρe

−2ηλiT + σ2
ϵ (1− e−ηλiT )2 ≤ σ2

ρc
2
0

d̃∑
i=1

λi + σ2
ϵ

m∑
i=d̃+1

λiσ
2
ρe

−2ηλiT + σ2
ϵ (1− e−ηλiT )2 ≤ σ2

ρ

m∑
i=d̃+1

λi + σ2
ϵ (1− c0)

2 (21)

Therefore, the generalization error can be upper bounded as follows:

G(T ) ≤ σ2
ρc

2
0

d̃∑
i=1

λi + σ2
ϵ + σ2

ρ

m∑
i=d̃+1

λi + σ2
ϵ (1− c0)

2 (22)

16



Now, we can choose c0 to be such that c20
∑d̃

i=1 λi = κ0 where κ0 is some constant independent of
T . Furthermore, we impose the power-law assumption in the eigenvalues, i.e. λi = ci−α. With these
assumptions, we can simplify Eq. (22) as follows:

G(T ) ≤ σ2
ρκ0 + σ2

ϵ

(
1 + (1− c0)

2
)
+ σ2

ρc

m∑
i=d̃+1

i−α

=⇒ G(T ) ≤ κ+ σ2
ρc[var(X)]

∑m
i=d̃+1 i

−α

var(X)
= κ+ σ2

ρ[var(X)]

∑m
i=d̃+1 i

−α∑m
i=1 i

−α
(23)

where κ is another constant (used for brevity), κ = σ2
ρκ0 + σ2

ϵ

(
1 + (1− c0)

2
)
. Also, we used the

relation: var(X) =
∑

i λi =
∑

i ci
−α. Therefore, we can set d̂ = d̃− 1 and subsequently prove the

statement of the theorem:

G(T ) ≤ κ+ σ2
ρ[var(X)]

∑m
i=d̂ i

−α∑m
i=1 i

−α
= O

(
rd̂(Σ(fθ)

)
(24)

17



B Additional Experimental results

In this section we provide additional results, evidence to support our hypothesis of α being a useful
measure of downstream generalization performance.

B.1 Generalization & Eigenspectrum Decay on STL10 and ImageNet

Figure 6: To measure downstream performance, one alternative is using non-linear readouts. With
fixed feature-set, the performance of non-linear readout on STL-10 demonstrates correlation with α
(across different pretraining loss functions) The trends are similar to the performance of a linear
readout, as shown in Fig. 3. ∗p < 0.05.

Figure 7: Unless specified explicitly, our models are pretrained on the ImageNet dataset. Here, we
evaluate in-distribution generalization for ResNet-50 models pretrained with multiple learning
objectives. We see α is correlated with the generalization on ImageNet. Note that the input images
are downsampled for this experiment to get lower dimension features for intermediate layers, which
facilitates the Eigendecomposition of the large covariance matrix for ImageNet. However, this is not
a problem when we work with the features extracted from the final layers, which suggests that the
model selection algorithm proposed in this paper also works for high-resolution images.

18



B.2 Layerwise evaluation on STL 10 and MIT 67

Figure 8: α for intermediate layer representations from different backbone architectures demonstrates
the contrasting representations learned by CNNs and ViT.

Figure 9: α for intermediate layer representations from networks trained using different loss functions
show similar trends. Representations from deeper layers exhibit α closer to 1 as compared to middle
layer representations.

Figure 10: α for intermediate layer representations from different backbone architectures in MIT67.
Representations learned by ViT is qualitatively different from those is CNNs both in object and scene
recognition datasets.

19



Figure 11: α for intermediate layer representations from networks trained using different loss
functions show similar trends in MIT67. Empirical evaluations suggest that representations from
deeper layers exhibit α closer to 1 as compared to intermediate layer representations.

20



B.3 Visualizing design landscape for BarlowTwins

As a diagnostic metric for measuring representation quality, we chart the learning landscape for
self-supervised learning algorithms (Barlow Twins here). To this effect, we empirically investigate
the role of different critical hyperparameters in learnability and generalization. In particular, we
ablate across projection-dimensionality, redundancy coefficient, weight-decay and learning rate.

Figure 12: For ResNet-50 model architecture, we measure out-of-distribution generalization for
BarlowTwins pretrained on STL10 and evaluated with linear-probes on CIFAR10.

Figure 13: For ResNet-50 model architecture, we measure out-of-distribution generalization for
BarlowTwins pretrained on CIFAR10 and evaluated with linear probes on STL10.

21



Figure 14: Measuring in-distribution generalization for BarlowTwins trained on CIFAR10 and
evaluated on CIFAR10 when sweeping over different optimization hyperaprameters, namely learning
rate and weight decay.

Figure 15: Measuring in-distribution generalization for BarlowTwins trained on STL10 and evaluated
on STL10 when sweeping over different optimization hyperaprameters, namely learning rate and
weight decay.

22



B.4 Visualizing design landscape for SimCLR

Figure 16: Hyperparameter sweep for SimCLR pretraining on CIFAR10: the correspondence
between α and downstream accuracy holds for contrastive SSL methods as well. (A) SimCLR loss,
(in-distribution) classification accuracy on CIFAR10 and corresponding α of learned representations
when sweeping over different values of temperature and batch size, two key hyperparameters for
SimCLR training. (B) Accuracy vs α plot for all models trained with different values of temperature,
batch size and projector dimensionality. (C-D) Same as A and B for downstream (out-of-distribution)
classification accuracy evaluated on STL10.

23



Figure 17: Hyperparameter sweep for SimCLR pretraining on STL10: the correspondence between
α and downstream accuracy holds for contrastive SSL methods as well. (A) SimCLR loss, (out-of-
distribution) classification accuracy on CIFAR10 and corresponding α of learned representations
when sweeping over different values of temperature and batch size. (B) Accuracy vs α plot for all
models trained with different values of temperature, batch size and projector dimensionality. (C-D)
Same as A and B for downstream (in-distribution) classification accuracy evaluated on STL10.

24



B.5 Model Selection on Compute Budget

Algorithm 2 Model selection using α

# M: Number of models that can be trained in parallel
# H: Number of sequential steps of model training
# K: Number of top models to log in memory for model selection

αmin = 0
αmax = ∞
models_dict = {}

for s in range(H):
# train M models in parallel , each with different hyperparam config
trained_models = train_SSL_models(num_parallel_models=M)

# evaluate α for the trained models
alpha_trained_models = evaluate_alpha(trained_models)

# choose models based on alpha to run linear evaluation
for model in trained_models:

if alpha_trained_models[model] ∈ [αmin,αmax]:
model_alpha = alpha_trained_models[model]
model_performance = run_linear_eval(model)
models_dict.insert ({model :( model_alpha ,model_performance )})

else:
pass

# Update αmin and αmax
αmin = max({αm | αm > αj & performancem ≥ performancej ∀ m, j ∈ models_dict })
αmax = min({αm | αm < αj & performancem ≥ performancej ∀ m, j ∈ models_dict })

# Trim models_dict to keep only top K models
performance_thresh = get_top_K_model_performance(models_dict)
for model in models_dict:

if model.performance < performance_thresh:
models_dict.pop(model)

# Return best model performance from the ‘selected ’ models
best_model_performance = max({performancem ∀ m ∈ models_dict })
return best_model_performance

B.6 Average complexity analysis of Algorithm 1

Let us assume that the compute budget is characterized by M, i.e. the number of SSL models that
can be trained parallely on the compute infrastructure. Let us assume H such parallel steps are run
sequentially in order to train M × H different model configurations (e.g. sweeps over different
hyperparameter configurations). Let us denote the probability of performing linear evaluation on a
model trained in the rth sequential step as ϵr. Therefore, expected number of linear evaluations in
the rth step will be Mϵr. Now, clearly ϵr ≤ 1, and hence:

E[linear_evals] =
H∑
r=1

Mϵr ≤
H∑
r=1

M =MH (25)

This relationship provides the worst case complexity of Algorithm 2. We can further assume that the
probability of linear evaluation decays with each sequential step. Therefore, the average number of
linear evaluations would be less than MH . Assuming ϵr = O

(
1
r

) †
, we can write:

E[linear_evals] =
H∑
r=1

Mϵr =

H∑
r=1

MO
(
1

r

)
= O (Mlog(H)) (26)

Taken together, the above equation shows that the average case complexity of model evaluation using
α is less than the standard complexity of model evaluation, i.e. MH linear evaluations.

†
Verified in Fig. 18

25



(a) CIFAR10 (b) CIFAR10

(c) STL10 (d) STL10

Figure 18: Our analysis suggests a range [αmin, αmax] for α which indicates the best model in a set
of pretrained models. If this range is known, using α is significantly more compute efficient that
standard exhaustive search which requires multiple linear evaluations, as noted in 1. Furthermore, an
effective search algorithm using offline-metric α allows us to reduce the number of linear evaluations
from O(MH) to O(M logH), assuming that the likelihood of linear evaluation for models decays
as 1

steps . This assumption is verified in (a,c)

C On necessary and sufficiency conditions for predicting generalization

Understanding the correlation between α and generalization requires probing the natural question of
whether α in a given range is sufficient for good downstream performance. To further elaborate on
this question, consider the following: Let us suppose that we have our ideal representation space that
exhibit alpha within the Goldilocks zone. If we perform a set of permutation operations on individual
datapoint representations, the structure of the representation space remains the same but the mapping
from representation to label is now destroyed. In doing this set of permutation operations, we have
now arrived at a different set of representations that would exhibit the same (or similar) alpha but
demonstrate a lower task performance when measured using a linear readout layer. Extending the
conclusions of this thought experiment to our observations, it is clear that we could have models
with similar alpha values but distinctly different performance. But an alpha value that is not in the
Goldilocks zone would be associated with inferior model performance. This property is the core of
our claim and allows us to propose alpha as a measure for model selection in SSL pipelines.

26



D High-Resolution plots

Figure 19: The x-axis represents estimated α, y-axis is evaluating linear-probes on STL-10. Dif-
ferent models correspond to pretraining on ImageNet with different learning objectives (we fix the
architecture to ResNet-50).

Figure 20: The x-axis represents estimated α, y-axis is evaluating linear-probes across different
layers across multiple architectures on STL10. All models are pretrained with supervised learning on
ImageNet (we fix learning objective to be cross-entropy).

27



Figure 21: The x-axis represents estimated α, y-axis is evaluating linear-probes on MIT-67 (scene
recognition). Different models correspond to pretraining on ImageNet with different learning
objectives (we fix the architecture to ResNet-50).

Figure 22: The x-axis represents estimated α, y-axis is evaluating linear-probes across different
layers across multiple architectures on MIT-67 (scene recognition). All models are pretrained with
supervised learning on ImageNet (we fix learning objective to be cross-entropy).

28


	Introduction
	Theoretical Framework to Assess Representations in SSL
	Covariance estimation and eigenspectrum
	Eigenspectrum Decay in Deep Representation Learning

	Experimental Setup
	Measuring eigenspectrum Decay & Generalization
	Label-agnostic metric for Model selection

	Related Work
	Discussion
	Appendix
	Proofs

	Additional Experimental results
	Generalization & Eigenspectrum Decay on STL10 and ImageNet
	Layerwise evaluation on STL 10 and MIT 67
	Visualizing design landscape for BarlowTwins
	Visualizing design landscape for SimCLR
	Model Selection on Compute Budget
	Average complexity analysis of Algorithm 1

	On necessary and sufficiency conditions for predicting generalization
	High-Resolution plots

