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Abstract

The increasing size and complexity of modern ML systems has improved their
predictive capabilities but made their behavior harder to explain. Many techniques
for model explanation have been developed in response, but we lack clear criteria
for assessing these techniques. In this paper, we cast model explanation as the
causal inference problem of estimating causal effects of real-world concepts on the
output behavior of ML models given actual input data. We introduce CEBaB, a new
benchmark dataset for assessing concept-based explanation methods in Natural
Language Processing (NLP). CEBaB consists of short restaurant reviews with
human-generated counterfactual reviews in which an aspect (food, noise, ambiance,
service) of the dining experience was modified. Original and counterfactual reviews
are annotated with multiply-validated sentiment ratings at the aspect-level and
review-level. The rich structure of CEBaB allows us to go beyond input features
to study the effects of abstract, real-world concepts on model behavior. We use
CEBaB to compare the quality of a range of concept-based explanation methods
covering different assumptions and conceptions of the problem, and we seek to
establish natural metrics for comparative assessments of these methods.

1 Introduction

Explaining model behavior has emerged as a central goal within ML. In NLP, models have grown in
size and complexity, and while they have become increasingly successful, they have also become
more opaque [28,36], raising concerns about trust [18,23], safety [1,34], and fairness [16,19]. These
concerns will persist if these models remain “black-boxes”.

Seeking to open the black-box, researchers have developed methods that try to explain model behavior
[2,11,13,30,41]. However, there is no consensus about how to evaluate such methods to allow robust
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Table 1: Toy examples illustrating the structure of CEBaB (actual corpus examples are longer and
more complex; a sample is given in Appendix B). Beginning from an OpenTable review, we give
crowdworkers an actual restaurant review and they generate counterfactual restaurant reviews that
would have been written if some aspect of the dining experience were changed and all else were held
constant. Five different crowdworkers labeled each of the actual and counterfactual texts according
to their aspect-level sentiment and overall sentiment. Aspect level sentiment labels are three way: ‘+’
(positive sentiment), ‘–’ (negative), and ‘unk’ (the aspect’s value is not expressed in the text). Overall
sentiment labels are 1 (worst) to 5 (best). Edited aspect labels are shown in blue.

food ambiance service noise overall

Original text: Excellent lobster and decor, but rude waiter. + + – unk 4

Edit Goal

food: – Terrible lobster, excellent decor, but rude waiter. – + – unk 2
food: unk Excellent decor, but rude waiter. unk + – unk 3

ambiance: – Excellent lobster, but lousy decor and rude waiter. + – – unk 3
ambiance: unk Excellent lobster, but rude waiter. + unk – unk 3

service: + Excellent lobster and decor, and friendly waiter. + + + unk 5
service: unk Excellent lobster and decor. + + unk unk 5

noise: + Excellent lobster, decor, and music, but rude waiter. + + – + 4
noise: – Excellent lobster and decor, but rude waiter, and noisy. + + – – 3

comparisons. This is not surprising, since such evaluations require very rich empirical data. Intuitively,
we would like to (1) intervene on model inputs, to modify specific concepts without changing other
correlated information, (2) observe the effects this has on model predictions, and, finally, (3) assess
explanation methods for their ability to accurately predict these effects.

The absence of interventional data, or even an agreed-upon non-interventional benchmark, has
created an environment in which explanation methods are often evaluated individually, and without
comparison to alternatives. Attempts have been made to conduct comparative evaluations [11,17,37],
but only with synthetic, simplified datasets. Furthermore, these attempts do not define a unified
evaluation approach, nor do they seek to contribute benchmark datasets that support such evaluations.

In this paper, we seek to overcome this obstacle by introducing CEBaB (Causal Estimation-Based
Benchmark). Table 1 summarizes the structure of CEBaB with a toy example: beginning with a
review text from the OpenTable website, we crowdsourced edits of the original text that are designed
to meet a specific goal, such as changing the food rating in the original text to negative or unknown.
All of the resulting edits were validated by five crowdworkers and each full text was evaluated by five
crowdworkers for its overall sentiment. CEBaB is grounded in 2,299 original reviews, which were
expanded via this editing procedure to a total of 15,089 texts, targeting four different aspect-level
concepts (food, service, ambiance, noise) with three potential labels (positive, negative, and unknown,
i.e., not expressed in the review), and each full text was labeled on a five-star scale.

We focus on using CEBaB to compare concept-based explanation methods. This allows us to go
beyond the effect of individual tokens to study how more abstract concepts (in our case, aspect-level
sentiment) contribute to model predictions (about the overall sentiment of the text). Our proposed
metrics center around assessing concept-based explanation methods for their ability to accurately
estimate causal concept effects [17], allowing us to isolate the effect of individual concepts.

More specifically, we use CEBaB to measure the causal effects of particular variables in a causal
graph, and we cast each explanation method as a causal estimator of these measurements. For
example, suppose our causal graph of the data says that all four of our aspect-level categories will
affect a reviewer’s overall rating. To estimate the effect of positive food quality on the predicted
overall rating from a classifier, we need to compare examples with high food quality to those with
low quality, holding all other aspects constant. Such pairs of examples are normally not observed, but
this is precisely what CEBaB provides. With CEBaB, we can directly compare the actual change in
model predictions with the change that a concept-based explanation method predicts.

In our experiments, we evaluate five leading concept-based explanation methods: CONEXP [17],
TCAV [26], ConceptSHAP [57], INLP [40], CausaLM [11], and S-Learner [27]. These methods
make a wide range of different assumptions about how much access we have to the model’s internal
structure, and they also diverge in the degree to which they account for the causal nature of the
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concept effect estimation problem. Remarkably, CEBaB reveals that most methods cannot beat a
simple baseline. Indeed, this negative result emphasizes the value in our primary contribution of
providing the data and metrics that enables a direct comparison of explanation methods.

2 Previous Work

Benchmarks for Explanation Methods Benchmark datasets have propelled ML forward by
creating shared metrics that predictive models can be evaluated on [22,25,54,55]. Unfortunately,
benchmarks that are suitable for assessing the quality of model explanations are still uncommon [10,
21]. Previous work on comparing explanation methods has generally only correlated the performance
of a given explainability method with others, without ground-truth comparisons [8,20,21,43].

Other works that do compare to some ground-truth either employ a non-causal evaluation scheme
[26], use causal evaluation metrics which do not capture performance on individual examples [52],
evaluate on synthetic counterfactuals and rule-based augmentations [11,52], or are tailored for a
specific explanation method and hard to generalize [57]. To the best of our knowledge, CEBaB is the
first large-scale naturalistic causal benchmark with interventional data for NLP.

Explanation Methods and Causality Probing is a relatively new technique for understanding
what model internal representations encode. In probing, a small supervised [6,51] or unsupervised
[5,32,44] model is used to estimate whether specific concepts are encoded at specific places in a
network. While probes have helped illuminate what models (especially pretrained ones) have learned
from data, Geiger et al. [15] show with simple analytic examples that probes cannot reliably provide
causal explanations for model behavior.

Feature importance methods can also be seen as explanation methods [33]. Many methods in this
space are restricted to input features, but gradient-based methods can often quantify the relative
importance of hidden states as well [3,46,48,58]. The Integrated Gradients method of Sundararajan
et al. [50] has a natural causal interpretation stemming from its exploration of baseline (counterfactual)
inputs [15]. However, even where these methods can focus on internal states, it remains difficult to
connect their analyses with real-world concepts that do not reduce to simple properties of inputs.

Intervention-based methods involve modifying inputs or internal representations and studying
the effects that this has on model behavior [30, 41]. Recent methods perturb input or hidden
representations to create counterfactual states that can then be used to estimate causal effects
[9,12,47,53,15]. However, these methods are prone to generating implausible inputs or network states
unless the interventions are carefully controlled [14].

Generating counterfactual texts automatically remains challenging and is still a work-in-progress [4].
To overcome this problem, another class of approaches proposes to manipulate the representation of
the text with respect to some concept, rather than the text itself [9,11,40]. These methods fall into the
category of concept-based explanations and we discuss two of them extensively in §3.

3 Estimating Concept Effects with CEBaB

We now define the core metrics that we use to evaluate different explanation methods. Figure 1
provides a high-level view of the causal process we are envisioning. The process begins with an
exogenous variable U representing a state of the world. For CEBaB, we can imagine that the value
of U is a state of affairs u of a person evaluating a restaurant in a particular way. u contributes to
a review variable X , with the value x of X mediated by u and by mediating concepts C1, . . . Ck,
which correspond to the four aspect-level categories in CEBaB (food, service, ambiance, and noise),
each of which can have values c 2 {positive, negative, unknown}. The review x is processed by a
model that outputs a vector of scores over classes (sentiment labels in CEBaB).

Core Metric Our central goal is to use CEBaB to evaluate explanation methods themselves. CEBaB
supports many approaches to such evaluation. In this paper, we adopt an approach based on individual-
level rather than average effects. This makes very rich use of the counterfactual text and associated
labels provided by CEBaB. The starting point for this metric is the Individual Causal Concept Effect:
Definition 1 (Individual Causal Concept Effect; ICaCE). For a neural network N and feature
function �, the individual causal concept effect of changing the value of concept C from c to c0 for
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Figure 1: A causal graph describing a data generating process with an exogenous variables U and V
representing the state of the world, mediating concepts C1, C2 . . . , Ck, and data X that is featurized
with �. �(X) is input to a classifier N , which outputs a vector of scores over m output classes.

state of affairs u in an underlying data generation process G is

ICaCEN�(G, xC=c
u , c0) = Ex⇠G
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�
. (1)

ICaCE is a theoretical quantity. In practice, we use the Empirical Individual Causal Concept Effect.

Definition 2 (Empirical Individual Causal Concept Effect; \ICaCE). For a neural network N and
feature function �, the empirical individual causal concept effect of changing the value of concept C
from c to c0 for state of affairs u is

\ICaCEN�(x
C=c
u , xC=c0

u ) = N
�
�(xC=c0

u )
�
�N

�
�(xC=c

u )
�
, (2)

where (xC=c
u , xC=c0

u ) is a tuple of inputs originating from u with the concept C set to the values c
and c0, respectively.

The \ICaCEN� for a pair of examples (xC=c
u , xC=c0

u ) is simply the difference between the output score
vectors for the two cases. With CEBaB, we can easily calculate these values because we have clusters
of examples that are tied to the same reviewing situation u and express different concept values.

For assessing an explanation method E , we compare ICaCE values with those returned by E . Our
core metric is the ICaCE-Error:
Definition 3 (ICaCE-Error). For a neural network N , feature function � and distance metric Dist,
the ICaCE-Error of an explanation method E for changing the value of concept C from c to c0 is:

ICaCE-ErrorDN�
(E) = 1

|D|
X

(xC=c
u ,xC=c0

u )2D

Dist
�\ICaCEN�(x

C=c
u , xC=c0

u ), EN�(x
C=c
u , c0)

�
(3)

We present results for three choices of Dist which vary in their ability to model the direction and
magnitude of effects. These choices give subtly different but largely converging results, as detailed in
Section 6 and reported more fully in Appendix D.

Aggregating Individual Causal Concept Effect It is often useful to also have a direct estimate of
a model’s ability to capture concept-level causal effects. For this, we employ an aggregating version
of \ICaCE, the Empirical Causal Concept Effect:

Definition 4 (Empirical Causal Concept Effect; \CaCE). For a neural network N and feature function
�, the empirical causal concept effect of changing the value of concept C from c to c0 in dataset D is

\CaCE
D
N�

(C, c, c0) =
1

|Dc!c0
C |

X

(xC=c
u ,xC=c0

u )2Dc!c0
C

\ICaCEN�(x
C=c
u , xC=c0

u ). (4)

This is an empirical estimator of the Causal Concept Effect (CaCE) of Goyal et al. [17]. It estimates,
in general, how the classifier predictions change for a given concept and intervention direction.
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Table 2: The evaluated explanation methods and their attributes. Explainer Method denotes the
complexity of the models used by each explanation method. Access to Explained Model denotes
the degree of access an explainer method needs to the explained model. Concept Labels Needed
indicates whether a method estimating the effect for an input xC=c

u needs the actual input label c and/or
the intervened value c0 at test time. Models with a Counterfactual Representation approximate
�(xC=c0

u ) to estimate the effect. Finally, only CausaLM and S-Learner have Confounder Control to
minimize the impact of confounding concepts. ⇤We predict these labels with a classifier.

Explainer Access to Concept Labels Counterfactual Confounder
Explanation method Method Explained Model Needed (test time) Representation Control
Approx None None All concepts and their labels⇤ 7 7
CONEXP [17] None None c and c0 7 7
S-Learner [27] Linear None All concepts and their labels⇤ 7 3
TCAV [26] Linear Weights None 7 7
ConceptSHAP [57] Linear Weights None 7 7
INLP [40] Linear Weights None 3 7
CausaLM [11] Explained Model Training Regime None 3 3

Estimating Real-World Causal Effect of Aspect Sentiment on Overall Sentiment We can also
estimate ground truth causal effects in CEBaB by simply using its labels directly. There are again a
variety of ways that this could be done. We opt for the one that makes the richest use of the structures
afforded by CEBaB. For perspicuity, in parallel to the neural network-based \ICaCE (Definition 2),
we define the Empirical Individual Treatment Effect for our dataset:

Definition 5 (Empirical Individual Treatment Effects in CEBaB; dITE). The empirical individual
treatment effect of changing the value of concept C from c to c0 in CEBaB is

dITE
CEBaB

(xC=c
u , xC=c0

u ) = f(xC=c0

u )� f(xC=c
u ) (5)

where f is a simple look-up procedure that retrieves the overall sentiment labels for CEBaB examples.

We aggregate over these values by taking their average, in parallel to what we do for network
predictions (Definition 4). This yields the Empirical Average Treatment Effect ( dATE) for CEBaB.

Alternative Metrics In Appendix A in our supplementary materials, we consider alternative
formulations of the core metrics with causal concept effects and absolute causal concept effects,
relating them to the different questions they engage with. We opt for the individual causal concept
effect in our central metric (Definition 3), taking the central question to be what caused an ML model
to produce an output for an actual input created from a real-world process.

4 Evaluated Explanation Methods

We compare several model explanation methods that share three main characteristics. First, they are all
suitable for NLP models and have been used in the literature for generating model explanations in the
form of estimated effects on model predictions. Second, they all provide concept-level explanations,
for a pre-defined list of human-interpretable concepts (e.g., how sensitive a restaurant review rating
classifier is to language related to food quality). This approach is also forward-looking, allowing
more researchers to construct new hypotheses (i.e., concepts we have not collected labels for) and
estimate their effect on the predictor. Third, all of the tested methods are model-agnostic, meaning
that they separate the explanation from the model. At the same time, these methods differ in five
important ways, as summarized Table 2.

We now turn to reviewing the explanation methods that we later compare on CEBaB (§6). In our
mathematical formulas, we employ a unified notation for all methods, to make the definitions more
accessible and easier to integrate into our experimental set-up. Assume we have a classifier N (which
outputs a probability vector) and feature function �, and we want to compute the effect on N�(xC=c

u )
of changing the value of concept C from c to c0 using an unseen test set (D, Y ).

Approximate Counterfactuals The gold labels of CEBaB are the difference between the logits
for some original review xC=c

u and ground-truth counterfactual xC=c0
u . As a baseline, we sample
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an original review xC=c0

u0 with the same aspect-labels as the xC=c0
u and use it as an approximate

counterfactual:
ApproxN�

(C, c, c0;x) = N (�(xC=c0

u0 ))�N (�(xC=c
u )) (6)

We do this sampling using predicted aspect labels from the aspect-level sentiment analysis models
described in Appendix C.

Conditional Expectation (CONEXP) Goyal et al. [17] propose a baseline where the effect of a
concept C is the average difference in predictions on examples with different values of C.

CONEXPD
N�

(C, c, c0) =
1

|DC=c0 |
X

x2DC=c0

N (�(x))� 1

|DC=c|
X

x2DC=c

N (�(x)) (7)

where DC=c and DC=c0 are subsets of D where C takes values c and c0, respectively. To predict an
effect, this method only relies on C, c, and c0, resulting in an estimate that does not depend on the
specific input text itself.

Conditional Expectation Learner (S-Learner) We adapt S-Learner, a popular method for
estimating the Conditional Average Treatment Effect (CATE) [27]. To estimate causal concept
effects, our S-Learner trains a logistic regression model E to predict N (�(x)) using the values of all
the labeled concepts of example x, denoted by x0.2 Then, during inference, we compute an individual
effect for example pair (xC=c

u , xC=c0
u ) by comparing the output of the model Ex on this pair:

S-Learner(C, c, c0;x) = E(x0C=c0

u )� E(x0C=c
u ) (8)

At inference time, S-Learner assumes access to all aspect-level labels x0, which might not always be
available. To alleviate this issue, we instead predict the aspect-level labels x0 from the original text x
using models described in Appendix C.

TCAV Kim et al. [26] use Concept Activation Vectors (CAVs), which are semantically meaningful
directions in the embedding space of �. Our adapted version of Testing with CAVs (TCAV) outputs a
vector measuring the sensitivity of each output class k to changes towards the direction of a concept
vC at the point of the embedded input. It is computed as:

TCAVN�(C;x) =
�
rNk(�(x)) · vC

�K
k=1

(9)
where K is the number of classes and vC is a linear separator learned to separate concept C in the
embedding space of �.

ConceptSHAP Yeh et al. [57] propose this expansion to SHAP [30], to generate concept-based
explanation based on Shapley values [45]. Given a complete (i.e., such that the accuracy it achieves on
a test set is higher than some threshold �) set of m concepts {C1, . . . , Cm}, ConceptSHAP calculates
the contribution of each concept to the final prediction. Our adapted version outputs a vector for
each C 2 {C1, . . . , Cm} and x. We justify this modification and provide implementation details in
Appendix H.

CausaLM Feder et al. [11] estimate the causal effect of a binary concept C on the model’s
predictions by adding auxiliary adversarial tasks to the language representation model in order to
learn a counterfactual representation �CF

C (x), while keeping essential information about potential
confounders (control concepts). Their method outputs the text representation-based individual
treatment effect (TReITE), which is computed as:

TReITEN�(C;x) = N 0��CF
C (x)

�
�N

�
�(x)

�
(10)

where �CF
C denotes the learned counterfactual representation, where the information about concept C

is not present, and N 0 is a classifier trained on this counterfactual representation. A key feature of
CausaLM is its ability to control for confounding concepts (if modeled).3 An inherent drawback of this
technique is that it can only estimate interventions well for c0 = Unknown, since the counterfactual
representation is only trained to remove a concept C.

2This training approach, where an explainer model is fit to predict the output of the original model, shares
the intuition of LIME, the widely used explanation method [41], but for concept-level effects.

3As in Feder et al. [11], we control for the most correlated potential confounder.
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Table 3: Dataset statistics of CEBaB combining train/dev/test splits.

Positive Negative Unknown no maj. Total

food 5726 (41%) 5526 (38%) 2605 (15%) 208 (31%) 14065
service 4045 (29%) 4098 (28%) 3877 (22%) 178 (27%) 12198
ambiance 2928 (21%) 2597 (18%) 5121 (29%) 203 (30%) 10849
noise 1365 (10%) 2215 (15%) 5883 (34%) 78 (12%) 9541

(a) Aspect-level labels.

1 star 1870 (12%)
2 star 3056 (20%)
3 star 3517 (23%)
4 star 2035 (13%)
5 star 2732 (18%)
no maj. 1879 (12%)

(b) Review-level ratings.

{Neg, Pos} {Neg, Unk} {Pos, Unk}

food 898 1316 1291
service 851 857 938
ambiance 947 585 472
noise 1145 208 260

(c) Edit pair distribution. Edit pairs are examples that
come from the same original source text and differ
only in their rating for a particular aspect.

Neg to Pos Neg to Unk Pos to Unk

food 1.84 1.37 �1.02
service 0.98 0.91 �0.53
ambiance 0.93 0.91 �0.50
noise 0.72 0.48 �0.47

(d) Empirical dATE for the five-way sentiment labels in
CEBaB. The reverse of a given concept change is the
negative of the value given – e.g., the dATE for ‘Pos
to Neg’ for food is �1.84. See Appendix B for the
corresponding values for binary sentiment.

Iterative Nullspace Projection (INLP) Ravfogel et al. [40] remove a concept from a representation
vector by repeatedly training linear classifiers that aim to predict that attribute from the representations
and projecting the learned representations on their null-space. Similar to CausaLM, INLP also
estimates the TReATE (Equation 10) and can only estimate interventions for c0 = Unknown.

5 The CEBaB Dataset

Table 1 provides an intuitive overview of the structure of CEBaB. In the editing phase of dataset
creation, crowdworkers modified an existing OpenTable review in an effort to achieve a specific
aspect-level goal while holding all other properties of the original text constant. Our aspect-level
categories are food, ambiance, service, and noise. In the validation phrase, crowdworkers labeled each
example relative to each aspect as ‘Positive’, ‘Negative’, or ‘Can’t tell’ (Unknown). Having five labels
per example allows us to infer a majority label or reason in terms of the full label distributions. In the
rating phase, each full text was labeled using a common five-star scale, again by five crowdworkers.

We began with 2,299 original reviews from OpenTable (related to 1,084 restaurants) and expanded
them, via the above editing procedure, into a total of 15,089 texts. The distribution of normalized
edit distances has peaks around 0.28 and 0.77, showing that workers made non-trivial changes to
the originals, and even often had to make substantial changes to achieve the editing goal. (See
Appendix B for the full distribution.)

Table 3 summarizes the resulting label distributions, where an example has label y if at least 3 of
the 5 labelers chose y, otherwise it is in the ‘no majority’ category. 99% of aspect-level edits have a
majority label that corresponds to the editing goal, and 88% of the texts have a review-level majority
label on the five-star scale. Overall, these percentages show that workers were extremely successful
in achieving their editing goals and that edits have systematic effects on overall sentiment.

The central goal of CEBaB is to create edit pairs: pairs of examples that come from the same original
text and differ only in their labels for a particular aspect. For example, in Table 1, the first two ‘food
edit’ cases form an edit pair, since they come from the same original text and differ only in their food
label. Original texts can also contribute to edit pairs; the original text in Table 1 forms an edit pair
with each of the texts it is related to by edits. Table 3c summarizes the distribution of edit pairs, and
Table 3d reports the ground-truth dATE values (§3).
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Table 4: \CaCE (Definition 4) for bert-base-uncased fine-tuned as a 5-way sentiment classifier.
Rows are concepts, columns are real-world concept interventions, and each entry indicates the average
change in classifier output when the concept is intervened on with the given direction.4 Results are
averaged over 5 distinct seeds with standard deviations. The \CaCE value of changing concept C from
c to c0 is the negative \CaCE value of changing concept C from c0 to c.

Negative to Positive Negative to unknown Positive to unknown

food 1.90 (± 0.03) 1.00 (± 0.02) �0.82 (± 0.01)
service 1.42 (± 0.04) 0.89 (± 0.04) �0.45 (± 0.01)
ambiance 1.27 (± 0.01) 0.79 (± 0.01) �0.50 (± 0.03)
noise 0.75 (± 0.02) 0.44 (± 0.00) �0.23 (± 0.02)

We release the dataset with fixed train/dev/test splits. In creating these splits, we enforce two high-
level constraints. The first is our ‘grouped’ requirement: for each original review t, all texts that are
related to t via editing occur in the same split as t. This ensures that models are not evaluated on
examples that are related by editing to those they have seen in training. Second, if any text t in a
group received a ‘no majority’ label, then the entire group containing t is put in the train set. This
ensures that there is no ambiguity about how to evaluate models on dev and test examples.

Once these high-level conditions were imposed, the examples were sampled randomly to create
the splits. This allows that individual workers can contribute edited texts across splits. This minor
compromise was necessary to ensure that we could have large dev and test splits. Appendix C in our
supplementary materials shows that worker identity has negligible predictive power.

There are two versions of the train set: inclusive and exclusive. The inclusive train set contains all
original and edited non-dev/test texts (11,728 texts). The exclusive version samples exactly one train
text from each set of texts that are related by editing (1,755 examples). The rationale is that models
trained with an original review as well as its edited counterparts may explicitly learn causal effects
trivially by aggregating learning signals across inputs. Our exclusive train split prevents this, which
helps facilitate fair comparisons between explanation methods and better resembles a real-world
setting.

Our dataset is released publicly in JSON format and is available in the Hugging Face datasets library.
It includes restaurant metadata, full rating distributions, and anonymized worker ids. Appendix B in
our supplementary materials provides additional details on the dataset construction, including the
prompts used by the crowdworkers, the number of workers per task, worker compensation, and a
sample of examples with ratings to help convey the nature of workers’ edits and the overall quality of
the resulting texts and labels. In addition, Appendix C reports on a wide range of classifier experiments
at the aspect-level and text-level that show that models perform well on CEBaB classification tasks,
which bolsters the claim that CEBaB is a reliable tool for assessing explanation methods.

6 Experiments and Results

For each experiment, we fine-tune a pretrained language model to predict the overall sentiment of
all restaurant reviews from our exclusive OpenTable train set. Since the goal of our work is not to
achieve state-of-the-art performance, but rather to compare explanation methods and demonstrate
the usage of CEBaB, we test the ability of methods to explain commonly used models, trained with
standard experimental configurations.

In the main text, we report results for bert-base-uncased fine-tuned as a five-way classifier.
Appendix D includes results for GPT-2, RoBERTa, and an LSTM, fine-tuned on binary, 3-way and
5-way versions of the sentiment task. All results, including the ground-truth effect that depends on
the specific instance of a model, are averaged across 5 seeds.

To evaluate the intrinsic capacity of a model to capture causal effects, we report the \CaCE values,
as in Definition 4. The results for bert-base-uncased are given in Table 4. They are intuitive and
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Figure 2: ICaCE-Error (Definition 3) for bert-base-uncased fine-tuned for five-way sentiment,
averaged per aspect. We report values for cosine, L2, and normdiff. Lower is better. Stars mark
the best result(s) per metric. Results averaged over 5 distinct seeds. †RandomExplainer takes the
difference between two random probability vectors as the predicted effect.

well-aligned with the dATE estimates in Table 3d, indicating that the model has captured the real-world
effects.

Our primary assessment of the evaluation methods is given in Figure 2, again focusing on a five-way
bert-base-uncased model as representative of our results. We provide values based on cosine,
L2, and normdiff as the value of Dist in Definition 3. The cosine-distance metric measures if the
estimated and observed effect have the same direction but does not take the magnitudes of the effects
into account. The L2-distance measures the Euclidian norm of the difference of the observed and
estimated effect. Both the direction and magnitude of the effects influence this metric. To only
compare the magnitudes, we use the normdiff -distance, which computes the absolute difference
between the Euclidean norms of the observed and estimated effects, thus completely ignoring the
directions of both effects.

Remarkably, our approximate counterfactual baseline proves to be the best method at capturing both
the direction and magnitude of the effects. The fact that a simple baseline method beats almost all
other methods indicates that we need better explanation methods if we are going to capture even
relatively simple causal effects like those given by CEBaB.

Recall from Table 2 that the compared methods require different levels of access to concept labels at
inference time. Approximate counterfactuals and S-Learner have access to both the direction of the
intervention and the predicted test-time aspect labels, enabling them to outperform CONEXP, which
has access to only the direction of the intervention, and TCAV, ConceptSHAP, and CausaLM, which
have access to neither the intervention direction nor test-time aspect labels.

The INLP method ties with the best method for the cosine metric, despite having access to neither
intervention directions nor test-time aspect labels. Perhaps this method could be extended to make use
of this additional information and decisively improve upon our approximate counterfactual baseline.

While CausaLM and INLP both estimate the effect of removing a concept from an input, INLP uses
linear probes to guide interventions on the original model, while CausaLM trains an entirely new
model with an auxiliary adversarial objective. The direct use of the original model is something INLP
shares with the approximate counterfactual baseline; it seems that a tight connection to the original
model may underlie success on CEBaB.

7 Conclusion

Our main contributions in this paper are twofold. First, we introduced CEBaB, the first benchmark
dataset to support comparing different explanation methods against a single ground-truth with
human-created counterfactual texts and multiply-validated concept labels for aspect-level and overall

4Definition 4 defines the CaCE values as vectors. In this table, we collapse the CaCE values to scalars by
having N output the most probable predicted class, instead of the class distribution.
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sentiment. Using this resource, one can isolate the true causal concept effect of aspect-level sentiment
on any trained overall sentiment classifier. CEBaB provides a level playing field on which we can
compare a variety of explanation methods that differ in their assumptions about their access to the
model, their computational demands, their access to ground-truth concept labels at inference time,
and their overall conception of the explanation problem. Furthermore, the evaluated methods make
absolutely no use of CEBaB’s counterfactual train set. In turn, we hope that CEBaB will facilitate the
development of explanation methods that can take advantage of the very rich counterfactual structure
CEBaB provides across all its splits.

Second, we have provided an in-depth experimental analysis of how well multiple model explanation
methods are able to capture the true concept effect. A naive baseline that approximates counterfactuals
through sampling achieves the best performance, with INLP and S-Learner being the only other
methods that achieves state-of-the art on any metric. While CEBaB is only grounded in one task,
sentiment analysis alone is enough to produce starkly negative results that should serve as a call to
action for NLP researchers aiming to explain their models.
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