
A Proofs

A.1 Preliminaries

Proof in Assumption 3.1. Here we prove that if there no label error in the clean dataset, then
P (Ỹ |x) = P (Y |x).

Proof. First, we note that

P (Ỹ = j0|x) =
X

j

P (Ỹ = j0|Y = j, x)P (Y = j|x).

Since P (E = 1|Y = j, x) = 0 we have,

P (Ỹ = j0|Y = j, x) =
X

e

P (Ỹ = j0|E = e, Y = j, x)P (E = e|Y = j, x)

= P (Ỹ = j0|E = 0, Y = j, x)

=

⇢
1, if j0 = j,
0, otherwise.

Therefore we have for all j0,

P (Ỹ = j0|x) = P (Y = j0|x).

Total Variation distance for discrete probability distributions. For two discrete probability
distributions P (Y ) and P (Y 0) where Y, Y 0 2 Y , the total variation distance between them can be
equally defined as

kP (Y ) � P (Y 0)kTV = sup
J2A

|P (Y 2 J) � P (Y 0 2 J)|

= sup
J2A

������

X

j2J

P (Y = j) �
X

j2J

P (Y 0 = j)

������

=
1

2

X

j

|P (Y = j) � P (Y 0 = j|)|

A.2 Proofs in Section 4.1

Proof of Lemma 4.1.

Proof. For simplicity, we consider the adversarial perturbation generated by FGSM. Other adversarial
perturbation can be viewed as a Taylor series of such perturbation.

� = �"
r f(x)y

kr f(x)yk
, (11)
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First, we bound the distribution mismatch by gradient norm.

kP (Y |x) � P (Y 0|x0)kTV =
1

2

X

j

|P (Y = j|x) � P (Y 0 = j|x0)| TV distance

� 1

2
|P (Y = y|x) � P (Y 0 = y|x0)|

=
1

2
|f(x)y � f(x0)y|

=
1

2


�rf(x)y · � � 1

2
�Tr2f(z)y�

�

� 1

2

h
�rf(x)y · � � �M

2
k�k22

i
Bounded Hessian

� 1

2


"
krf(x)yk22
krf(x)yk

� �M

2
"2

krf(x)yk22
krf(x)yk2

�
.

Now if k · k = k · k2, we have

kP (Y |x) � P (Y 0|x0)kTV � 1

2

h
"krf(x)yk2 � �M

2
"2
i
. (12)

If k · k = k · k1, we can utilize the fact that k · k1  k · k2 
p

dk · k1, thus

kP (Y |x) � P (Y 0|x0)kTV � 1

2

h
"krf(x)yk1 � �M

2
"2

p
d
i
. (13)

Second, we bound the gradient norm by the L-local Lipschitzness assumption. Let x⇤ be a
closest input that achieves the local maximum on the predicted probability at y, namely x⇤ =
arg minz2X,f(z)y=1 kx � zk. Because x⇤ is the local maximum and f is continuously differentiable,
rf(x⇤)y = 0, thus

rf(x)y = rf(x⇤)y + r2f(z)y(x � x⇤) = r2f(z)y(x � x⇤).

Therefore we have
krf(x)yk = kr2f(z)y(x � x⇤)k

� �mkx � x⇤k

� �m
|f(x⇤)y � f(x)y|

L

=
�m

L
(1 � f(x)y).

Plug this into Equation (12) or Equation (13) we then obtain the desired result.

Proof of Lemma 4.2.

Proof. First, we show that the expectation of the label error is lower bounded by the mismatch
between the true label distribution and the assigned label distribution.

kP (Ỹ |x) � P (Y |x)kTV =
1

2

X

j

|P (Ỹ = j|x) � P (Y = j|x)|

=
1

2

X

j

|P (Ỹ = j, Y = j|x) + P (Ỹ = j, Y 6= j|x)

� P (Y = j, Ỹ = j|x) � P (Y = j, Ỹ 6= j|x)|

=
1

2

X

j

|P (Ỹ = j, Y 6= j|x) � P (Y = j, Ỹ 6= j|x)|

 1

2

X

j

P (Ỹ = j, Y 6= j|x) + P (Y = j, Ỹ 6= j|x)

= P (Y 0 6= Y |x)

= P (E = 1|x)

(14)
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Second, given a sampled training set D = {(xi, ỹi)}i2[N ], the empirical measure of label error E
should converge to its expectation almost surely, namely

lim
N!1

pe(D) = lim
N!1

1

N

X

i2[N ]

ei = E[E] = P (E = 1).

Using standard concentration inequality such as Hoeffding’s inequality we have, with probability
1 � �,

|pe(D) � P (E = 1)| 
r

1

2N
log

2

�
.

This implies

pe(D) � P (E = 1) �
r

1

2N
log

2

�
.

Since P (E = 1) = ExP (E = 1|x), we have, with probability 1 � �,

pe(D) � ExkP (Ỹ |x) � P (Y |x)kTV �
r

1

2N
log

2

�
.

which means pe(D) > 0 as long as N is large.

Proof of Theorem 4.3.

Proof. First, by the fact that P (Ỹ 0|x0) = P (Ỹ |x) and P (Ỹ |x) = P (Y |x) we have P (Ỹ 0|x0) =
P (Y |x).

Therefore, apply Lemma 4.2 to an adversarially augmented training set we have with probability
1 � �,

pe(D0) � ExkP (Ỹ 0|x0) � P (Y 0|x0)kTV �
r

1

2N
log

2

�

� ExkP (Y |x) � P (Y 0|x0)kTV �
r

1

2N
log

2

�
.

Further, apply Lemma 4.1 and the definition of data quality, we have with probability 1 � �,

pe(D0) � "

2
(1 � Exf(x)y)

�m

L
� "2

4
�M �

r
1

2N
log

2

�

� "

2
(1 � q(D))

�m

L
� "2

4
�M �

r
1

2N
log

2

�
.

A.3 Proofs in Section 4.2

Proof of Lemma 4.4.

Proof. Let D = (x, y) be the adversarially augmented training set. Let S = {x : (x, y) 2 D} be
the collection of all training inputs. First we note that the set of all training inputs can be grouped
into several subsets such that the inputs in each subset possess similar true label distribution. More
formally, Let C = {x̄j}

N⇢"

j=1 be an ⇢"-external covering of S with minimum cardinality, namely
S ✓

S
x2C{x0 | kx0 � xk  ⇢"}, where we refer x̄j as the covering center, and N⇢" is the covering

number.

Let {Sj}
N⇢"

j=1 be any disjoint partition of S such that Sj ✓ {x0|kx0 � x̄jk  ⇢"}. We show that
Sj attains a property that the true label distribution of any input x in this subset will not be too
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far from the sample mean of one-hot labels ȳj = |Sj |�1 P
x2Sj

1y in this subset. Specifically, let
p(x) = P (Y |x). We have with probability 1 � �,

kp(x) � ȳjk1 

s
2K

|Sj |
log

2

�
+ 2L⇢". (15)

To prove this property we first present two lemmas.

Lemma A.1 (Lipschitz constraint of the true label distribution). Let Sj be a subset constructed above

and ȳj = |Sj |�1 P
x2Sj

1y . Then for any x 2 Sj we have,

kp(x) � E[ȳj ]k1  2L⇢". (16)

Proof. First, since x 2 Sj , we have kx � x̄jk1  ⇢", which implies kp(x) � p(x̄j)k1  L⇢" by the
locally Lipschitz continuity of p. Then for any x, x0 2 Sj , we will have kp(x) � p(x0)k  2L⇢" by
the triangle inequality. Let NS = |Sj |. Therefore,

������
p(x) � 1

NS

X

x2Sj

p(x)

������
1

 2
NS � 1

NS
L⇢"  2L⇢". (17)

Further, the linearity of the expectation implies

E[ȳ] = NS
�1

X

x2Sj

E[1y(x)] = NS
�1

X

x2Sj

p(x). (18)

Therefore kp(x) � E[ȳj ]k  2L⇢".

Lemma A.2 (Concentration inequality of the sample mean). Let S be a set of x with cardinality N .

Let ȳ = N�1
P

x2S 1y be the sample mean. Then for any p-norm k · k and any " > 0, we have with

probability 1 � �,

kȳ � E [ȳ]k1 
r

2K

N
log

2

�
(19)

Proof. Note that ȳ obeys a multinomial distribution, i.e. ȳ ⇠ N�1multinomial(N,E[ȳ]). This
lemma is thus the classic result on the concentration properties of multinomial distribution based on
`1 norm Weissman et al. (2003); Qian et al. (2020).

One can see that Lemma A.1 bounds the difference between true label distribution of individual
inputs and the mean true label distribution, while Lemma A.2 bounds the difference between the
sample mean and the mean true label distribution. Therefore the difference between the true label
distribution and the sample mean is also bounded, since by the triangle inequality we have with
probability 1 � �,

kp(x) � ȳk  kp(x) � E[ȳ]k + kȳ � E[ȳ]k


r

2K

N
log

2

�
+ 2L⇢".

(20)

We now show that given the locally Lipschitz constraint established in each disjoint partition we
constructed above, the prediction given by the empirical risk minimizer will be close to the sample
mean. As an example, we focus on the negative log-likelihood loss, namely `(f✓(x), y) = �1y ·
log f✓(x). Other loss functions that are subject to the proper scoring rule can be investigated in a
similar manner. First, we regroup the sum in the empirical risk based on the partition constructed
above, namely

R̂(f✓, S) =
1

N⇢"

N⇢"X

j=1

R̂(f✓, Sj), (21)

where R̂(f✓, Sj) = �|Sj |�1 P|Sj |
i=1 1yi · log f✓(xi) is the empirical risk in each partition. Since we

are only concerned with the existence of a desired minimizer of the empirical risk, we can view f✓ as
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able to achieve any labeling of the training inputs that suffices the local Lipschitz constraint. Thus the
empirical risk minimization is equivalent to the minimization of the empirical risk in each partition.
The problem can thus be defined as, for each j = 1, · · · , N⇢",

min
f✓

R̂(f✓, Sj)

s.t. kf✓(x) � f✓(x̄j)k1  L⇢", 8 x 2 Sj ,
(22)

where the constraint is imposed by the locally-Lipschitz continuity of f✓. By the following lemma,
we show that the minimizer of such problem is achieved only if f✓(x̄j) is close to the sample mean.

Lemma A.3. Let ȳ = |Sj |�1 P
x2Sj

1y. The minimum of the problem (22) is achieved only if

f✓(x̄j) = ȳj(1 + KL✓⇢") � L✓⇢".

Proof. We note that since the loss function we choose is strongly convex, to minimize the em-
pirical risk, the prediction of any input x must be as close to the one-hot labeling as possible.
Therefore the problem (22) can be formulated into a vector minimization where we can employ
Karush–Kuhn–Tucker (KKT) theorem to find the necessary conditions of the minimizer.

Let pi := f✓(xi) and "̃ = L⇢" for simplicity. We rephrase the problem (22) as

min
{pi}N

i=1

� 1

N

X

i

1yi · logpi

s.t. kpi � pk1  "̃,
X

k

pk
i = 1,

X

k

pk = 1,pk
i � 0,pk � 0.

(23)

Case I. We first discuss the case when pk + "̃ < 1 for all k. First, we observe that for any p,
the minimum of the above problem is achieved only if pyi

i = pyi + "̃. Because by contradiction, if
pyi
i < pyi + "̃, we will have � logpyi

i > � log(pyi + "̃), and pyi + "̃ belongs to the feasible set,
which means pyi

i does not attain the minimum.

The above problem can then be rephrased as

min
p

� 1

N

X

i

log(pyi + "̃), s.t.
X

k

pk = 1,pk � 0, (24)

where we have neglected the condition associated with pk 6=yi
i , since they do not contribute to the

objective, they can be chosen arbitrarily as long as the constraints are sufficed, and clearly the
constraints are underdetermined.

Let Nk =
P

i 1(yi = k), we have
P

i log(pyi + "̃) =
P

k Nk log(pk + "̃). Therefore the above
problem is equivalent to

min
p

�
X

k

ȳk log(pk + "̃), s.t.
X

k

pk = 1,pk � 0, (25)

where ȳ ⌘ [N1/N, · · · , Nk/N ]T is equal to the sample mean N�1
P

i 1yi .

To solve the strongly convex minimization problem (25) it is easy to employ KKT conditions to show
that

p = ȳ(1 + K "̃) � "̃.

Case II. We now discuss the case when p̂ is the minimizer of (23) and there exists k0 such that
p̂k0

+ "̃ � 1. And p̂ 6= p, where p = ȳ(1 + K "̃) � "̃ is the form of the minimizer in the previous
case.

Considering a non-trivial case p⇤k0
< 1 � "̃. Otherwise the true label distribution is already close to

the one-hot labeling, which is the minimizer of the empirical risk. Therefore by
P

k 6=k0 pk > "̃ we
have the condition X

k 6=k0

ȳk >
K "̃

1 + K "̃
(26)
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Now considering the minimization objective R(p) = �N�1
P

i 1yi ·logpi. For all i with yi = k0, we
must have pyi

i = 1, otherwise the optimal cannot be attained by contradiction. Then the minimization
problem can be rephrased as

min
X

k 6=k0

ȳk log(p̂ + "̃), s.t.
X

k0 6=k

p̂k � "̃, p̂k � 0, (27)

where the first constraint is imposed by p̂k0 � 1 � "̃.

Employ KKT conditions similarly we can have p̂k = ȳk/� � "̃ where � is a constant. By checking
the constraint we can derive � �

P
k ȳ

k/(K "̃).

However, the minimization objective

min
�

�
X

k 6=k0

ȳk log
ȳk

�
,

requires � to be minimized. Therefore � =
P

k 6=k0 ȳk/(K "̃), which implies

p̂k = K "̃
ȳk

P
k 6=k0 ȳk

� "̃. (28)

Now since p̂ = arg minp R(p) and p̂ 6= p, we must have R(p̂) < R(p). This means

�
X

k 6=k0

ȳk log
K "̃ȳk

P
k 6=k0 ȳk

< �
X

k 6=k0

ȳk log[ȳk(1 + K "̃)], (29)

which is reduced to X

k 6=k0

ȳk <
K "̃

1 + K "̃
(30)

But this is contradict to our assumption.

We are now be able to bound the difference between the predictions of the training inputs produced by
the empirical risk minimizer and the sample mean in each Sj . To see that we have for each x 2 Sj .

kf✓(x) � ȳjk1  kf✓(x) � f✓(x̄j)k1 + kf✓(x̄j) � ȳjk1
 L⇢"(1 + Kkȳj � K�11k1)
 L⇢"(1 + Kk1(·) � K�11k1).

= L⇢"

✓
3 � 2

K

◆
(31)

By Equation (15) we then have for any x 2 Sj , with probability 1 � �,

kf✓(x) � p(x)k1 

s
2K

|Sj |
log

2

�
+ L✓⇢"

✓
3 � 2

K

◆
+ 2L⇢", (32)

which means the difference between the predictions and the true label distribution is also bounded.

Step III: Show the disjoint partition is non-trivial. In (32), we have managed to bound
the difference between the predictions yielded by an empirical risk minimizer and the true label
distribution based on the cardinality of the subset |Sj |, namely the number of inputs in j-partition.
However |Sj | is critical to the bound here as if |Sj | = 1, then (32) becomes a trivial bound. Here we
show |Sj | is non-negligible based on simple combinatorics.

Lemma A.4. Let {Sj}
N⇢"

j=1 be a disjoint partition of the entire training set S. Denote S(x) as the

partition that includes x. Let N(x) = |S(x)| and N = |S|. Then for any  � 1,

����

⇢
x | N(x) � N

N⇢"

����� �
✓

1 � 1


+

1

N⇢"

◆
N. (33)
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Proof. We note that the problem is to show the minimum number of x such that N(x) � N/(N⇢").
This is equivalent to find the maximum number of x such that N(x)  N/(N⇢"). Since we only have
N⇢" subsets, the maximum can be attained only if for N⇢"�1 subsets S , |S| = N/(N⇢"). Otherwise,
if for any one of these subsets |S| < N/(N⇢"), then it is always feasible to let |S| = N/(N⇢")
and the maximum increases. Similarly, if the number of such subsets is less than N⇢" � 1, then it is
always feasible to let another subset subject to |S| = N/(N⇢") and the maximum increases. We can
then conclude that at most N(N⇢" � 1)/(N⇢") inputs can have the property N(x)  N/(N⇢").

The above lemma basically implies when partitioning N inputs into N⇢" subsets, a large fraction of
the inputs will be assigned to a subset with cardinality at least N/(N⇢"). Here N⇢" is the covering
number and is bounded above based on the property of the covering in the Euclidean space. Apply
Lemma A.4 to (32), and use the fact that k · kTV = k · k1/2 for category distributions, we then arrive
at Lemma 4.4.

Proof of Theorem 4.5.

Proof. First, we show that adversarial perturbation generated by a realistic classifier can change its
predictive distribution. Considering adversarial perturbation based on FGSM and cross-entropy loss,
namely x0 = x � "kr f✓(x)yk�1r f✓(x)y , we can obtain a result similar to Lemma 4.1.

Lemma A.5. Assume f✓(x)y is L✓-locally Lipschitz around x with bounded Hessian. Let �m =
infz2B"(x) �min(r2f✓(z)y) > 0 and �M = supz2B"(x) �max(r2f✓(z)y) > 0. Here �min and �max

denote the minimum and maximum eigenvalues of the Hessian, respectively. We then have

kf✓(x) � f✓(x
0)kTV � "

2
(1 � f✓(x)y)

�m

L✓
� "2

4
�M , (34)

Second, We prove that the true label distribution will be distorted by the adversarial perturbation
generated by a realistic classifier. This is guaranteed if the predictive distribution of a realistic
classifier can approximate the true label distribution. Specifically, by utilizing Lemma A.5 and
Lemma 4.4, we have with probability 1 � 2�,

kP (Y |x) � P (Y 0|x0)kTV

�kf✓(x) � f✓(x
0)kTV � (kf✓(x) � P (Y |x)kTV + kf✓(x

0) � P (Y 0|x0)kTV)

�"

2
(1 � f✓(x)y)

�m

L✓
� "2

4
�M �

r
2N⇢"K

N
log

2

�
�

✓✓
3

2
� 1

K

◆
L✓ + L

◆
2⇢"

="


(1 � f✓(x)y)

�m

2L✓
� 2⇢

✓✓
3

2
� 1

K

◆
L✓ + L

◆�
� "2

�M

4
�

r
2N⇢"K

N
log

2

�
.

(35)

Finally, we show that such distribution mismatch induces label noise in the adversarially augmented
training set. Similar to the proof for the true classifier, by the common labeling practice of adversarial
examples we have P (Ỹ 0|x0) = P (Ỹ |x) = P (Y |x). By utilizing Lemma 4.2 1 we then have with
probability 1 � 3�,

pe(D0) � "


(1 � Exf✓(x)y)

�m

2L✓
� 2⇢

✓✓
3

2
� 1

K

◆
L✓ + L

◆�
� "2

�M

4
� ⇠

r
1

2N
log

2

�
, (36)

where ⇠ = 1 +
p

4N⇢"K.

1Note this is a result only associated with the training set, thus is not dependent on the specific classifier.
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A.4 Proofs in Section 5

Proof of Theorem 5.1.

Proof. Let j⇤ = argmax P (Y 0 = j|x0) and thus P (Y 0 = j⇤|x0) 2 [1/c, 1]. Let
g(T ) := f(x0; ✓, T )j⇤ , which is a continuous function defined on [0, 1]. The condition j⇤ =
arg maxj f(x0; ✓, T )j ensures that g(T ) 2 [1/c, 1], where c is the number of classes. By the interme-
diate value theorem, there exists T ⇤, such that g(T ⇤) = P (Y 0 = j⇤|x0).

Let T = T ⇤, we have

kf(x0; ✓, T ) � P (Y 0|x0)kTV =
1

2

X

j

|f(x0; ✓, T )j � P (Y 0 = j|x0)|

=
1

2

X

j,j 6=j⇤

|f(x0; ✓, T )j � P (Y 0 = j|x0)|

 1

2

2

4
X

j,j 6=j⇤

f(x0; ✓, T )j +
X

j,j 6=j⇤

P (Y 0 = j|x0)

3

5

= 1 � P (Y 0 = j⇤|x0),

where the inequality holds by the triangle inequality.

Meanwhile, we have

kP (Ỹ 0|x0) � P (Y 0|x0)kTV = kP (Y |x) � P (Y 0|x0)kTV

= k (y) � P (Y 0|x0)kTV

=
1

2

2

41 � P (Y 0 = y|x0) +
X

j,j 6=ŷ

P (Y 0 = y|x0)

3

5

= 1 � P (Y 0 = y|x0)

� 1 � P (Y 0 = j⇤|x0).

Therefore, it can seen that for T = T ⇤,

kf(x0; ✓, T ) � P (Y 0|x0)kTV  kP (Ỹ 0|x0) � P (Y 0|x0)kTV .

Proof of Theorem 5.2.
Lemma A.6. Let x0

be an example incorrectly classified by a classifier f in terms of the true label

distribution P (Y 0 = j|x0), namely

arg max
j

f(x0; ✓, T )j 6= j⇤,

where j⇤ = arg maxj P (Y 0 = j|x0). Assume P (Y 0 = j⇤|x0) � 1/2, then

f(x0; ✓, T )j⇤  P (Y 0 = j⇤|x0).

Proof. We prove it by contradiction. Assume f(x0; ✓, T )j⇤ > P (Y 0 = j⇤|x0), we have
f(x0; ✓, T )j⇤ > P (Y 0 = j⇤|x0) � 1/2. Therefore,

f(x0; ✓, T )j 
X

j,j 6=j⇤

f(x0; ✓, T )j = 1 � f(x0; ✓, T )j⇤ < 1/2, 8j 6= j⇤,

which means f(x0; ✓, T )j < f(x0; ✓, T )j⇤ , 8j 6= j⇤. This leads to j⇤ = arg maxj f(x0; ✓, T )j ,
which contradicts our condition.

Now we prove Theorem 5.2
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Proof. First let P (Y 0|x0) = P (y|x) ⇡ (y). Let j⇤ = arg maxj P (Y 0 = j|x0). By Lemma A.6 we
have f(x0; ✓, T )j⇤  P (Y 0⇤ = j⇤|x0)  1. Then there exists �⇤ > 0, such that �⇤ · f(x0; ✓, T )j⇤ +
(1 � �⇤) = P (Y 0 = j⇤|x0) by the intermediate value theorem.

Let � = �⇤, we have

2
h
k� · f(x0; ✓, T ) + (1 � �) · P (Ỹ 0|x0) � P (Y 0|x0)kTV � kf(x0; ✓, T ) � P (Y 0|x0)kTV

i

=2 [k� · f(x0; ✓, T ) + (1 � �) · (y) � P (Y 0|x0)kTV � kf(x0; ✓, T ) � P (Y 0|x0)kTV ]

=
X

j

|� · f(x0; ✓, T )j + (1 � �) · 1(j = y) � P (Y 0 = j|x0)| �
X

j

|f(x0; ✓, T )j � P (Y 0 = j|x0)|

=
X

j

|� · f(x0; ✓, T )j + (1 � �) · 1(j = Y ) � P (Y 0 = j|x0)| �
X

j

|f(x0; ✓, T )j � P (Y 0 = j|x0)|

=
X

j,j 6=j⇤

|� · f(x0; ✓, T )j � P (Y 0 = j|x0)| �
X

j,j 6=j⇤

|f(x0; ✓, T )j � P (Y 0 = j|x0)| � |f(x0; ✓, T )j⇤ � P (Y 0 = j⇤|x0)|


X

j,j 6=j⇤

|� · f(x0; ✓, T )j � f(x0; ✓, T )j | � |f(x0; ✓, T )j⇤ � P (Y 0 = j⇤|x0)|

=
X

j,j 6=j⇤

[f(x0; ✓, T )j � � · f(x0; ✓, T )j ] � [P (Y 0 = j⇤|x0) � f(x0; ✓, T )j⇤ ]

=
X

j,j 6=j⇤

[f(x0; ✓, T )j � � · f(x0; ✓, T )j ] � [� · f(x0; ✓, T )j⇤ + (1 � �) � f(x0; ✓, T )j⇤ ]

=
X

j

f(x0; ✓, T )j � �
X

j

f(x0; ✓, T )j � (1 � �)

= 0.

B Limitations

We note that alternative labeling of adversarial examples proposed in this paper is based on the
fact that the predictive distribution of a classifier trained with empirical risk minimization can
approximate the true label distribution of training examples. However, such approximation may
not be accurate especially if the classifier is not carefully regularized during training. Post-training
confidence calibration techniques such as temperature scaling and interpolation can only improve
the approximation in terms of the entire training set, but cannot improve it in a sample-wise manner.
How to learn the true label distribution of adversarial training examples during adversarial training
more accurately remains an open problem.

Also, such alternative labeling also requires to train another independent classifier beforehand, which
induces additional training cost.

C More empirical analyses

C.1 Epoch-wise double descent is ubiquitous in adversarial training

In this section, we conduct extensive experiments with different model architectures, and learning
rate schedulers to verify the connection between robust overfitting and epoch-wise double descent.
The default experiment settings are listed in Appendix G.2 in detail.

Model capacity. We modulate the capacity of the deep model by varying the widening factor of
the Wide ResNet. To extend the lower limit of the capacity, we allow the widening factor to be less
than 1. In such case, the number of channels in each residual block is scaled similarly but rounded,
and the number of channels in the first convolutional layer will be reduced accordingly to ensure the
width monotonically increasing through the forward propagation.

Model architecture. We also experiment on model architectures other than Wide ResNet, including
pre-activation ResNet-18 (He et al., 2016) and VGG-11 (Simonyan & Zisserman, 2015). We select
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(a) Epoch-wise double descent curves in adversarial
training with various model architectures.

(b) Epoch-wise double descent curves in adversarial
training with various learning rate schedulers. The
curves are smoothed by a moving average with a win-
dow of 5 to avoid overlapping.

Figure 8: Effect of model on the epoch-wise double descent curve

these configurations to ensure comparable model capacities2. As shown in Figure 8, different model
architectures may produce slightly different double descent curves. The second descent of VGG-11
in particular will be delayed due to its inferior performance compared to residual architectures.

Learning rate scheduler. A specific learning rate scheduler may shape the robust overfitting
differently as suggested by Rice et al. (2020). We consider the following learning rate schedulers in
our experiments.

• Piecewise decay: The initial learning rate rate is set as 0.1 and is decayed by a factor of 10 at the
100th and 500th epochs within a total of 1000 epochs.

• Cyclic: This scheduler was initially proposed by Smith (2017) and has been popular in adversarial
training. We set the maximum learning rate to be 0.2, and the learning rate will linearly increase
from 0 to 0.2 for the initial 400 epochs and decrease to 0 for the later 600 epochs.

• Cosine: This scheduler was initially proposed by Loshchilov & Hutter (2017). The learning rate
starts at 0.1 and gradually decrease to 0 following a cosine function for a total of 1000 epochs.

Experiments on various learning rate schedulers show the second descent can be widely observed
except the piecewise decay, where the appearance of second descent might be delayed due to
extremely small learning rate in the late stage of training.

D More experiment results

D.1 Training longer

As shown in Figure 9, We show that our method can maintain the robust test accuracy with more
training epochs. Here, we follow the settings in Figure 7 except we train for additional epochs up to
400 epochs for each dataset.

D.2 Adversarial training methods, neural architectures and evaluation metrics

In this section we conduct extensive experiments with different neural architectures, adversarial
training methods and robustness evaluation metrics to verify the effectiveness of our method.

2WRN-28-5, pre-activation ResNet-18 and VGG-11 have 9.13⇥106, 11.17⇥106 and 9.23⇥106 parameters,
respectively.
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Figure 9: Our method can maintain robust test accuracy for more training epochs.

Table 2: Performance of our method with different neural architectures.

Architecture Setting T �
Robust Acc. (%) Standard Acc. (%)

Best Last Diff. Best Last Diff.

VGG-19
AT - - 42.21 39.12 3.09 73.95 80.45 -6.50
KD-AT 2 0.5 43.59 42.69 0.90 74.30 77.80 -3.50
KD-AT-Auto 1.28⇤ 0.79⇤ 44.27 44.24 0.03 76.41 76.79 -0.38

WRN-28-5
AT - - 49.85 42.89 6.96 84.82 85.87 -1.05
KD-AT 2 0.5 51.08 48.40 2.68 85.36 86.88 -1.52
KD-AT-Auto 1.6⇤ 0.82⇤ 51.47 51.10 0.37 86.05 86.24 -0.19

WRN-34-10
AT - - 52.29 46.04 6.25 86.57 86.75 -0.18
KD-AT 2 0.5 53.11 50.97 2.14 86.41 88.06 -1.65
KD-AT-Auto 1.6⇤ 0.83⇤ 54.17 53.71 0.46 87.69 88.01 -0.32

Table 3: Performance of our method with different adversarial training methods.

Method Setting T �
Robust Acc. (%) Standard Acc. (%)

Best Last Diff. Best Last Diff.

TRADES
AT - - 48.50 45.53 2.97 82.79 82.68 0.11
KD-AT 2 0.5 48.74 47.52 1.22 82.30 83.03 -0.73
KD-AT-Auto 1.12⇤ 0.82⇤ 48.75 48.39 0.36 82.44 82.80 -0.36

FGSM
AT - - 41.96 35.39 6.57 85.91 87.20 -1.29
KD-AT 2 0.5 42.82 41.61 1.21 86.69 87.93 -1.24
KD-AT-Auto 2.18⇤ 0.78⇤ 44.11 43.75 0.36 87.38 87.66 -0.28

Table 4: Performance of our method under different adversarial attacks. PGD-1000 refers to PGD
attack with 1000 attack iterations, with step size fixed as 2/255 as recommended by Croce & Hein
(2020).

Attacks Setting T �
Robust Acc. (%)

Best Last Diff.

PGD-1000
AT - - 50.64 43.00 7.64
KD-AT 2 0.5 51.79 48.43 3.36
KD-AT-Auto 1.47⇤ 0.8⇤ 52.05 51.71 0.34

Square Attack
AT - - 53.47 48.90 4.57
KD-AT 2 0.5 54.39 52.92 1.47
KD-AT-Auto 1.28⇤ 0.79⇤ 55.23 55.17 0.06

RayS
AT - - 55.76 51.63 4.13
KD-AT 2 0.5 56.59 55.50 1.09
KD-AT-Auto 1.6⇤ 0.82⇤ 57.74 57.54 0.20

D.3 Combined with additional orthogonal techniques

We note that motivated from our theoretical analyses, our proposed method (KD-AT-Auto) is essen-
tially the baseline knowledge distillation for adversarial training (KD-AT) with a robustly trained

24



self-teacher, equipped with an algorithm that automatically finds its optimal hyperparameters (i.e. the
temperature T and the interpolation ratio �). Stochastic Weight Averaging (SWA) and additional stan-
dard teachers (KD-Std) employed in (Chen et al., 2021) are orthogonal contributions. KD-AT-Auto
can certainly be combined with SWA and KD-Std to achieve better performance.

As shown in Table 5, on CIFAR-10, KD-AT + KD-Std + SWA (Chen et al., 2021) can already reduce
the overfitting gap (difference between the best and last robust accuracy) to almost 0. It is thus hard
to see any further reduction by combining our method. To this end, we introduce an extra dataset
SVHN (Netzer et al., 2011). As shown in Table 5, on SVHN, KD-AT + KD-Std + SWA still produces
a high overfitting gap (also see Appendix A1.3 in (Chen et al., 2021)), whereas by combining with
our algorithm to automatically find the optimal hyper-parameters (KD-AT-Auto + KD-Std + SWA),
the overfitting gap can be further reduced to almost 0. This demonstrates the effectiveness and wide
applicability of our principle-guided method on mitigating robust overfitting.

Table 5: Performance of our method combined with SWA and an additional standard teacher.

Dataset Setting T �
Robust Acc. (%) Standard Acc. (%)

Best Last Diff. Best Last Diff.

CIFAR-10
AT - - 47.35 41.42 5.93 82.67 84.91 -2.24
KD-AT + KD-Std + SWA 2 0.5 49.98 49.89 0.09 85.06 85.52 -0.46
KD-AT-Auto + KD-Std + SWA 1.47⇤ 0.8⇤ 50.03 50.05 -0.02 84.69 84.91 -0.22

SVHN
AT - - 47.83 39.77 8.06 90.18 91.11 -0.93
KD-AT + KD-Std + SWA 2 0.5 47.88 46.46 1.42 91.59 91.76 -0.17
KD-AT-Auto + KD-Std + SWA 1.53⇤ 0.83⇤ 50.58 50.09 0.49 90.54 90.76 -0.22

Here, the interpolation ratio of the standard teacher is fixed as 0.2 and the SWA starts at the first
learning rate decay for all experiments. We employ PGD-AT (Madry et al., 2018) as the base
adversarial training method and conduct experiments with a pre-activation ResNet-18. The robust
accuracy is evaluated with AutoAttack. Other experiment details are in line with Appendix G.1.

Furthermore, we note that (Chen et al., 2021) shows SWA and KD-Std are essential components to
mitigate robust overfitting on top of KD-AT, while we show that KD-AT itself can mitigate robust
overfitting by proper parameter tuning. We are thus able to separate these components and allow a
more flexible selection of hyperparameters in diverse training scenarios without fear of overfitting. In
particular, although (Chen et al., 2021) suggests SWA starting at the first learning rate decay (exactly
when the overfitting starts) mitigates robust overfitting, the effectiveness of SWA on mitigating
overfitting may strongly depend on its hyper-parameter selection including s0, i.e., the starting epoch
and ⌧ , i.e., the decay rate3, which is also mentioned in recent work (Rebuffi et al., 2021). We also
did some additional experiments on CIFAR-10 following the SWA setting in (Rebuffi et al., 2021)
to demonstrate the wide applicability of our method. As shown by Table 6, when changing the
hyperparameters of SWA, KD-AT + KD-Std + SWA cannot consistently mitigate robust overfitting,
while KD-AT-Auto + KD-Std + SWA can maintain an overfitting gap close to 0 and achieve better
robustness as well.

Table 6: Performance of our method combined with SWA with different hyper-parameters

Setting s0 ⌧
Robust Acc. (%) Standard Acc. (%)

Best Last Diff. Best Last Diff.

KD-AT + KD-Std + SWA 80 0.999 49.00 48.04 0.96 84.04 86.11 -2.07
KD-AT-Auto + KD-Std + SWA 80 0.999 49.35 49.25 0.1 85.38 85.91 -0.37
KD-AT + KD-Std + SWA 0 0.999 49.01 48.01 1.0 83.78 86.20 -2.42
KD-AT-Auto + KD-Std + SWA 0 0.999 49.32 49.25 0.07 84.78 85.48 -0.7

E Study on a synthetic dataset with known true label distribution

3SWA can be implemented using an exponential moving average ✓0 of the model parameters ✓ with a decay
rate ⌧ , namely ✓0  ⌧ · ✓0 + (1� ⌧) · ✓ at each training step (Rebuffi et al., 2021).
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Figure 10: Sample
image by mixup aug-
mentation.

Synthetic Dataset. Since the true label distribution is typically unknown
for adversarial examples in real-world datasets, we simulate the mechanism of
implicit label noise in adversarial training from a feature learning perspective.
Specifically, we adapt mixup (Zhang et al., 2018) for data augmentation on
CIFAR-10. For every example x in the training set, we randomly select
another example x0 in a different class and linearly interpolate them by a
ratio ⇢, namely x := ⇢x + (1 � ⇢)x0, which essentially perturbs x with
features from other classes. Therefore, the true label distribution is arguably
y ⇠ ⇢ · (y)+(1�⇢) · (y0). Unlike mixup, we intentionally set the assigned
label as ŷ ⇠ (y), thus deliberately create a mismatch between the true label
distribution and the assigned label distribution. We refer this strategy as
mixup augmentation and only perform it once before the training. In this
way, the true label distribution of every example in the synthetic dataset is fixed.

Concentration of optimal temperature and interpolation ratio of individual examples. In
Section 5.1 we have shown that in terms of individual examples, the rectified model probability can
provably reduce the distribution mismatch between the assigned label distribution and true label
distribution of the adversarial example. However, since the true label distribution is unknown in
realistic scenarios, it is not possible to directly follow Theorems 5.1 and 5.2 and calculate the optimal
set of hyper-parameters for each example in the training set. The best we can do is to employ a
validation set and determine a universal set of hyper-parameters based on the NLL loss, which expects
all training examples to share similar optimal temperatures and interpolation ratios. Here, based on
the synthetic dataset where a true label distribution is known, we empirically verify this assumption
is reasonable.

Figure 11: The histograms of optimal temperature (left) and interpolation ratio (right) of individual
examples.

In Figure 11 left, we solve the optimal temperature for each correctly classified training example
based on Theorem 5.1 with the interpolation ratio fixed as 1.0. One can find that the individual
optimal temperatures mostly concentrate between 0.5 and 1.5. In Figure 11 right, we solve the
optimal interpolation ratio for each incorrectly classified training example based on Theorem 5.2
with the temperature fixed as 1.0 . One can find that the individual optimal interpolation ratio mostly
concentrate between 0.5 and 0.7.

F Method details

F.1 Determine the optimal hyper-parameters

One may note that Equation (9) cannot be directly optimized since the traditional adversarial label is
only defined on the example in the training set and cannot be simply generalized to the validation
set. A reasonable solution is using the nearest neighbour classifier to find the closest traditional
adversarial label for every example in the validation set. However, to speed up the optimization, we
propose to employ the classifier overfitted by the traditional adversarial labels on the training set as
an surrogate, which works well in practice. Specially, we employ a model overfitted on the training
set to generate approximate traditional adversarial label of the adversarial example in the validation
set. Such overfitted model is typically the model at the final checkpoint when conducting regular
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adversarial training for sufficient epochs. Mathematically, our final method to determine the optimal
temperature and interpolation ratio in rectified model probability can be described as

T, � = arg min
T,�

(x0,y0)⇠D0
val

` (� · f✓(x
0; T ) + (1 � �) · f✓s(x

0; T ), y0) , (37)

where f✓s(x
0; T ) denotes the temperature-scaled predictive probability of a surrogate model on x0.

Here the validation set is constructed by applying adversarial perturbation generated by f✓ to the clean
validation set. For adversarial perturbation we utilize PGD attack with 10 iterations, the perturbation
radius as 8/255 and the step size as 2/255. Note that Such process incurs almost no additional
computation as we simply obtain the logits of a surrogate classifier.

G Experimental details

G.1 Settings for main experiment results

Dataset. We include experiment results on CIFAR-10, CIFAR-100, Tiny-ImageNet and SVHN.

Training setting. We employ SGD as the optimizer. The batch size is fixed to 128. The momentum
and weight decay are set to 0.9 and 0.0005 respectively. Other settings are listed as follows.

• CIFAR-10/CIFAR-100: we conduct the adversarial training for 160 epochs, with the learning rate
starting at 0.1 and reduced by a factor of 10 at the 80 and 120 epochs.

• Tiny-ImageNet: we conduct the adversarial training for 80 epochs, with the learning rate starting at
0.1 and reduced by a factor of 10 at the 40 and 60 epochs.

• SVHN: we conduct the adversarial training for 80 epochs, with the learning rate starting at 0.01 (as
suggested by (Chen et al., 2021)) and reduced by a factor of 10 at the 40 and 60 epochs.

Adversary setting. We conduct adversarial training with `1 norm-bounded perturbations. We
employ adversarial training methods including PGD-AT, TRADES and FGSM. We set the perturbation
radius to be 8/255. For PGD-AT and TRADES, the step size is 2/255 and the number of attack
iterations is 10.

Robustness evaluation. We consider the robustness against `1 norm-bounded adversarial attack
with perturbation radius 8/255. We employ AutoAttack for reliable evaluation. We also include the
evaluation results again PGD-1000, Square Attack and RayS.

Neural architectures. We include experiments results on pre-activation ResNet-18, WRN-28-5,
WRN-34-10 and VGG-19.

Hardware. We conduct experiments on NVIDIA Quadro RTX A6000.

G.2 Settings for analyzing double descent in adversarial training

Dataset. We conduct experiments on the CIFAR-10 dataset, without additional data.

Training setting. We conduct the adversarial training for 1000 epochs unless otherwise noted.
By default we use SGD as the optimizer with a fixed learning rate 0.1. When we experiment on a
subset (see below) we use the Adam optimizer to improve training stability, where the learning rate is
fixed as 0.0001. The batch size will be fixed to 128, and the momentum will be set as 0.9 wherever
necessary. No regularization such as weight decay is used. These settings are mostly aligned with the
empirical analyse of double descent under standard training (Nakkiran et al., 2020).

Sample size. To reduce the computation load demanded by an exponential number of training
epochs, we reduce the size of the training set by randomly sampled a subset of size 5000 from
the original training set without replacement. We adopt this setting for extensive experiments for
analyzing the dependence of epoch-wise double descent on the perturbation radius and data quality
(i.e. Figure 5)..

Adversary setting. We conduct adversarial training with `1 norm-bounded perturbations. We
employ standard PGD training with the perturbation radius set to 8/255 unless otherwise noted. The
number of attack iterations is fixed as 10, and the perturbation step size is fixed as 2/255.
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Robustness evaluation. We consider the robustness against `1 norm-bounded adversarial attack
with perturbation radius 8/255. We use PGD attack with 10 attack iterations and step size set to
2/255.

Neural architecture. By default we experiment on Wide ResNet (Zagoruyko & Komodakis, 2016)
with depth 28 and widening factor 5 (WRN-28-5) to speed up training.

Hardware. We conduct experiments on NVIDIA Quadro RTX A6000.

G.3 Estimation of the data quality

In this section we elaborate on the calculation of data quality for analyzing the dependence on label
noise in adversarial training.

We use the predicative probabilities of classifiers trained on CIFAR-10 to score its training data.
Similar strategy is employed in previous works to select high-quality unlabeled data to improve
adversarial robustness (Uesato et al., 2019; Carmon et al., 2019; Gowal et al., 2020). Slightly
deviating from these works focusing on out-of-distribution data, we use adversarially trained instead
of regularly trained models to measure the quality of in-distribution data, since under standard
training almost all training examples will be overfitted and gain overwhelmingly high confidence.
Specifically, we adversarially train a pre-activation ResNet-18 with PGD and select the model at
the best checkpoint in terms of the robustness. The quality of an example is estimated by the
model probability corresponding to the true label without adversarial perturbation and random data
augmentation (flipping and clipping). We repeat this process 10 times with random initialization to
obtain a relatively accurate estimation.

G.4 Settings for standard training on fixed augmented training sets

G.4.1 General settings for both adversarial augmentation and Gaussian augmentation

Dataset. We conduct experiments on the CIFAR-10 dataset, without additional data.

Training setting. We conduct the standard training for 1000 epochs. We use Adam as the optimizer
with a fixed learning rate 0.0001 to improve training stability with a small training set (see below).
The batch size will be fixed to 128, and the momentum will be set as 0.9 wherever necessary. No
regularization such as weight decay is used.

Sample size. To reduce the computation load demanded by an exponential number of training
epochs, we reduce the size of the training set by randomly sampled a subset of size 5000 from the
original training set without replacement.

Neural architecture. By default we experiment on Wide ResNet (Zagoruyko & Komodakis, 2016)
with depth 28 and widening factor 5 (WRN-28-5).

Hardware. We conduct experiments on NVIDIA Quadro RTX A6000.

G.4.2 Construction of the training set

Adversarial augmentation. We first obtain a robust model by conduct PGD training with pre-
activation ResNet-18 on CIFAR-10. We use early stopping to obtain the most robust model on a
validation set. The specific settings are aligned with Section G.1.

Using this model, we then generate adversarial examples with PGD attack on the 5000 examples
randomly sampled from CIFAR-10 training set. The number of attack iterations is fixed as 10 and the
step size is fixed as 2/255. The adversarial examples along with their original labels are then grouped
into a training set for adversarial augmentation experiments.

Gaussian augmentation. We apply Gaussian noise to the 5000 examples randomly sampled from
CIFAR-10 training set. The perturbed examples along with their original labels are then grouped into
a training set for Gaussian augmentation experiments.
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