
A Additional Discussions

A.1 Limitations

In this work, we focus on the optimal membership inference adversary. We study this because of
how it serves as an upper bound for all other attacks and because of how it yields interpretable and
fundamental theoretical results. The optimal membership inference adversary has full knowledge of
the learning model’s output distributions when the data point of interest is a member or non-member
of the training dataset. In practice, the adversary rarely has such full knowledge, and the learning
model’s output distributions have to be approximated using shadow models [13], or the entire attack
has to be simplified, such as with a loss threshold [9, 14]. Our study does not analyze how our results
are affected by the non-optimality of these more practical attacks.

A.2 Ethical Considerations

It is the hope of the authors that by more clearly exposing the link between membership inference
vulnerability and generalization performance, researchers can make informed decisions about how to
achieve the best trade-off they can for their application. That said, by studying the performance of
optimal membership inference attacks, it is possible that this work will call attention to vulnerabilities
in existing model architectures which may be exploited. Furthermore, in settings where privacy is
absolutely crucial, such as in medical applications, additional care should be taken to guard privacy
beyond the guarantees of this work.

B Proofs

B.1 Proof of Proposition 3.1

We first present the proof of the form of the optimal membership inference adversary given in
Proposition 3.1.

Proof of Proposition 3.1. Conditioned on m = 0, we have that (x0, y0) is drawn from D. Condi-
tioned on m = 1, we have that (x0, y0) is an element chosen randomly from S, whose elements are
themselves drawn from D. Thus, in both the m = 0 and m = 1 cases, x0 has the same distribution.
We thus have:

A
⇤ = arg max

A
Adv(A)

= arg max
A

P(A((x0, by0)) = 1 | m = 1)� P(A((x0, by0)) = 1 | m = 0)

= arg max
A

Ex0 [P(A((x0, by0)) = 1 | m = 1,x0)� P(A((x0, by0)) = 1 | m = 0,x0)]

= arg max
A

Ex0

Z

R
A(x0, by0)=1 (P ( by0 | m = 1,x0)� P ( by0 | m� 1,x0)) dP

�
,

where in the third line, the randomness over x0 is removed from the probability. To maximize the
integral, we set A(x0, by0) = 1 if P ( by0 | m = 1,x0)�P ( by0 | m = 1,x0) > 0 and 0 otherwise.

B.2 Tools for Asymptotic Analysis

The following lemmas are used in the proofs of Theorems 3.2 and D.1. We begin with the following
lemma, which is a generalized version of the Marchenko-Pastur theorem [34–36].
Lemma B.1. Let Xn 2 Rn⇥p be a sequence of random matrices with i.i.d. N (0, 1) entries. Consider
the the sample covariance matrix b⌃ = (1/n)X>

nXn. Let Cn 2 Rp⇥p be a sequence of matrices
such that Tr(Cn) is uniformly bounded with probability one. As n, p ! 1 with p/n = � 2 (0,1),
it holds that almost surely,

Tr
⇣
Cn

⇣
(⌃+ �Ip)

�1 � g(��)Ip

⌘⌘
! 0, Tr

⇣
Cn

⇣
(⌃+ �Ip)

�2 � g
0(��)Ip

⌘⌘
! 0

where g(�) is the Stieltjes transform of the Marchenko-Pastur law with parameter �.
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We use the following Lemma in computing the asymptotic distribution of the output.

Lemma B.2. Let yn 2 Rn be a sequence of i.i.d. N (0, In) random vectors. Also, let xn 2 Rn be a
sequence of random vectors with spherically symmetric distribution such that kxnk2

a.s.�!�. Further,
assume that xn,yn are independent. Then x>

n y converges weakly to a zero mean gaussian with
variance �

2.

Proof. We can write

x>
n yn = kxnk2

✓
xn

kxnk

◆>
yn = kxnk2 u

>
n yn

where un 2 S
n�1 is uniformly distributed over the unit sphere and is independent from yn. Therefore,

we can fix un to be the first standard unit vector and the distribution of x>
n yn is the same as kxnk2 yn,1

where yn,1 ⇠ N (0, 1). Hence, using kxnk2
a.s.�!�, we deduce the result.

B.3 Proof of Theorem 3.2

Proof of Theorem 3.2. Let Xp denote the matrix formed by removing the first p columns from X ,
and let �p denote the vector formed by removing the first p elements from �. Recall that

( by0 | m = 0) = x>
0 X

†
p(X� + ✏)

= x>
0 X

†
p(Xp�p + ⌘)

where ⌘ = Xp�p + ✏ ⇠ N
�
0,
�
1 + �

2 � p
D

�
In

�
. First note that the distributions of X>

p X
†
px0 are

X†
px0 are spherically symmetric and letting b⌃ �

= (1/n)X>
p Xp and P to be orthogonal projection

onto row space of Xp we have

1

D
kX>

p X
†
px0k22=

1

D
kPx0k22 =

1

D
lim
�!0

x>
0

⇣
b⌃+ �Ip

⌘�1 b⌃x0

=
1

D
kx0k22�

1

D
lim
�!0

�x>
0

⇣
b⌃+ �Ip

⌘�1
x0,

and,

kX†
px0k22 =

1

n
lim
�!0

x>
0

⇣
b⌃+ �Ip

⌘�1 b⌃
⇣
b⌃+ �Ip

⌘�1
x0

=
1

n
lim
�!0

x>
0

⇣
b⌃+ �Ip

⌘�1
� �

⇣
b⌃+ �Ip

⌘�2
�
x>
0 .

Thus, using Lemma B.2, both 1
DkX>

p X
†
px0k22 and kX†

px0k22 converge to a fixed limit as n ! 1,
almost surely. Therefore, using Lemma B.2, by0 converges weakly to a gaussian. Now, we compute
its variance. Since ⌘ and � are both zero-mean independent Gaussians and are thus orthogonal in
expectation, we have by the Pythagorean theorem:

E
h
by02 | m = 0

i
= E

h
(x>

0 X
†
pXp�p)

2
i
+ E

h
(x>

0 X
†
p⌘)

2
i
.

We start with the first term.
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Note that since, p > n, Xp does not have linearly independent columns. Let P = X†
pXp. We have:

E
h
(x>

0 X
†
pXp�p)

2
i
= E

h
Tr
⇣
x>
0 P�p�

>
p P>x0

⌘i

= E
h
Tr
⇣
�p�

>
p P>x0x

>
0 P
⌘i

= Tr
⇣
E
h
�p�

>
p P>x0x

>
0 P
i⌘

= Tr
⇣
E
⇥
�p�

>
p

⇤
E
h
P>x0x

>
0 P
i⌘

=
1

D
Tr
⇣
E
h
P>x0x

>
0 P
i⌘

=
1

D
E
h
kP>x0k2

i

=
1

D

n

p
kx0k2.

In the last line, we use the same argument as in Section 2.2 of [23], using the facts that P is the
orthogonal projection to the row space of Xp and that the Gaussian distribution is invariant to
rotations.

We now consider the second term:

E
h
(x>

0 X
†
p⌘)

2
i
=
⇣
1 + �

2 � p

D

⌘
x>
0 E
h
X†

pX
†>
p

i
x0

=
⇣
1 + �

2 � p

D

⌘
x>
0 E
✓

X>
p Xp)

†X>
p Xp

⇣
X>

p Xp

⌘†>◆�
x0

=
⇣
1 + �

2 � p

D

⌘
x>
0 E
⇣

X>
p Xp

⌘†�
x0.

where
⇣
X>

p Xp

⌘†
has the generalized inverse Wishart distribution with expectation equal to

E
⇣

X>
p Xp

⌘†�
= n

p
1

p�n�1Ip (Theorem 2.1 in [37]). Thus, we have:

E
h
(x>

0 X
†
p⌘)

2
i
=

✓
n

p

◆✓
1 + �

2 � p
D

p� n� 1

◆
||x0||2

Adding this with the result for the first term gives the desired result. When m = 1, since we are
in the overparameterized regime, Xp is a fat matrix. Thus, the regressor memorizes the training
data and the training error is equal to zero. x0 is part of training set, and so by0 = x>

0 � + ✏.
Since � ⇠ N

�
0, 1

DIp

�
, we have that x>

0 � ⇠ N (0, 1
D ||x0||2). Since ✏ ⇠ N (0,�2), we have that

by0 = x>
0 � + ✏ ⇠ N (0, 1

D ||x0||2+�
2).
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The probability distribution functions of the two Gaussians are then equal at ±↵:
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The membership advantage is then derived by writing out the probabilities in Definition 2.1 in terms
of the Gaussian cumulative distribution functions, noting that the decision region switches at ±↵.

Proof of Lemma 4.2. The lemma follows identically to Theorem 3.2 with an additional additive �̄
2

to �
2
0 due to the noise added in the m = 0 case. The remainder follows by plugging in p = D and

applying Prop. 4.1 for the generalization error.

C Posterior Distributions in Non-Asymptotic Regime

Let fa|b denote the probability density function of a random variable a conditioned on b. The following
lemma derives the non-asymptotic probability densities of the prediction output of minimum norm
least squares, conditioned on the m = 0 and m = 1 events and the choice of test point x0. For a
matrix X 2 Rn⇥D and p  D, let Xp denote the submatrix of the first p columns of X . For a
vector x 2 RD, let xp 2 Rp be defined accordingly.
Lemma C.1. Let �̂ denote the minimum norm least squares interpolator computed from a random
design matrix X 2 Rn⇥D and data y. Conditioned on n < p  D and on x0, we have that
x>
0,p�̂ | x0, {m = 1} ⇠ N

�
0,�2

1

�
, where �1 is defined as in Theorem 3.2. Furthermore,

fx>
0,p�̂|x0,{m=0}(x)

= D
D
2

Z

Rn⇥D

Z

RD

exp

"
�1
2

" 
x� x>

0,pX
>
p (XpX

>
p )

�1X�

�kx0,pkXp(XpX>
p )�2Xp

!2

+D�>� +Tr
�
X>X

�
##

�(2⇡)
nD+D+1

2 kx0,pkXp(XpX>
p )�2Xp

d�dX.

Remark C.2. While the density of x>
0,p�̂ | x0, {m = 0} cannot be written in a closed form, one may

easily sample according to it, by first, sampling random X , � and then computing the minimum
norm least squares interpolator.

Proof of Lemma C.1. Recall that conditioned on the design matrix X and true coefficients �, the
labels y follow y | X,� ⇠ N (X�,�

2In). Then, the minimum norm least squares solution �̂ using
the first p features follows

�̂ | X,� ⇠ N
⇣
X>

p (XpX
>
p )

�1X�,�
2X>

p (XpX
>
p )

�2Xp

⌘
.

Hence, for the m = 0 case where a fresh point x0 is sampled, we have that the distribution of the
model output conditioned on the design matrix X and true coefficients � is

x>
0,p�̂ | X,�,x0, {m = 0} ⇠ N

⇣
x>
0,pX

>
p (XpX

>
p )

�1X�,�
2kx0,pk2X>

p (XpX>
p )�2Xp

⌘
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for kxkA:=
p
x>Ax for any semidefinite matrix A where we have additionally conditioned over

any randomness in the choice of x0.

In the m = 1 case, where x0 is sampled uniformly from the rows of X , we have that x>
0,p�̂ = y0 =

x>
0 � + ✏, the associated label for x0 since the linear regressor interpolates the training data. Hence

x>
0,p�̂ | X,�,x0, {m = 1} ⌘ x>

0,p�̂ | x0, {m = 1} ⇠ N
✓
0,

kx0k2

D
+ �

2

◆

Let fx>
0,p�̂|X,�,x0,{m=0} denote the pdf of the random variable x>

p �̂ | X,�,x0, {m = 0} and
fx>

0,p�̂|X,�,x0,{m=1} be defined similarly. Let fX denote the density of X , a standard matrix-normal

random variable, and let f� denote the density of � ⇠ N
�
0, 1

DID

�
. Then, we have that

fx>
0,p�̂|x0,{m=0}(x)

=

Z

Rn⇥D

Z

RD
fx>

0,p�̂|X,�,x0,{m=0}f�fX d�dX
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D
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Z
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"
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0,pX
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+D�>� +Tr
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�
##

�(2⇡)
nD+D+1

2 kx0,pkXp(XpX>
p )�2Xp

d�dX.

Lemma C.3. Let �̂� = (X>
p Xp + n�I)�1X>

p y denote ridge regularized least squares estimator
computed from random design matrix X 2 Rn⇥D, data y, and subset of first p features. Conditioned
on the choice of test point x0, we have that in the m = 0 case, where a fresh test point is drawn from
the data distribution,

f
x>
0,p�̂|x0,{m=0}(x) =

D
D
2
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2
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0

@ x � x>
0,p(X

>
p Xp + n�I)�1X>

p X�

�kx0,pk(X>
p Xp+n�I)�1X>

p Xp(X>
p Xp+n�I)�1

1

A
2

+ D�>� + Tr
⇣
X>X

⌘
3

5

3

5

kx0,pk(X>
p Xp+n�I)�1X>

p Xp(X>
p Xp+n�I)�1

d�dX.

Furthermore, conditioned on m = 1 when x0 is a row of X we have that

f
x>
0,p�̂|x0,{m=1}(x) =

D
D
2

�(2⇡)
nD+1

2

⇥

Z

R(n�1)⇥D

Z
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exp
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2
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@ x � x>
0,p(X

>
p Xp + n�I)�1X>

p X�

�kx0,pk(X>
p Xp+n�I)�1X>

p Xp(X>
p Xp+n�I)�1

1

A
2

+ D�>� + Tr
⇣
X̃

>
X̃
⌘
3

5

3

5

kx0,pk(X>
p Xp+n�I)�1X>

p Xp(X>
p Xp+n�I)�1

d�dX̃.

where without loss of generality, we take x0 to be the first row of X and X̃ to denote the matrix of
the final n� 1 rows of X .
Remark C.4. As in the case of Lemma C.1, one can efficiently sample from the above distribution by
first drawing a Gaussian random matrix X , the Gaussian random vector �, the Bernoulli random
variable m, and then either a new test point x0 or a row of X and learning the ridge-regularized
estimator �̂�.

Proof of Lemma C.3. Note that conditioned on the design matrix X and the true coefficients �, the
labels y follow y | X,� ⇠ N (X�,�

2In). Next, for

�̂� := (X>
p Xp + n�Ip)

�1X>
p y
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the �-ridge regularized estimator, we have that

�̂� | X,� ⇠ N
⇣
(X>

p Xp + n�Ip)
�1X>

p X�,�2(X>
p Xp + n�Ip)

�1X>
p Xp(X

>
p Xp + n�Ip)

�1
⌘
.

Hence,

x>
0,p�̂� | X,x0,�

⇠ N
⇣
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0,p(X
>
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�1X>
p X�,�2x>

0,p(X
>
p Xp + n�Ip)

�1X>
p Xp(X

>
p Xp + n�Ip)

�1x0,p

⌘
,

where we have additionally conditioned over any randomness in the choice of x0.

In the m = 0 case, where x0 is a freshly drawn point independent of the data X , we may marginalize
to remove the conditioning. Let fx>

0,p�̂�|X,�,x0,{m=0} denote the probability density function of the

random variable x>
0,p�̂� | X,�,x0, {m = 0} and fx>

0,p�̂|X,x0,{m=1} be defined similarly. Let fX
denote the density of X , a standard matrix-normal random variable, and let f� denote the density of
� ⇠ N

�
0, 1

DID

�
. Then we have that
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In the m = 1 case, because x0 is a row of X , we condition on x0 but not on the remaining rows of
X . Without loss of generality, let x0 be the first row of X which can be done since x0 is selected
uniformly and the rows of X are independent and identically distributed. Let X̃ 2 R(n�1)⇥D denote
X with its first row omitted such that X = [x0; X̃]. Following the same approach as the preceding
marginalization, we have that

fx>
0,p�̂|x0,{m=1}(x) =

Z

R(n�1)⇥D

Z

RD

fx>
0,p�̂|X,x0,{m=1}f�fX̃ d�dX̃

Thus,

f
x>
0,p�̂|x0,{m=1}(x) =

D
D
2

�(2⇡)
nD+1

2

⇥

Z

R(n�1)⇥D

Z

RD

exp

2

4� 1
2

2

4

0

@ x � x>
0,p(X

>
p Xp + n�I)�1X>

p X�

�kx0,pk(X>
p Xp+n�I)�1X>

p Xp(X>
p Xp+n�I)�1

1

A
2

+ D�>� + Tr
⇣
X̃

>
X̃
⌘
3

5

3

5

kx0,pk(X>
p Xp+n�I)�1X>

p Xp(X>
p Xp+n�I)�1

d�dX̃.

D Theoretical Results for Regularized Linear Regression

Theorem D.1. Membership advantage for Ridge-regularized linear regression. Consider the same

setup as in Theorem 3.2, but now let �̂� =
⇣
X>

PXP + n�I
⌘�1

X>
P for some � > 0. Then, as

n, p,D ! 1 such that p
n ! � 2 (1,1), we have:

( by0 | m = 0,x0) ⇠ N (0,�2
0,�),

( by0 | m = 1,x0) ⇠ N (0,�2
1,�),
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the optimal membership inference advantage is then:

Adv(A⇤
�) = Ex0


2

⇢
�

✓
↵�

�0,�

◆
� �

✓
↵�

�1,�

◆��
.

Remark D.2. The above result holds using the asymptotic distributions as n, p,D ! 1. In
Lemma C.3, we derive the non-asymptotic distributions for the predictions of the ridge-regularized
least squares estimator, though they cannot be written in closed form.

Proof of Theorem D.1. Let the input be x0,p 2 Rp. Similar to the proof of theorem 3.2, we can write
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Letting the sample covariance matrix b⌃ �
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Since �p ⇠ (0, 1
DID) using Lemma B.2, this converges to a gaussian with zero mean and variance
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For the second term in (8), using the rotationally invariance of gaussian distribution, without loss of
generality, we can let ⌘ to be e1k⌘k2, where e1 is the first standard unit vector. Now, note that we
have

k⌘k2x>
0,p

⇣
X>

p Xp + n�Ip

⌘�1
X>

p e1 = k⌘k2x>
0,p

 
x1,px

>
1,p + �nIp +

nX

i=2

xi,px
>
i,p

!�1

x1,p

where x>
i,p 2 Rp is the i’th row of Xp. Letting A�

�
= �Ip + 1

n

Pn
i=2 xi,px>

i,p, by using the
Sherman-Morrison formula, we have

k⌘k2x>
0,p

⇣
X>

p Xp + n�Ip

⌘�1
X>

p e1 = k⌘k2x>
0,p

�
x1,px

>
1,p + nA�

��1
x1,p

=
k⌘k2
n

x>
0,p

 
A�1

� �
A�1

� x1,px>
1,pA

�1
�

n+ x>
1,pA

�1
� x1,p

!
x1,p

=
k⌘k2
n

x>
0,pA

�1
� x1,p

 
1�

x>
1,pA

�1
� x1,p

n+ x>
1,pA

�1
� x1,p

!

= k⌘k2
x>
0,pA

�1
� x1,p

n+ x>
1,pA

�1
� x1,p

.

Note that using Lemma B.1 by setting Cn = (1/n)x1,px>
1,p and Cn = (1/n)x0,px>

0,p, respectively,
for n, p ! 1, almost surely,

1

n
x>
1,pA

�1
� x1,p ! �g(��),

1

n
x>
0,pA

�2
� x0,p ! kx0,pk22

n
g
0(��).

Thus, since x1,p ⇠ (0, Ip), using Lemma B.2, k⌘k2x>
0,p

⇣
X>

p Xp + n�Ip

⌘�1
X>

p e1 converges to
a gaussian with mean zero and variance

lim
n!1

k⌘k22
n2(1 + �g(��))2

kA�1
� x0,pk22 =

k⌘k22kx0,pk22
n2(1 + �g(��))2

g
0(��)

=
kx0,pk22

p

g
0(��)�

1 + �g(��))2

⇣
�
2 + 1� p

D

⌘
.

Hence, by independence of �p and ⌘, for m = 0, as n ! 1, such that p/n = �, the output by0 as in
(7), converges in distribution to a gaussian with mean zero and variance
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Now consider the m = 1 case where the input belongs to training data. Without loss of generality,
assume that the input is the first row of Xp, i.e. x0 := x1. Note that in this case for ⌘ = Xp�p+✏, we
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using Lemma B.1 by setting Cn = (1/n)xx>, as n, p ! 1, such that p/n = �, almost surely,
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Thus, by independence of �p and ⌘i’s, as n, p ! 1 the output y converges in distribution to a
gaussian with zero mean and variance
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Figure 5: Theoretical variances of the predictions by0 by ridge regularized linear regression models
for the Gaussian data setting with n = 103, D = 107, and � = 1 on a single sampled x0 for when
x0 is a test point (�2

0,�) and when x0 is a training point (�2
1,�) for different amounts of regularization

�. While increased ridge regularization decreases the variance �
2
0,� on training point predictions, it

also decreases the variance �2
1,� for test points in such a way that the two distributions become easier

to distinguish. As such, membership inference is easier for ridge regularized models in this setting.

E Experimental Implementation Details

All experiments were ran only on CPUs on our internal servers without GPU processing. Processors
used may have included Intel Xeon CPU E5-2630 (256GB RAM), Intel Xeon Silver 4214 CPU
(192GB RAM), Intel Xeon Platinum 8260 CPU (192GB RAM), and AMD Ryzen Threadripper 1900X
(32GB RAM). Our code is primarily written in Python and mainly uses numpy implementations of
linear algebra operations. Please refer to our code on the Github page for more details.

The histograms in Figure 1 are obtained as follows. We first sample a vector x0 ⇠ N (0, ID), where
D = 20, 000. Then, for each p = �n, we perform the following procedure 20,000 times. We sample
� ⇠ N (0, 1

D ID). Then, we sample an n⇥D matrix X such that each element is iid standard normal.
We then generate the ground truth vector y = X� + ✏, where ✏ is an n-dimensional vector whose
elements are iid standard normal. We obtain the least squares estimates �̂ on the first p columns
of X and on the vector y using numpy’s lstsq function. Finally, we collect the by0 = x>

0,p�̂ of all
20,000 models to form the blue histograms in Figure 1. The orange histograms are formed the same
way except that the first row of X is replaced with x0 and the first element of y is replaced with
y0 = x>

0 � + ✏0 for ✏0 ⇠ N (0, 1).

The experiment in Figure 2b is performed as follows. In the experiment, we estimate the optimal
membership advantage. Since the optimal MI adversary requires knowledge of the linear regression
model’s output distributions when a data point x0 is in its training dataset (m = 1) and when x0

is not (m = 0), we approximate these distributions by forming discrete histograms. To obtain the
samples for the histograms, we use the same procedure as detailed in the previous paragraph, except
that we obtain 100,000 samples for each histogram for increased precision. From these samples, the
discrete histograms for ( by0 | m = 0) and ( by0 | m = 1) for a given � are then formed by splitting
the interval between the minimum and maximum values over both ( by0 | m = 0) and ( by0 | m = 1)
into 150 equally spaced bins. The histograms are normalized so that they represent probability mass
functions (i.e. the bin counts sum to 1). Finally, treating the two histograms as probability mass
functions, the membership advantage is calculated according to Definition 2.1. For Figure 2b, this
procedure is repeated 20 times, each with a newly sampled x0, and the mean membership advantage
over the 20 experiments is plotted.
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Figure 6: Experimental membership advantages for ridge-regularized linear regression on Gaussian
data with n = 100, D = 3000, and � = 1 for different regularization strengths �. As predicted
by our theory, membership advantage increases with additional regularization in the sufficiently
overparameterized regime. This experiment verifies our theoretical findings.

The experiments in Figure 4 are also obtained by approximating the optimal MI adversary with
discrete histograms as in the previous paragraph. The only difference is in how the datasets (X , y,
etc.) are sampled. Specifically, they are sampled according to the distributions for each experiment
detailed in Section 5. Again, the histograms are formed by splitting the model’s prediction interval
for each � into 150 equally spaced bins. 20 experiments are performed for each data model, with the
means and standard errors reported in the figures.

F Experimental Verification of Ridge Theory

We verify our theoretical finding that ridge regression increases membership advantage on linear
regression models with Gaussian data in the overparameterized regime. The experiment follows the
procedure detailed in Section E for Figure 2b except that we only sample 50,000 datasets for each of
m = 0 and m = 1 for each � and each � for computational efficiency. For this experiment, we set
n = 100, D = 3, 000, and � = 1, as in Figure 2b. The results, shown in Figure 6, closely resemble
the trend shown in the theoretical plot in Figure 3a, thus verifying our theory.

26


	Introduction
	The Membership Inference Problem
	Theoretical Results
	Optimal Membership Inference Via Hypothesis Testing
	Linear Regression with Gaussian Data

	Mitigating Membership Inference Attacks
	Ridge-Regularized Linear Regression
	Noise Addition vs. Feature Reduction

	More Complex Models
	Discussion and Conclusions
	Additional Discussions
	Limitations
	Ethical Considerations

	Proofs
	Proof of Proposition 3.1
	Tools for Asymptotic Analysis
	Proof of Theorem 3.2

	Posterior Distributions in Non-Asymptotic Regime
	Theoretical Results for Regularized Linear Regression
	Experimental Implementation Details
	Experimental Verification of Ridge Theory

