
Submodular Maximization in Clean Linear Time

Wenxin Li
The Ohio State University

li.7328@osu.edu

Moran Feldman
University of Haifa

moranfe@cs.haifa.ac.il

Ehsan Kazemi
Google

ehsankazemi@google.com

Amin Karbasi
Yale University, Google Research
amin.karbasi@yale.edu.

Abstract

In this paper, we provide the first deterministic algorithm that achieves 1/2-
approximation for monotone submodular maximization subject to a knapsack con-
straint, while making a number of queries that scales only linearly with the size of
the ground set n. Moreover, our result automatically paves the way for developing
a linear-time deterministic algorithm that achieves the tight 1 − 1/e approxima-
tion guarantee for monotone submodular maximization under a cardinality (size)
constraint. To complement our positive results, we also show strong information-
theoretic lower bounds. More specifically, we show that when the maximum car-
dinality allowed for a solution is constant, no deterministic or randomized algo-
rithm making a sub-linear number of function evaluations can guarantee any con-
stant approximation ratio. Furthermore, when the constraint allows the selection
of a constant fraction of the ground set, we show that any algorithm making fewer
than Ω(n/ log(n)) function evaluations cannot perform better than an algorithm
that simply outputs a uniformly random subset of the ground set of the right size.
We extend our results to the general case of maximizing a monotone submodu-
lar function subject to the intersection of a p-set system and multiple knapsack
constraints. Finally, we evaluate the performance of our algorithms on multiple
real-life applications, including movie recommendation, location summarization,
Twitter text summarization, and video summarization.

1 Introduction

In the era of big data, one of the main challenges that we daily face is to make an informed decision
while taking into account all the relevant information. The study of how to make such near-optimal
decisions from a massive pool of possibilities is at the heart of combinatorial optimization. It is
well-known that without further structures, finding a near-optimal solution for a combinatorial opti-
mization problem is notoriously hard, similar to finding a global minimum of a general non-convex
function. Nevertheless, the problems of practical interest, such as the ones we encounter in machine
learning applications, are often much more well-behaved which makes them amenable to (exact or
approximate) optimization techniques.

One celebrated combinatorial structure is submodularity, also known as diminishing returns, stating
that the added value of an element (e.g., image, sensor, etc.) to a context (data set of images, sensor
network, etc.) decreases as the context in which it is considered grows. Submodular functions have
attracted significant interest from the machine learning community, and have led to the development
of algorithms with near-optimal solutions for a wide range of applications, including outbreak de-
tection [52], graph cuts in computer vision [40], image and video summarization [22, 32, 59, 70],
active learning [19, 27, 28], compressed sensing and structured sparsity [3, 16], fairness in machine
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learning [13, 41], recommendation [60], human brain parcellation [64], model training [57, 58], and
learning causal structures [66, 75]. For recent surveys on the applications of submodular functions
in machine learning and artificial intelligence, we refer the interested reader to [7, 69].

In their pioneering work, Nemhauser et al. [62] showed that a greedy algorithm achieves a tight 1−
1/e approximation for maximizing a monotone submodular function subject to cardinality constraint
(SMC). Running the greedy algorithm is too expensive as it requires O(nk) function evaluations,
where n is the size of the ground set and k is the maximum cardinality allowed by the constraint.
Since then, there has been a significant effort to develop faster algorithms [12, 55, 72] and extend the
approximation guarantee to more complex constraints (such as knapsack and p-set system) [4, 32].

In this work, we propose the first deterministic linear time algorithm for maximizing a monotone
submodular function subject to a knapsack constraints (SMK), achieving (1/2 − ε)-approximation
using Oε(n) function evaluations. We note that some nearly-linear time algorithms have been pre-
viously proposed for this problem. Ene and Nguyen [18] showed such an algorithm achieving
(1− 1/e− ε)-approximation, but the number of function evaluation used by their algorithm scales
poorly with ε (namely, O((1/ε)1/ε)), which makes it impractical even for moderate values of ε. This
has motivated Yaroslavtsev et al. [73] to design an algorithm called Greedy+ that achieve (1/2− ε)-
approximation and has a much more practical nearly-linear time complexity. Nevertheless, our
algorithm manages to combine the approximation guarantee of Greedy+ with a clean linear time.
For the special case of a cardinality constraint, i.e., when the elements of the ground set have the
same cost, our algorithm automatically reduces to a deterministic linear-time algorithm that guaran-
tees (1− 1/e− ε) approximation via Oε(n) function evaluations. This special result has also been
independently obtained by [46, 47]. Previously, the state-of-the-art deterministic algorithm only
managed to achieve this approximation ratio using Oε(n log log n) function evaluations [36] (albeit
in their new arXiv version, [38] claimed a linear-time algorithm, but with a worse dependence on ε
compared to our work).

Since the linear time complexity of our algorithm is the minimum required to read all the elements
of the ground set, it is difficult to believe that any algorithm can improve over it while guarantee-
ing a reasonable approximation ratio. However, note that a single function evaluation can provide
information about many elements of the ground set, and therefore, it is not a priori clear that an
algorithm making a sub-linear number of function evaluations may not exist (even if its total time
complexity is linear). Nevertheless, we are able to prove that this is indeed the case in at least two
important regimes. First, we show that when the maximum cardinality allowed for the solution is
constant, no algorithm making a sub-linear number of function evaluations can guarantee any con-
stant approximation ratio for SMC. Second, when the constraint allows the selection of a constant
fraction of the ground set, we show that any algorithm making fewer than Ω(n/ log(n)) function
evaluations cannot perform better than an algorithm that simply outputs a uniformly random subset
of the ground set of the right size. Our technique also leads to a similar inapproximability result
for unconstrained submodular maximization (USM). These lower bounds, along with the correspond-
ing linear-time algorithms, nearly complete our understanding of the minimum query complexity of
SMC, SMK, and USM problems. It is important to note that our inapproximability results are based on
information theoretic arguments rather than relying on any complexity assumptions.

We consider the more general setting where we maximize a monotone submodular function subject
to a p-set system and d knapsack constraints (SMKS). We study the trade-off between the time com-
plexity and approximation ratio for this problem. In particular, our results improve over the state-of-
the-art approximation for nearly-linear time algorithms [4]. Finally, we evaluate the performance of
our algorithms using real-life and synthetic experiments, including movie recommendation, location
summarization, vertex cover, twitter text summarization and video summarization.

1.1 Additional Related Work

The work of Badanidiyuru and Vondrák [4] is probably the first work whose main motivation was to
find algorithms with guaranteed approximation ratios for submodular maximization problems that
provably enjoy faster time complexities. This work introduced the thresholding technique, which
became a central component of basically every fast deterministic implementation of the greedy algo-
rithm considered to date, including our algorithms. In particular, using this technique, Badanidiyuru
and Vondrák [4] described an Oε(n log n) time algorithm for maximizing a monotone submodular
function subject to a cardinality constraint.
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Sviridenko [67] was the first to obtain (1 − 1/e)-approximation for maximizing a monotone sub-
modular function subject to a knapsack constraint. Their original algorithm was very slow (having
a time complexity of O(n5)), but it can be improved to run in Õ(n4) time using the thresholding
technique of [4]. The algorithm of Sviridenko [67] is based on making 3 guesses. Recently, Feld-
man et al. [24] showed that the optimal approximation ratio of 1 − 1/e can be obtained using only
2 guesses, leading to Õ(n3) time. They also showed that a single guess suffices to guarantee a
slightly worse approximation ratio of 0.6174 and requires only Õ(n2) time [24]. There exists also
an impractical nearly-linear time algorithm for the problem due to [18]. Another fast algorithm was
suggested by [4], but an error was later found in their analysis (see [18] for details). We also note
that multiple recent works aimed to bound the performance of a natural (and historically important)
greedy algorithm [24, 49, 68]. A brief review on non-monotone submodular maximization subject
to cardinality and knapsack constraints can be found in Appendix A.

When considering fast algorithms, it is important to consider also (semi-)streaming algorithms since
these algorithms are usually naturally fast. Among the first semi-streaming algorithms for submod-
ular maximization was the work of Badanidiyuru et al. [5], who obtained (1/2− ε)-approximation
for SMC. While this work was later improved by Kazemi et al. [42] and extended to non-monotone
functions [1], it was also proved that no semi-streaming algorithm can provide a better than 1/2-
approximation for this problem [23]. The more general case of a knapsack constraint was first
considered in the semi-streaming setting by Yu et al. [74]. Improved algorithms for this problem
were later found by [37, 39] for single pass and by [38, 73] for multiple passes.

Maximizing a monotone submodular function subject to a p-set system constraint was first studied
by Fisher et al. [25], who showed that a natural greedy algorithm obtains (p+ 1)−1-approximation
for this problem. Many years later, Badanidiyuru and Vondrák [4] used their thresholding technique
to get a nearly-linear time algorithm guaranteeing (p + 2d + 1 + ε)−1-approximation even when
there are d knapsack constraints (in addition to the p-set system constraint). Recently, Badanidiyuru
et al. [6] presented a new technique that allows them to improve over the last approximation ratio.
They explicitly consider the implications of their ideas only for the regime where d ≤ p, and in this
regime they achieve [2(p+ 1+ ε)]−1-approximation and (p+ 1+ ε)−1-approximation in Õ(nr/ε)

and Õ(n3r2/ε) time, respectively, where r ≤ n is the rank of p-set system. We note, however,
that some of the ideas of [6] can also be applied to the regime d > p, leading to (p + d + 1)−1-
approximation in Õ(n3) time.1 One can observe that the improvement in the approximation ratio
obtained by the new results of [6] comes at the cost of an increased time complexity. Our results
in Section 5 further study this trade-off between the time complexity and approximation ratio and
improve over the state-of-the-art approximation for nearly-linear time algorithms.

2 Notations and Preliminaries

A set function f : 2N → R over a ground set N is a function that assigns a numeric value to
every subset of N . Given such a function, an element u ∈ N and a set S ⊆ N , we denote by
f(u | S) ≜ f(S ∪ {u}) − f(S) the marginal contribution of u to S with respect to f . The set
function f is submodular if f(u | S) ≥ f(u | T ) for every two sets S ⊆ T ⊆ N and element
u ∈ N \ T , and it is monotone if f(u | S) ≥ 0 for every element u ∈ N and set S ⊆ N . All the set
functions considered in this paper are also non-negative. Additionally, given two sets S, T ∈ N , we
define the shorthand f(T | S) ≜ f(S ∪ T ) − f(S). Furthermore, given a set S and element u, we
often use S + u as a shorthand for S ∪ {u}.
We assume throughout the paper that algorithms are able to access the objective function f only
through a value oracle that given a set S ⊆ N returns f(S). This (standard) assumption allows us
to prove inapproximability results that are based on information theoretic arguments, and therefore,
are independent of any complexity assumptions.

A set systemM is an ordered pair (N , I), where N is a ground set and I is a non-empty subset of
2N that obeys the following property: if S ⊆ T ⊆ N and T ∈ I, then S also belongs to I. It is
customary to refer to the sets of I as independent (and to sets that do not belong to I as dependent).
A base of a set S ⊆ N is a subset of S that is independent and is not included in any other set having

1To be more exact, to get the (p + d + 1)−1-approximation one has to apply the idea used in the proof of
Theorem 8 of [6] to the (p+ 2d+ 1 + ε)−1-approximation algorithm due to [4].
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these properties. The set systemM = (N , I) is called p-set system for an integer p ≥ 1 if for every
S ⊆ N the ratio between the sizes of the largest base of S and the smallest base of S is at most p.

3 Knapsack Constraint

In this section we consider the Submodular Maximization subject to a Knapsack Constraint problem
(SMK). In this problem we are given a non-negative monotone submodular function f : 2N → R≥0,
a non-negative cost function c : N → R≥0 and a budget B > 0. We say that a set S ⊆ N is feasible
if it obeys c(S) ≤ B (where c(S) ≜

∑
u∈S c(u)), and the objective of the problem is to find a set

maximizing f among all feasible sets S ⊆ N . For simplicity, we assume below that c(u) ∈ (0, B]
for every element u ∈ N and that B = 1. These assumptions are without loss of generality because
(i) every element ofN whose cost exceeds B can be simply removed, (ii) every element ofN whose
cost is 0 can be safely assumed to be part of the optimal solution (f is monotone), and (iii) one can
scale the costs to make the budget B equal to 1.

When the knapsack constraint of SMK happens to be simply a cardinality constraint, we get a problem
known as Submodular Maximization subject to a Cardinality Constraint (SMC). Formally, in this
problem we have an integer parameter 1 ≤ k ≤ n, and we are allowed to output any set whose
size is at most k. One can observe that SMC is a special case of SMK in which c(u) = 1/k for every
element u ∈ N .

The first step of our proposed solution to solve SMK and SMC problems is getting an estimate Γ of the
value of an optimal solution (up to a constant factor). We show how this can be done in Appendix B.
Then, in Section 3.1 we present a variant of the threshold-greedy algorithm of Badanidiyuru and
Vondrák [4] that, unlike the original algorithm of [4], uses the estimate Γ to reduce the number of
thresholds that need to be considered. In Section 3.2, by combining the threshold-greedy variant
from Section 3.1 with a post-processing step, we show how to achieve the state-of-the-art algorithm
for SMK. The theoretical guarantee of this algorithm is given by Theorem 3.1.
Theorem 3.1. For every ε > 0, there exists a deterministic (1/2 − ε)-approximation algo-
rithm for Submodular Maximization subject to a Knapsack Constraint (SMK) that uses
O(nε−1 log ε−1) time.

Complementary to our result for SMK, our proposed variant of the threshold-greedy algorithm leads
to a deterministic linear algorithm for SMC, which is given by the next theorem.
Theorem 3.2. For every ε > 0, there exists a deterministic (1 − 1/e − ε)-approximation algo-
rithm for Submodular Maximization subject to a Cardinality Constraint (SMC) using
O(n/ε) time.

3.1 Fast Threshold Greedy Algorithm

In this section, we present Algorithm 1 as a variant of the threshold-greedy algorithm from [4].
Algorithm 1 uses Γ, our estimate of the optimal value (Γ is calculated by Algorithm 4 which is
given in Appendix B). Algorithm 4 enables us to reduce the number of thresholds that needed to
be considered. Specifically, Algorithm 1 considers an exponentially decreasing series of thresholds
between 8α·Γ and Γ/e, where α ≥ 1 is a parameter of the algorithm. For every threshold considered,
the algorithm adds to its solution every element such that (i) adding the element to the solution
does not violate feasibility, and (ii) the density of the element with respect to the current solution
exceeds that threshold. In addition to the parameter α, Algorithm 1 gets a quality control parameter
ε ∈ (0, 1).

The time complexity of Algorithm 1 is given by the next observation.
Observation 3.3. The time complexity of Algorithm 1 is O(nε−1 logα).

Due to space constraints, the proof of this observation and the other proofs omitted from this section
can be found in Appendix C.

Let ℓ be the value of h when Algorithm 1 terminated. We analyze the approximation ratio of Algo-
rithm 1 by describing two lower bounds on the performance of this algorithm. The following lemma
gives the simpler among these bounds. Its proof is based on the observation that the elements of
T \ Sℓ were not added by Algorithm 1 to its solution even during the outer loop’s last iteration.
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Algorithm 1: FAST THRESHOLD GREEDY(ε, α)
1 Let Γ (an estimate of the value of an optimal solution) be the output of Algorithm 4.
2 Let τ ← 8α · Γ, h← 0 and S0 ← ∅.
3 while τ > (1− ε)Γ/e do
4 for every element u ∈ N do
5 if u ̸∈ Sh, c(u) + c(Sh) ≤ 1 and f(u|Sh)

c(u) ≥ τ then
6 Let uh+1 ← u and Sh+1 ← Sh + uh+1.
7 Increase h by 1.

8 Update τ ← (1− ε)τ .
9 return Sh.

Lemma 3.4. For every set T ⊆ N , if maxu∈T c(u) ≤ 1 − c(Sℓ), then f(Sℓ) ≥ f(T ) − c(T )
e ·

f(OPT ). In particular, maxu∈OPT c(u) ≤ 1− c(Sℓ) implies f(Sℓ) ≥ (1− 1/e) · f(OPT ).

The following lemma gives the other lower bound we need on the performance of Algorithm 1.
The proof of this lemma is based on the standard argument in greedy-like algorithms, namely, the
observation that adding all the elements of T to a solution increases the value of the solution to at
least T , and therefore, at least one element of T is a good choice that the algorithm can choose.
Lemma 3.5. For every set ∅ ̸= T ⊆ N and integer 0 ≤ h < ℓ, if maxu∈T c(u) ≤ 1− c(Sh), then
f(Sh+1)−f(Sh)

c(uh+1)
≥ min{(1− ε) · f(T |Sh)

c(T ) , α · f(OPT )}.

Using the last two lemmata we can prove the following theorem, which implies Theorem 3.2. In a
nutshell, the proof of this theorem uses Lemma 3.4 when the output of Algorithm 1 has the maximum
allowed cardinality, and Lemma 3.5 otherwise.
Theorem 3.6. If we choose α = 1, then, for every ε ∈ (0, 1), Algorithm 1 runs in O(n/ε) time and
guarantees (1− 1/e− ε)-approximation for SMC.

3.2 General Knapsack Constraint in Clean Linear Time

In this section we prove Theorem 3.1. We should point out that Algorithm 1 by itself does not
guarantee any constant approximation guarantee for general knapsack constraints.2 However, this
can be fixed by using the post-processing step described by Algorithm 2. Recall that Algorithm 1
maintains a solution Sk that grows as the algorithm progresses. The post-processing step takes
O(ε−1 log ε−1) snapshots of this solution at various times during the execution of Algorithm 1, and
then tries to augment each one of these snapshots with a single element.

Algorithm 2: FAST THRESHOLD GREEDY + POST-PROCESSING(ε)

1 Execute Algorithm 1 with α = ε−1. Store all sets S0, S1, . . . , Sℓ produced by this execution.
2 for i = 0 to ⌊log1+ε ε

−1⌋ do
3 Let S(i) be the set Sk for the maximal k value for which c(Sk) ≤ ε(1 + ε)i.
4 if there exists an element u ∈ N such that c(u) ≤ 1− c(S(i)) then
5 Let u(i) be an element maximizing f(u(i) | S(i)) among all the elements obeying the

condition on the previous line.
6 Let S(i)+ ← S(i) + u(i).

7 else Let S(i)+ ← S(i).

8 return the set maximizing f in {Sℓ} ∪ {{u} | u ∈ N} ∪ {S(i)+ | 0 ≤ i ≤ ⌊log1+ε ε
−1⌋}.

The time complexity of Algorithm 2 is given by the next observation.
2To see this, consider an input instance consisting of an element u of size δ > 0, an additional element w

of size 1 and a function f(S) = 2δ · |S ∩ {u}| + |S ∩ {w}|. For small enough ε and δ values, Algorithm 1
will pick the solution {u} of value 2δ instead of the much more valuable solution {w} whose value is 1.
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Observation 3.7. Algorithm 2 runs in O(nε−1 log ε−1) time.

The rest of this section is devoted to analyzing the approximation ratio of Algorithm 2. Consider the
inequality

f(S(i)+) < 1/2 · f(OPT ) ∀ 0 ≤ i ≤ log1+ε ε
−1 . (1)

If this inequality does not hold for some integer i, then Algorithm 2 clearly obtains at least 1/2-
approximation. Therefore, it remains to consider the case in which Inequality (1) applies for every
integer 0 ≤ i ≤ log1+ε ε

−1. One can observe that this inequality implies that OPT is non-empty
because f(S(0)) ≥ f(∅) by the monotonicity of f , and therefore, we can define r to be an element
of OPT maximizing c(r). Additionally, we assume below that r is not the only element of OPT—if
this assumption does not hold, then Algorithm 2 trivially returns an optimal solution.
Lemma 3.8. If c(r) ≥ 1− ε, then f(Sℓ) ≥ (1/2− ε) · f(OPT ).

If f({r}) ≥ 1/2 · f(OPT ), then the last lemma follows immediately since {r} is one of the sets
considered for the output of Algorithm 2 on Line 8. Otherwise, we get that OPT \ {r} is a set
with a lot of value taking a very small part of the budget allowed, and the proof of Lemma 3.8 uses
Lemmata 3.4 and 3.5 to argue that f(Sℓ) is always large when such a set exists.

So far we have proved that the approximation ratio of Algorithm 2 is at least 1/2 − ε when either
Inequality (1) is violated or c(r) ≥ 1 − ε. The following lemma proves that the same approxima-
tion guarantee applies also when neither of these cases applies, which completes the proof of Theo-
rem 3.1. The proof of this lemma defines ir to be the maximal integer such that ε(1+ε)ir ≤ 1−c(r),
and hr to be the index for which Shr = S(ir). If hr = ℓ, then the proof uses Lemma 3.4 to argue
that f(Shr

) is large. Otherwise, the proof uses Lemma 3.5 to argue that f(Shr+1) is large.
Lemma 3.9. If c(r) ≤ 1− ε, then Inequality (1) implies f(Sℓ) ≥ (1/2− ε) · f(OPT ).

4 Information-Theoretic Inapproximability Results

In this section we present our inapproximability results. The first result that we show is inapprox-
imability for SMC (see Section 3 for the definition of this problem) showing that, when the number
k of elements allowed in the solution is constant, one cannot obtain a constant approximation ratio
for this problem using o(n) value oracle queries.
Theorem 4.1. Any (possibly randomized) algorithm guaranteeing α-approximation (α ∈ (0, 1])
for Submodular Maximization subject to a Cardinality Constraint (SMC) must use
Ω(αn/k) value oracle queries. In particular, this implies that the algorithm must make Ω(n) value
oracle queries when α and k are constants.

See Appendix D for the proof of Theorem 4.1. Let us now consider the approximability of SMC in
a different regime allowing larger values of k. Specifically, we consider the regime in which the
ratio between n and k is some constant β. In this regime one can obtain β-approximation by simply
outputting a uniformly random subset ofN of size k (which requires no value oracle queries); thus,
this regime cannot admit an extremely pessimistic inapproximability result like the one given by
Theorem 4.1. Nevertheless, the following theorem shows that improving over the above-mentioned
“easy” approximation guarantee requires a nearly-linear query complexity.
Theorem 4.2. For any rational constant β ∈ (0, 1) and constant ε > 0, every (possibly randomized)
algorithm guaranteeing approximation ratio of β+ε for instances of Submodular Maximization
subject to a Cardinality Constraint obeying k = βn must use Ω( n

logn ) value oracle
queries. Moreover, this is true even when the function f of is guaranteed to be a linear function.

We prove in Section E.1 a restricted version of Theorem 4.2 that applies only to deterministic algo-
rithms. Then, Section E.2 extends the proof to randomized algorithms, which implies Theorem 4.2.
Table 1 summarizes our knowledge about the number of value oracle queries necessary for obtaining
various approximation guarantees for SMC.

Using the technique of Theorem 4.2, we can also prove another interesting result. In the Uncon-
strained Submodular Maximization problem (USM), the input consists of a non-negative (not nec-
essarily monotone) submodular function f : 2N → R≥0. The objective is to output a set S ⊆ N
maximizing f . Our result for USM is given by the next theorem (proved in Appendix F). This theorem
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Table 1: Number of value oracle queries that are required and sufficient to obtain any given ap-
proximation ratio for Submodular Maximization subject to a Cardinality Constraint
(SMC). The variable ε should be understood as an arbitrarily small constant.

Regime Approximation Ratio Query Complexity
Range

Constant k
[ε, 1− 1/e− ε]

Can be obtained using O(n) queries by Theorem 3.2 or Mirza-
soleiman et al. [55], and requires Ω(n) queries by Theorem 4.1.

[1− 1/e, 1]
Exact solution can be obtained using O(nk) queries via brute
force; Ω(n) queries are necessary by Theorem 4.1.

k = βn

[0, β]
Can be obtained by outputting a uniformly random subset of the
right size (0 queries).

[β + ε, 1− 1/e− ε]
Can be obtained using O(n) queries by Theorem 3.2 or Mirza-
soleiman et al. [55]; requires Ω( n

logn
) queries by Theorem 4.2.

1− 1/e
Obtained by Greedy using O(nk) queries [62]; requires Ω( n

logn
)

queries by Theorem 4.2.
[1− 1/e+ ε, 1] Requires exponentially many queries [61].

Table 2: Number of value oracle queries required and sufficient to obtain any given approximation
ratio for Unconstrained Submodular Maximization (USM). The variable ε should be under-
stood as an arbitrarily small constant.

Approximation Ratio Required Query Sufficient Query
Range Complexity Complexity

[0, 1/4] 0

0
An approximation ratio of 1/4 can be
obtained by outputting a uniformly
random subset of N [20].

[1/4 + ε, 1/2] Ω( n
logn

) (Theorem 4.3)
O(n)

Using the Double Greedy algorithm
of Buchbinder et al. [11].

[1/2 + ε, 1]
Requires an exponential number of
queries [20]. –

nearly completes our understanding of the minimum query complexity necessary to obtain various
approximation ratios for USM. See Table 2 for more detail.
Theorem 4.3. For any constant ε > 0, any algorithm for Unconstrained Submodular Maximi-
zation that guarantees an approximation ratio of 1/4 + ε must use Ω( n

logn ) value oracle queries.

The necessity of the log n term in Theorems 4.2 and 4.3 is discussed in Appendix G. Specifically, we
show in this appendix an algorithm that can be used to solve (exactly) the hard problem underlying
these theorems using O(n/ log n) oracle queries. This algorithm is not efficient in terms of its time
complexity, but it shows that one cannot prove a lower bound stronger than Ω(n/ log n) for this
problem based on information theoretic arguments alone.

5 Set System and Multiple Knapsacks Constraints

In this section we consider the Knapsacks and a Set System Constraint problem (SMKS). In this
problem we are given a non-negative monotone submodular function f : 2N → R≥0, a p-system
M = (N , I), d ≥ 1 non-negative cost functions ci : N → R≥0 (one function for every integer
1 ≤ i ≤ d) and d positive values B1, B2, . . . , Bd as Knapsack budgets. We say that a set S ⊆ N
is feasible if it is independent in M and also obeys ci(S) ≤ Bi for every 1 ≤ i ≤ d (where
ci(S) ≜

∑
u∈S ci(u)). The objective of the problem is to find a set maximizing f among all feasible

sets S ⊆ N .

Algorithm 3 is the basic version of our proposed solution for SMKS (in Appendix I.1 we explain
how to make this basic algorithm nearly-linear). Algorithm 3 gets two parameters. The first of
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these parameters is an integer λ ≥ 1. Elements that have a value larger than λ−1 with respect to at
least one function ci are considered big elements, and are stored in the set B of the algorithm. The
other elements ofN are considered small elements. The algorithm never considers any solution that
includes both big and small elements. Instead, it creates one candidate solution SB from the big
elements, and one candidate solution from the small elements, and then outputs the better among
the two (technically, in some cases the algorithm outputs directly the candidate solution based on
the small elements without comparing it to SB). The candidate solution SB is constructed using
a procedure called BigElementsAlg that gets the set B as input and outputs a feasible set whose
value is at least α · f(OPT ∩B), where α is a some value in (0, 1] and OPT is an arbitrary optimal
solution. At this point we ignore the implementation of BigElementsAlg, and leave the value of α
unspecified. These gaps are filled in Section H.3.

Most of Algorithm 3 is devoted to constructing the candidate solution out of small elements, which
we refer to as the “small elements solution”. In the construction of this solution, Algorithm 3 uses its
second parameter ρ ≥ 0 that intuitively should represent the density of the small elements of OPT .
The algorithm initializes the small elements solution to be empty, and then iteratively adds to it the
element with the largest marginal contribution among the small elements that have two properties:
(i) their addition to the solution does not make it dependent inM, and (ii) their density (the ratio
between their marginal contribution and cost according to the linear constraints) is at least ρ. This
process of growing the small elements solution can end in two ways. One option is that the process
ends because no additional elements can be added to the solution (in other words, no element has
the two properties stated above). In this case the better among SB and the small elements solution
obtained Sk is returned. The other way in which the process of growing the small elements solution
can end is when it starts violating at least one linear constraint. When this happens, Algorithm 3
uses a procedure called SetExtract (see Algorithm 7 in Section H.1) to get a subset of the small
elements solution that is feasible and also has a good value, and this subset is returned.

Algorithm 3 assumes access to an estimate ρ of the density of the small elements of an optimal
solution for the problem. In Section H.2 we explain how the dependence of the algorithm on ρ
can be dropped without increasing the time complexity of the algorithm by too much. Recall that
Section 1.1 demonstrated a trade-off between the time complexity and approximation guarantee of
state-of-the-art algorithms for SMKS. The next theorem further studies this trade-off, and in particular,
improves over the state-of-the-art approximation for nearly-linear time algorithms. The Õ notation
in this theorem suppresses factors that are poly-logarithmic in n, d and ε−1. Due to space constraints,
the proof of Theorem 5.1 is differed to Appendix H.

Theorem 5.1. For every ε > 0, there exist algorithms that achieve [(1 + O(ε))(p + 1 + 7
4d)]

−1-
approximation and (p + 1.5556 + 13

9 d + ε)−1 for Submodular Maximization subject to

Knapsacks and a Set System Constraint in Õ(nd+n/ε) and Õ(n2+nd) time, respectively.

Algorithm 3: Basic Algorithm(λ, ρ)

// Build the set of big elements, and find a solution based on them.

1 Let B ← {u ∈ N | ∃1≤i≤d ci(u) > λ−1}.
2 Let SB be the output set of BigElementsAlg(B).

// Construct a solution from the small elements.
3 Let S0 ← ∅, k ← 0.
4 while there exists an element u ∈ N \ (Sk ∪B) such that Sk + u ∈ I and

f(u | Sk) ≥ ρ ·
∑d

i=1 ci(u) do
5 Let vk+1 be an element maximizing f(u | Sk) among all the elements obeying the

condition of the loop.
6 Let Sk+1 ← Sk + vk+1.
7 if max1≤i≤d ci(Sk+1) ≤ 1 then Increase k by 1.
8 else return the output set of SetExtract(λ, Sk+1).
9 return the better set among SB and Sk.

8



6 Experimental Results

We have studied the submodular maximization problem subject to different constraints. In this sec-
tion, we compare our proposed algorithms with the state-of-the-art algorithms under the following
constraints: (i) a carnality constraint (Section 6.1), (ii) a single knapsack constraint (Section 6.2),
and (iii) combination of a p-system and d knapsack constraints (Appendix J.4).

6.1 Cardinally Constraint

Cardinality constraint is the most widely studied setup in the submodular maximization literature.
We compare our algorithm, FASTTHRESHOLDGREEDY (abbreviated as FTG) with LAZYGREEDY
and BOOSTRATIO [46] under cardinality constraint. LAZYGREEDY is an efficient implementation
of the naı̈ve GREEDY algorithm in which the diminishing returns property of submodular functions
is used to avoid oracle queries that are known to provide little gain [55]. It is well-known that
LAZYGREEDY leads to several orders of magnitude speedups over GREEDY in practice.

In our first experiment, we implement a movie recommender system by finding a diverse set of
movies for a user. We adopt the approach of Lindgren et al. [54] to extract features for each movie
by using ratings from the MovieLens dataset [31]. For a given set of movies N (|N | = n), let
vector vi represents the attributes of the i-th movie. The similarity matrix Mn×n between movies
is defined by Mij = e−λ·dist(vi,vj), where dist(vi, vj) is the euclidean distance between vectors
vi, vj ∈ N . For this application, we used the following monotone and submodular function to
quantify the diversity of a given set of movies S: f(S) = log det(I+αMS), where I is the identity
matrix and MS is a square sub-matrix of M consisting of the rows and columns corresponding to the
movies in the set S. Our objective is to maximize f under a cardinality constraint k. In Figure 1a, we
compare the utility of the algorithms on this instance. We observe that FASTTHRESHOLDGREEDY
with ε ∈ {0.1, 0.2} performs as good as LAZYGREEDY, and BOOSTRATIO performs slightly worse.
In Figure 1b, we observe that the query complexity of FASTTHRESHOLDGREEDY is significantly
less than that of LAZYGREEDY. It is interesting to note that, as is guaranteed by our theoretical
results, the number of oracle calls for FASTTHRESHOLDGREEDY is (almost) not increasing with k.
In our second experiment, which appears in Appendix J.1, we consider a location summarization
application and show that similar conclusions apply also to this application.

STOCHASTICGREEDY is a fast but randomized approach for solving SMC [55]. In Appendix J.2
we present an experiment comparing FASTTHRESHOLDGREEDY with STOCHASTICGREEDY un-
der the cardinality constraint in a vertex cover context. In general, this experiment shows that
the utility of FASTTHRESHOLDGREEDY is significantly better than that of STOCHASTICGREEDY,
and that FASTTHRESHOLDGREEDY sometimes also outperforms STOCHASTICGREEDY in terms
of the query complexity. We also observe a high variability in the utility of solutions returned by
STOCHASTICGREEDY, which diminishes the benefit from this algorithm.

6.2 Single Knapsack Constraint
In this section, we evaluate the performance of Algorithm 2 (referred to as FTGP) with that of
DYNAMICMRT [37] and DENSITYGREEDY under a single knapsack constraint. DENSITYGREEDY
greedily adds elements that maximize the ratio between their marginal gain and knapsack cost (but
ignoring elements whose addition will result in a violation of the knapsack constraint). In our
first experiment for this constraint, we again consider the movie recommendation application from
Section 6.1. The cost of each movie is defined to be proportional to the absolute difference between
the rating of that movie and 10 (the maximum rating in iMDB). In this application, the goal is
to find a diverse set of movies while guaranteeing that the total rating of the picked movies is high
enough [6]. From Figures 1c and 1d, we observe that Algorithm 2 significantly outperforms the other
two algorithms with respect to both the utility and number of oracle calls metrics. For our second
experiment under the knapsack constraint, which appears in Appendix J.3, we consider Twitter text
summarization. In this experiment we again get that Algorithm 2 surpasses the baseline algorithms.

7 Conclusion and Societal Impact
An algorithm for maximizing a submodular function is conventionally measured in terms of two
quantities: a) approximation guarantee, i.e., how well it performs with respect to the (exponential
time) optimum algorithm, and b) query complexity, i.e., how many function evaluations it requires.
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Figure 1: Movie Recommendation: (a) and (b) compare FASTTHRESHOLDGREEDY (referred to
as FTG) with LAZYGREEDY and BOOSTRATIO [46] under a cardinality constraint; (c) and (d)
compare Algorithm 2 (referred to as FTGP) with DYNAMICMRT [37] and DENSITYGREEDY under
a single knapsack constraint.

In their seminal work, Nemhauser and Wolsey [61] and Nemhauser et al. [62] resolved part (a). In
this paper, after 44 years and building on a large body of prior work, we nearly resolved part (b)
and portrayed a nearly complete picture of the landscape. Specifically, we developed a clean linear-
time algorithm for maximizing a monotone submodular function subject to a cardinality constraint
(and more generally a knapsack constraint). We also provided information-theoretic lower bounds
on the query complexity of both constrained and unconstrained (non-monotone) submodular max-
imization. Finally, we studied the trade-off between the time complexity and approximation ratio
for maximizing a monotone submodular function subject to a p-system and d knapsack constraints.
This work does not have any negative societal impact.

Like most algorithms in the literature, our algorithms assume the ability to exactly evaluate the
objective function. In some applications exact evaluations is too costly, which has motivated works
(such as [33]) that considered erroneous value oracles. Extending our work in this direction is an
interesting question for future research.
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Maximization Through Barrier Functions. In Advances in Neural Information Processing Sys-
tems (NeurIPS), 2020.

[7] Jeff Bilmes. Submodularity in machine learning and artificial intelligence. CoRR,
abs/2202.00132, 2022.

[8] Niv Buchbinder and Moran Feldman. Deterministic algorithms for submodular maximization
problems. ACM Trans. Algorithms, 14(3):32:1–32:20, 2018.

[9] Niv Buchbinder and Moran Feldman. Constrained submodular maximization via a nonsym-
metric technique. Math. Oper. Res., 44(3):988–1005, 2019.

[10] Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy Schwartz. Submodular maximization
with cardinality constraints. In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1433–1452, 2014.

[11] Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy Schwartz. A tight linear time (1/2)-
approximation for unconstrained submodular maximization. SIAM J. Comput., 44(5):1384–
1402, 2015.

[12] Niv Buchbinder, Moran Feldman, and Roy Schwartz. Comparing apples and oranges: Query
trade-off in submodular maximization. Math. Oper. Res., 42(2):308–329, 2017.

[13] L. Elisa Celis, Amit Deshpande, Tarun Kathuria, and Nisheeth K. Vishnoi. How to be Fair and
Diverse? CoRR, abs/1610.07183, 2016.
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de Albuquerque Araújo. Vsumm: A mechanism designed to produce static video summaries
and a novel evaluation method. Pattern Recognition Letters, 32(1):56–68, 2011.

[16] Ethan R Elenberg, Rajiv Khanna, Alexandros G Dimakis, and Sahand Negahban. Restricted
strong convexity implies weak submodularity. The Annals of Statistics, 46(6B):3539–3568,
2018.

[17] Alina Ene and Huy L. Nguyen. Constrained submodular maximization: Beyond 1/e. In Foun-
dations of Computer Science (FOCS), pages 248–257, 2016.

[18] Alina Ene and Huy L. Nguyen. A nearly-linear time algorithm for submodular maximiza-
tion with a knapsack constraint. In International Colloquium on Automata, Languages, and
Programming (ICALP), pages 53:1–53:12, 2019.

[19] Hossein Esfandiari, Amin Karbasi, and Vahab Mirrokni. Adaptivity in adaptive submodularity.
In Conference on Learning Theory (COLT), pages 1823–1846. PMLR, 2021.

[20] Uriel Feige, Vahab S. Mirrokni, and Jan Vondrák. Maximizing non-monotone submodular
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