
Supplementary Materials: A composable
machine-learning approach for steady-state

simulations on high-resolution grids

Rishikesh Ranade
Office of CTO

Ansys Inc.
Canonsburg, PA 15317

rishikesh.ranade@ansys.com

Chris Hill
Fluids Business Unit

Ansys Inc.
Lebanon, NH, 03766

chris.hill@ansys.com

Lalit Ghule
Office of CTO

Ansys Inc.
Canonsburg, PA, 15317

lalit.ghule@ansys.com

Jay Pathak
Office of CTO

Ansys Inc.
San Jose, CA, 95134

jay.pathak@ansys.com

In the supplementary materials, we provide additional details about our approach and to support and
validate the claims established in the main body of the paper. We have divided the supplementary
materials into 6 sections. Sections A and B provide details about the network architectures and
training mechanics used in the CoMLSim approach as well as the ML baselines considered in this
work. This is followed by additional experimental results in Sections C and D for PDEs considered in
the main paper as well as additional canonical PDEs, namely Laplace and Darcy equations. Finally,
we expand on the computational performance of CoMLSim in Section E and provide details of
reproducibility in Section F.

A CoMLSim network architectures and training mechanics

In this section, we will provide details about the typical network architectures used in CoMLSim
followed by the training mechanics. The training portion of the CoMLSim approach corresponds
to training of several autoencoders to learn the representations of PDE solutions, conditions, such
as geometry and PDE source terms as well as flux conservation. In this work, we mainly employ 2
autoencoder architectures, a CNN-based autoencoder to train the PDE solutions and conditions and a
DNN-based autoencoder to train the flux conservation network.

A.1 Solution/Condition Autoencoder

These autoencoders learn to represent solutions and conditions on subdomains into corresponding
lower dimensional vectors. CNN-based encoders and decoders are employed here to achieve this
compression because subdomains consist of structured data representations. Figure 1 shows the
architecture of a typical autoencoder used in this work to learn PDE solutions and conditions. We
use separate autoencoders to learn solution and representations of conditions into lower-dimensional
latent vectors. In the encoder network, we use a series of convolution and max-pooling layers to
extract global features from the solution. Irrespective of the size of the input, the pooling is carried
out until a resolution of 4x4 in 2-D and 4x4x4 in 3-D. This is followed by flattening and a series of
dense fully-connected layers to compute the latent vector. The decoder network mirrors the encoder
network exactly, except that the pooling layer is replaced by an up-sampling layer. A ReLU activation
function is applied after every convolution layer. The number of filters in the convolutional layers as

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

well as number of dense layers and the bottleneck size depends on the complexity of the application,
non-linearity and sparsity in the input distribution and the size of the subdomains.

Figure 1: Schematic of Autoencoder network for solution and condition

A.1.1 Input representation of PDE conditions

The experiments considered in this paper have different types of PDE conditions associated with the
PDE. For example, Poisson's and Non-Linear Poisson's solutions are in�uenced by the source term,
Reynolds Averaged Navier-Stokes external �ow by geometry, Darcy's solutions by diffusivity and
Laplace solutions by boundary conditions. Each PDE condition is encoded into a lower-dimensional
vector using the autoencoder shown in Figure 1. Generally, diffusivity, source terms and boundary
conditions have a spatial representation on the computational domain, which can be directly used
to train the autoencoder. On the other hand, an ef�cient representation of geometry is a topic of
on-going research in the ML community. Geometry can be represented using several ways such as
point clouds, voxels, etc. In this work, we use the signed distance �eld (SDF) to represent geometry.
Mathematically, the signed distance at any point within the geometry is de�ned as the normal distance
between that point and closest boundary of a object. More speci�cally, forx 2 Rn and object(s)

 � Rn , the signed distance �eld� (x) is de�ned by:

� (x) =
�

+ d(x; @
) x 2

� d(x; @
) x =2

:

where,� (x) is the signed distance �eld forx 2 Rn and objects
 � Rn [1]. Maleki et al.[2] use the
same representation of geometry to successfully demonstrate the encoding of geometries. However,
this is a matter of choice and other valid representation can also be used in our approach.

All in all, there are two things to consider when encoding the PDE conditions, 1) the PDE condition
is only encoded on subdomains that they in�uence and the encoding is hard-coded to a vector of
zeros for all the other subdomains. For example, in an experiment of �ow over a cylinder, the SDF is
computed locally on each subdomain. The subdomain that cuts through the cylinder has a non-zero
SDF and hence the encoding computed using the trained encoder is non-zero. Other subdomains that
don't contain any parts of the cylinder can be encoded with a vector of zeros, 2) An autoencoder for
PDE condition is required to be trained only if the set of conditions considered in a given problem
have a spatial representation. If the PDE conditions are uniform, the magnitude can simply be
considered as an encoding for a given subdomain. For example, if the source term is uniformly
described on the computational domain for a given experiment, then the magnitude of the uniform
source term can be used as an encoding on each subdomain.

A.2 Flux conservation Autoencoder

These autoencoders learn to represent solution and condition encodings of a collection of neighboring
subdomains. Since latent vectors don't have a spatial representation, DNN-based encoder and
decoders are employed to compress them. Figure 2 shows a typical DNN-autoencoder used in this
work to learn relationships between neighboring subdomains. The input to this autoencoder consist
of PDE solution encoding (�) and condition encodings (� s; � g; � b) on neighboring subdomains. In
this work, the encoder network consists of typically3 hidden layers withn; n=2; n=4 hidden neurons,
respectively. The decoder network is similar to the encoder network but the order of the hidden layers
is exactly opposite. The choice ofn, depends on the size of the input vector and the complexity of
the application. In the �gure, we show an example of how the input to the �ux conservation network

2

is setup for a 2-D case. Given the PDE solution and condition on a local stencil with5 subdomains,
the encoded representations are calculated using the pre-trained encoders. The encodings of solutions
and conditions are concatenated together in a pre-determined order. The same approach works in
3-D, with the difference that the local stencil has7 subdomains.

Figure 2: Schematic of Autoencoder network for �ux conservation

A.3 Training mechanics

Autoencoders have over�tting tendencies and hence they are required to be trained carefully. Here,
we provide general guidelines that may be used to train these autoencoders ef�ciently. In this work,
we train all the autoencoders until an MSE of1e� 6 or an MAE of1e� 3 is achieved on a validation
set. More importantly, the compression ratio is selected such that the bottleneck layer has the smallest
possible size and yet satis�es the accuracy up to these tolerances. Although, each training run is very
fast but may require a decent amount of hyper-parameter tuning to obtain an optimized bottleneck size.
Based on the experiments and results we have shown in the main paper, the optimum performance of
our approach is observed in a range of bottleneck layer sizes. But, if the bottleneck size is too small
or too large, the performance deteriorates. All the autoencoders are trained with the NVIDIA Tesla
V-100 GPU using TensorFlow. The autoencoder training is a one-time cost and is reasonably fast.

A.4 Similarities between CoMLSim and Traditional PDE solvers

In this section we expand on the main similarities in between our approach on a traditional Finite Vol-
ume or Finite Difference based PDE solvers. There are 3 main similarities, 1) Domain discretization,
2) Flux conservation and 3) Iterative solution algorithm. Here we provide more details about each
one.

Figure 3: 2D stencil

Consider a set of coupled PDEs withn solution variables. For the sake of
notation simplicity, we taken = 2 , such thatu(x; y; z; t) andv(x; y; z; t)
are de�ned on a computational domain
 with boundary conditions spec-
i�ed on the boundary of the computational domain,
 b. It should be noted
that extension to more solution variables is trivial. The coupled PDEs are
de�ned as follows:

L 1(u; v) � F1 = 0; L 2(u; v) � F2 = 0 (1)

where,L 1; L 2 denote PDE operators andF1; F2 represent PDE source terms. The PDE operators
can vary for different PDEs. For example, in a non-linear PDE such as the unsteady, incompressible
Navier-Stokes equation the operator,L = @

@t + ~a:~r � ~r :~r

1. Domain discretization: Traditional PDE solvers solve PDEs given in Eq. 1 by representing
solutions variables, u, v, and their spatio-temporal derivatives on a discretized computational
domain. The domain is discretized into a �nite number of computational elements, using
techniques such as Finite Difference Method (FDM), Finite Volume Method (FVM) and
Finite Element Method (FEM).

3

Similar to traditional PDE solvers, the �rst step in the CoMLSim is to decompose the
computational domain into smaller subdomains. A single subdomain in the CoMLSim
is analogous to a computational element in the traditional solver because the CoMLSim
predicts PDE solutions directly on local subdomains.

2. Flux conservation: Traditional PDE solvers use numerical approximation schemes are
used to compute linear and non-linear components of the PDE. For example, in Eq. 1, if
L = @u

@x + @v
@y, representing the 2-D incompressible continuity equation in �uid �ows, the

spatial derivatives can be approximated on a uniform stencil shown in Figure 3 using a
second order Euler approximation shown below in Eq. 2.

L i;j =
ui +1 ;j � ui � 1;j

2� x
+

vi;j +1 � vi;j � 1

2� y
(2)

wherei; i + 1 ; i � 1; j; j + 1 ; j � 1 are element indices and� x; � y correspond to the size
of stencil. These numerical approximations denote �ux conservation between neighboring
elements. Fluxes represent the �ow of information between neighbors and hence, their
accurate representation is crucial for information propagation within the domain.
Similarly, �ux conservation in the CoMLSim happens across neighboring subdomains to en-
sure local consistency and information propagation. The representation of PDE discretization
on subdomains is similar to Equation Eq. 2 but the indices i, j represent subdomain indices
and the numerical schemes for discretization are now represented by a neural network, Theta,
as shown in Eq. 3.

L i;j = �(� u
i;j ; � u

i +1 ;j ; � u
i � 1;j ; � u

i;j +1 ; � u
i;j � 1; � v

i;j ; � v
i +1 ;j ; � v

i � 1;j ; � v
i;j +1 ; � v

i;j � 1) (3)

where,� u , � v are encodings of solution �elds on subdomains andi; i +1 ; i � 1; j; j +1 ; j � 1
are subdomain indices.

3. Iterative solution procedure: In traditional solvers, the discretized PDEs represent a system
of linear or non-linear equations, where the number of such equations equals the number
of computational elements. To solve the PDE solutions, the discretized PDE residual is
minimized by enforcing �ux conservation iteratively using linear and non-linear equation
solvers.
Similar to traditional solvers, the discretized PDEs represent a system of linear or non-
linear equations, where the number of such equations equals the number of computational
subdomains. To solve this system of equations we employ exactly the same techniques that a
traditional would use. For example, in this work we have explored 2 linear iterative solution
methods, such as Point Jacobi and Gauss Seidel.

A.5 Self-supervised solution algorithm

Although, this approach requires solution samples to train the autoencoders, we claim in the paper
that it is self-supervised in the sense that we don't use these samples to learn an explicit relationship
between the input and output distribution. Our training consists of simply training autoencoders
and the inference algorithm involves solving a constrained �xed-point iteration to converge to a
PDE solution. In the constrained �xed-point iteration, the solution converges to a PDE solution
starting from initial random noise. Our solution algorithm is never taught this trajectory of solution
convergence but discovers that by itself. Hence, we claim that the solution algorithm at inference is
self-supervised.

B Description of baseline network architectures

In the main paper, we compare the performance of CoMLSim with UNet [3], FNO [4], DeepONet
[5] and FCNN [6]. Here we describe the network architectures used to train the respective models for
all the experiments considered in the main paper.

UNet [3]: The encoder part of the network has10 convolutional blocks,2 at each down-sampled
size. The input is down-sampled by4x. The decoder part of the network predicts the output by
up-sampling the bottleneck and using skip connections from the encoder network by concatenating
the corresponding upsampled output with the corresponding down-sampled output. The decoder part

4

of the network also has10convolutional blocks,2 after each up-sampled size and has256stacked
channels. The total number of learnable parameters in UNet baseline is equal to 0.471 million in 2-D
and 1.412 million in 3-D.

Fourier Neural Operator (FNO) [4]: The FNO model is same as the original implementation in Li
et al.[4] but the number of modes are increased to8 for 3-D experiments to achieve better training
loss. The FNO model has 1.188 million parameters in 2-D and 3.689 million parameters in 3-D.

DeepONet [5]: The DeepONet architecture has two branches, a branch net and a trunk net. In all
cases, the trunk net has3 hidden layers with512neurons each. The branch is a convolutional neural
network, which takes inputs the spatial source term. It is extremely dif�cult to train the DeepONet
with the full resolution of the PDE conditions because of the massive data storage requirements.
Hence, for all experiments the PDE conditions are uniformly subsampled to a lower grid resolution
given as an input to the branch net. The branch net has4 DownSample blocks and10convolutional
blocks,2 at each down-sampled size. Additionally, the DeepONet is extremely sensitive to the
sampling strategy adopted in the training data. The total number of learnable parameters is equal to
1.353 million. The subsampling of PDE conditions and the random sampling used in this work may
have affected the testing accuracy of DeepONet.

Fully Convolutional Neural Network (FCNN) [6]: The FCNN model is similar to the original
implementation in Zhu and Zabaras[6] but the number of convolution �lters and downsampling
layers are tuned to accommodate the high-resolutions and non-linearity in different use cases. The
FCNN model has 0.189 million parameters in 2-D and 0.578 million parameters in 3-D.

C Experiments results and details from main paper

We demonstrated the CoMLSim for4 experiments in the main paper. Here we provide more details
about the CoMLSim setup as well as additional results and discussions for each experiment. The
different experiments presented in this work are a good mix of pure research and engineering problems
with varying levels of non-linear complexity, input distributions, PDEs, solution variable coupling,
spatial dimension etc. It must be noted that CoMLSim as well as the baselines are trained with
reasonably training samples. The baseline performance can have different outcomes with increasing
the size of the training data.

C.1 2-D Linear Poisson's equation

The Poisson's equation is shown below in Eq. 4.

r 2u = f (4)

where,u is the solution variable andf is the source term. In this experiment, the source term is
sampled from a Gaussian mixture model, where the number of Gaussians is randomly chosen between
1 and30 and each Gaussian has a randomly speci�ed mean and standard deviation. The Gaussian
mixture model is described below in Eq. 4. The computational domain is 2D and is discretized with a
highly-resolved grid of resolution1024x1024. The high-resolution grid is required in this case to
capture the local effects of the source term distribution.

1024X

j =0

1024X

j =0

f i;j =
1024X

j =0

1024X

j =0

30X

k=0

Ak exp
�

�
x � � x;k

� x;k
�

y � � y;k

� y;k

�
(5)

where,x; y correspond to the grid coordinates.Ak randomly assumes either0 or 1 to vary the
number of active Gaussians in the model.� x ; � y and� x ; � y are the mean and standard deviations of
Gaussians inx andy directions, respectively. The means vary randomly between0 and1, while the
standard deviations are varied between0:001and0:01. The smaller magnitude of standard deviation
results in hot spots that can only be captured on highly-resolved grids.

C.1.1 Training

256solutions are generated for random Gaussian mixtures using Ansys Fluent and used to train the
different components of CoMLSim. The computational domain of1024x1024resolution is divided

5

	CoMLSim network architectures and training mechanics
	Solution/Condition Autoencoder
	Input representation of PDE conditions

	Flux conservation Autoencoder
	Training mechanics
	Similarities between CoMLSim and Traditional PDE solvers
	Self-supervised solution algorithm

	Description of baseline network architectures
	Experiments results and details from main paper
	2-D Linear Poisson's equation
	Training
	Testing
	Comparisons with Ansys Fluent for in-distribution testing
	Comparisons with Ansys Fluent for out-distribution testing
	Additional Ablation Studies

	2-D Non-linear coupled Poisson's equation
	Training
	Testing
	Comparisons with Ansys Fluent for in-distribution testing
	Comparisons with Ansys Fluent for out-distribution testing

	3-D Reynolds Averaged Navier-Stokes external flow
	Training
	Testing
	Comparison with Ansys Fluent for geometries outside the training set
	Extension to larger physical domains and complex geometries

	Industrial usecase: 3-D electronic chip cooling with natural convection
	Training
	Testing
	Comparison with Ansys Fluent

	Experiments for additional canonical PDEs
	2-D Laplace Equations:
	Training
	Testing
	Comparisons with Ansys Fluent

	2-D Darcy Equations:

	Computational Speed Analysis:
	Guidelines for reproducibility
	Step-by-step instructions for Poisson's equation
	CoMLSim training
	CoMLSim inference

