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Abstract

People say, “A picture is worth a thousand words”. Then how can we get the
rich information out of the image? We argue that by using visual clues to bridge
large pretrained vision foundation models and language models, we can do so
without any extra cross-modal training. Thanks to the strong zero-shot capability
of foundation models, we start by constructing a rich semantic representation of
the image (e.g., image tags, object attributes / locations, captions) as a structured
textual prompt, called visual clues, using a vision foundation model. Based on
visual clues, we use large language model to produce a series of comprehensive
descriptions for the visual content, which is then verified by the vision model again
to select the candidate that aligns best with the image. We evaluate the quality of
generated descriptions by quantitative and qualitative measurement. The results
demonstrate the effectiveness of such a structured semantic representation.

1 Introduction

This image is of a family celebrating Christmas. They are
all gathered around a dinner table, with a turkey and other
food on it. The family is smiling and seems to be enjoying
themselves. There is a Christmas tree in the background and
some Christmas lights on the walls.

This image features a horse and buggy travelling down a
road in the town of Holguin, Cuba. The horse is harnessed to
the buggy and is pulling it along, while a farmworker rides
behind. This image captures the everyday life of Cubans,
with their traditional horse-drawn carts still in use.

Figure 1: Examples of generated image paragraph.

“Vision is a process that produces from images of the external world a description
that is useful to the viewer and not cluttered with irrelevant information.”

—David Marr, Vision, p31

What makes a good “description” for vision? Over the past several decades, computer vision pioneers
drew inspiration from neural science, cognitive science, and psychophysics (Marr, 2010), pointing
us to the North Stars (Fei-Fei and Krishna, 2022), some among them being image classification and
object detection. Despite the tremendous progress that has been made, much of these object-centric
works remain a proxy for an eventual task or application that requires a holistic view of the visual
content, involving concepts beyond objects: actions, attributes, and relations, to name a few.

∗Currently at Google Brain.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



In our work, we argue that textual representation suffices such “description”. It brings forth a more
holistic visual representation than categorical labels. It allows machines to interpret visual signals
through descriptive captions (Zhou et al., 2020b; Li et al., 2022), and perform more language-heavy
tasks such as question-answers (Rajpurkar et al., 2016), or multi-round dialogues (Li et al., 2017).
On the other hand, the access to abundant web multimodal language data (e.g., image alt-text, video
subtitles) provides us with the fuel for powering neural visual representations from contrastive
language-image pre-training (CLIP, Yuan et al. (2021); Radford et al. (2021)). The marriage of the
two renders a new computer vision system that is faithful, generic, and versatile.

We name this new computer vision system BEST, for Bridging with Explicit Structured Textural clues.
We start by constructing a semantic representation of the image. This semantic representation, which
we referred to as visual clues, comprises rich semantic components, from object and attribute tags to
localized detection regions and region captions. Powered by the recent advances in vision foundation
model Florence (Yuan et al., 2021), the visual clues are rich in open-vocabulary expressions, marking
a major difference compared to existing symbolic approaches (e.g., scene graphs Krishna et al. (2017))
with closed-set vocabularies.

The visual clues are interpretable, not only for humans, but also for machines. Take the generative
language model GPT-3 (Brown et al., 2020). The visual clues could be digested by GPT-3, which in
return produces crisp language descriptions that are sensible to the viewer while not cluttered with
irrelevant information from the visual clues. Whereas this open-loop process could potentially suffer
from object hallucination issues (Maynez et al., 2020; Zhou et al., 2020a) as the outputs from GPT-3
are not governed by any means, we further deploy a closed-loop verification procedure that grounds
descriptions back to the original image.

To evaluate the quality of the language descriptions, we resort to an existing task named Image
Paragraph Captioning (IPC), but with a twist. IPC aims to address the demand for generating
long, coherent, and informative descriptions of the whole visual content of an image (Krause et al.,
2017), which can eventually be used for many applications including poetry composition (Liu et al.,
2018), automatic recipe generation (Salvador et al., 2019), visual storytelling (Huang et al., 2016),
advertisement generation, or help blind or visually-impaired people see better. The existing metrics
for IPC such as BLEU (Papineni et al., 2002), METEOR (Denkowski and Lavie, 2014), and CIDEr
(Vedantam et al., 2015) encourage exact matching between semantics in generated captions and those
in the reference. However, they over penalize visual details that are not annotated thus compromising
their qualifications for measuring overall representation quality. Inspired by Anderson et al. (2016);
Krishna et al. (2017), we propose to measure the accuracy on scene graphs extracted from generated
text against human-annotated graphs, which, as suggested by Anderson et al. (2016), co-relates better
with human judgment.

The contributions are twofold. First, we propose a general framework for semantic visual representa-
tion and showcase its application to image paragraph captioning. The framework is simple yet highly
extendable, allowing new components to be plug-in and supporting other use scenarios that require a
holistic view of the visual content. Second, we benchmark the effectiveness of the proposed model on
its capacity for representing visual concepts (e.g., scene graphs) and set new state-of-the-art results.

Notations. We denote ⟨·, ·⟩ as inner product between two vectors, |A| as the cardinality of set A.

2 Related Works
Image paragraph generation. The task of generating image paragraphs is first introduced by
Krause et al. (2017). Conditioned on the visual features, they first train a sentence recurrent neural
network (RNN) to output sentence topics, and then feed each of the topics into another RNN to
generate the paragraphs. Liang et al. (2017) further improve the hierarchical RNN framework by
introducing an adversarial discriminator for smoother transitions between sentences. Chatterjee
and Schwing (2018) also address cross-sentence topic consistency by a global coherence vector.
Melas-Kyriazi et al. (2018) add a repeat penalty to the optimization, to prevent the appearance of
repeated sequences. Wang et al. (2019) use convolutional auto-encoder for topic modeling based on
region-level image features. Along this line, many other works have been done (Dai et al., 2017;
Luo et al., 2019; Mao et al., 2018; Xu et al., 2020; Guo et al., 2021; Shi et al., 2021). Most of the
proposed models, however, are trained on Stanford image-paragraph dataset (Krause et al., 2017),
which only contains 14 thousand of training paragraphs for its expensive nature to collect. Due to
lack of data, the generated paragraphs usually lack coherence both locally and globally. Therefore,
many of the above works aim to make the best use of data to improve the coherence. Yet nowadays,
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Tags: argyle sweater vest, nerd …

Caption: a man holding a red apple 

Objects in this image: 
a man wearing a vest. vest, is at lower middle of the 
image and is moderate in the image. Attribute: 
sweater vest 
apple, is at left of the image and is small in the image. 
Attribute: gala apple 
……

Caption: 
a man holding a red apple 

Tags: 
This image is about argyle sweater vest, nerd, geek 
charming, argyle sweater, sweater vest.

Describe this image in detail:

Language 
Model

Open vocab tagger

Captioner

Open 
vocab 

detector

Objects: Tags: vest
Caption: a man wearing a vest
Attribute: sweater vest 
Location: [123, 176, 334, 461 ]

Tags: apple
Caption: N/A
Attribute: gala apple 
Location: [52, 208,  101, 254]

………

Open 
vocab 
tagger

Captioner

This image shows a man wearing an argyle sweater vest. He 
is holding an apple in his hand and appears to be a nerd or 
geek. He is charming and looks very professional.

This image features a man dressed in a suit and tie …

This image shows a man wearing an argyle sweater …

This image is of a man holding an apple in his hand …

……

Open vocab tagger

Visual Clues

Candidate Paragraphs

Output Paragraph

Visual Information

Figure 2: Framework demonstration. The orange open vocab tagger box corresponds to the image
encoder fv(·) and the text encoder as ft(·). The blue captioner box is the caption model c(·).
large language models can generate long coherent paragraphs by default. Our work, leveraging recent
progress of large pretrained models, focuses more on how to guide and constrain the generated text
instead.

Constrained text generation In recent years, rapid progress has been made in vision-language
pretraining (VLP). CLIP (Radford et al., 2021), ALIGN (Jia et al., 2021), and Florence (Yuan et al.,
2021) are proposed to encode vision and language into a joint representation space for crossmodal
alignment tasks, e.g., zero-shot image classification. Another line of research, e.g., SimVLM (Wang
et al., 2021), FLAVA (Singh et al., 2021), BLIP (Li et al., 2022), CoCa (Yu et al., 2022) and many
others (Cho et al., 2021; Wang et al., 2022; Zhu et al., 2021; Alayrac et al., 2022) adopt encoder-
decoder models trained with generative losses. Those models are capable of performing image
captioning in a zero-shot manner. A concurrent work, Socratic Models (SM, Zeng et al. (2022)), also
use textual data to bridge the domain gap between vision-language models and language models. The
model, however, is stronger in retrieval tasks than captioning tasks as we will show later. There are
also other works leveraging large language models to solve vision tasks, e.g., PICa (Yang et al., 2021)
uses GPT-3 (Brown et al., 2020) to extract commonsense knowledge for visual question answering
tasks, MAGIC (Su et al., 2022) uses a CLIP-induced score to regularize the language generation
so that it is semantically related to the given image, and VisualGPT (Chen et al., 2022) employs a
self-resurrecting encoder-decoder attention mechanism to adapt the language models with a small
amount of in-domain image-text data.

3 Framework
Given an image I , our goal is to generate long and coherent descriptive text based on image inputs,
leveraging only the existing pretrained models. Our framework can be divided into three stages:

1. Represent I with visual clues S, which contain the rich visual information;
2. Feed the visual clues into a language model to generate K candidate paragraphs {Ti}Ki=1;
3. Select the best paragraph T ∗ from the candidates {Ti}Ki=1.

The overall framework is illustrated in Figure 2. We will then elaborate on each of them.

3.1 Visual Clue Extraction
We leverage three state-of-the-art models with the open-vocabulary capability to extract the visual
information, namely, the concise tags, the short captions, and the local descriptions.

Concise tags. The first model we use is the contrastively trained vision-language models, e.g., CLIP
(Radford et al., 2021), Florence (Yuan et al., 2021). Such models are pretrained on image-text pairs
{xi, yi}, and is composed of the image encoder fv(·) and the text encoder ft(·). Given a minibatch
B, the models are optimized by contrastive loss

L = − 1

|B|
∑

xi,yi∈B

(
exp(⟨fv(xi), ft(yi)⟩/τ)∑

yj∈B,j ̸=i exp(⟨fv(xi), ft(yj)⟩/τ)
+

exp(⟨fv(xi), ft(yi)⟩/τ)∑
xj∈B,j ̸=i exp(⟨fv(xj), ft(yi)⟩/τ)

)
,
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where τ is the temperature. This loss explicitly uses inner product ⟨·, ·⟩ to measure the similarity
between the encoded image fv(xi) and encoded text ft(yj), and higher similarities are encouraged if
the images and texts are paired. Therefore, such a pretrained model is capable of selecting the tags
that describe the image I from a set of customized tags by computing the similarities. Given a set of
tags {ti}Ni=1, we compute the similarities between the input image I and the tags, and adopt the tags
with top-M similarities,

T = {t∗j}Mj=1 = arg top-M
ti,i=1,··· ,N

⟨fv(I), ft(ti)⟩. (1)

Short captions. The second model is a caption model c(·). We use it to generate an overall image
description c(I).

Local descriptions. The third model is an object detection model. We adopt a well-trained object
detector, to provide us with the locations of the possible objects in the format of bounding boxes. The
bounding boxes are processed with the non-maximum suppression technique to filter out repetitions.
Denote the object proposals as {bj}Rj=1 and image regions cropped from corresponding boxes as
{pj}Rj=1. We first select the indices of the bounding boxes with objects that can be named by our
customized tag set,

P = {ℓk}Qk=1 = {j|⟨fv(pj), ft(ti)⟩ > β, i = 1, · · · , N, j = 1, · · · , R}. (2)

Here, β is a threshold certifying whether ti is aligned with pj . Given a set of customized attribute
{ai}Vi=1, each selected proposal ℓk from P is then assigned to an attribute

a∗ℓk = argmax
ai,i=1,··· ,V

⟨fv(pℓk), ft(ai)⟩, (3)

and the corresponding tags

Oℓk = {ti|⟨fv(pℓk), ft(ti)⟩ > β, i = 1, · · · , N}. (4)

In addition to the tags and attributes to the bounding boxes, we also use the caption model c(·) to
provide some more descriptive texts {c(pℓk)}

Q
k=1.

In summary, we collect a tag set T and a caption c(I) as global descriptions to the image, and a
quadruple (bℓk , a

∗
ℓk
,Oℓk , c(pℓk)) as local descriptions for each selected bounding box.

3.2 Candidate Synthesis
We then format the collected visual information into the structured visual clues, which can be directly
used as the prompt of the language model. Figure 2 shows an example of the visual clues. We observe
that the information near the end of the prompt will have a more significant influence on the language
model output. As the tags T are usually more informative and the local extractions are noisier, we
input the visual clues with the order of local descriptions, caption, and tags.

To incorporate each local description, a naive way is to inject the coordinates of the bounding boxes
directly into the prompt. However, we find the current language models still lack the capability to
handle the inference task with numbers, especially in a zero-shot manner. Therefore, we reformat the
bounding boxes bℓk into plain language by describing its location and size. Specifically, we adopt
rule-based method to divide the locations into 9 classes {“upper left”, “upper middle”, “upper right”,
“left”, “middle”, “right”, “lower left”, “lower middle”, “lower right”}, and divide the sizes into 3
classes {“large”, “moderate-sized”, “small”}, and incorporate these descriptions into the prompt.

The other visual clues are inputted straightforwardly in the format as showed Figure 2. The prompt
is then fed into a large-scale language model to synthesize K candidate paragraphs {Ti}Ki=1 full of
descriptive details.

3.3 Candidate Selection
Finally, we use the vision-language model again, to select the candidate that aligns best with the
image,

S = argmax
Ti,i=1,··· ,K

⟨fv(I), ft(Ti)⟩. (5)

To further rule out the unrelated concepts in S, we filter the output again in sentence level. This is
because large language models sometimes have hallucination issues, i.e., it might generate unrelated
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sentences in the paragraphs. For example, a paragraph beginning with “A couple is hugging on the
beach.” is likely to be followed with “It’s a beautiful day and they’re enjoying the sun and each
other’s company.” even if there is no visual clue suggesting the weather. Therefore, we split it into
sentences (s1, s2, · · · , sU ), and use a threshold γ to remove the sentences with lower similarities,

T ∗ = (si|⟨fv(I), ft(si)⟩ > γ, i = 1, · · · , U). (6)

In this way, we obtain the final output T ∗.

4 Automatic Evaluation Metric: SPIPE

Figure 3: An example of the human-annotated graph and
the text extracted graph.

As indicated by Figure 1, the gener-
ated paragraphs of images can be very
flexible. This makes the n-gram based
metrics, e.g., BLEU (Papineni et al.,
2002), ROUGE (Lin, 2004), CIDEr
(Vedantam et al., 2015), METEOR
(Denkowski and Lavie, 2014), unsuit-
able for evaluating the generated text.
Instead, we focus on the semantic
propositional content. For example,
given an image with content “A man
sitting in front of a blue snowboard”, a
good evaluation metric for IPC should
evaluate whether each of the semantic
propositions is correct, namely, a). a
man is sitting; b). a man is in front
of a snowboard; c). the snowboard is
blue, instead of the exact words used in the text. To do so, SPICE (Anderson et al., 2016) extracts the
scene graphs (Johnson et al., 2015) from the generated texts and the reference texts, respectively, and
computes an F-score between the graphs. SPICE targets image caption tasks, where there are usually
multiple good references for each image, and the generation is less flexible. However, IPC tasks
usually only have one reference (Krause et al., 2017), which is not enough to evaluate the flexible
generation. Therefore, we propose to directly compare the scene graphs extracted from the generated
text to human-annotated graphs. Figure 3 shows an example of the generated graph from text and the
human-annotated graph for the image.

Specifically, a scene graph consists of the objects, the attributes of the objects, and the relationships
between the objects. To parse the generated text into a scene graph, we use a two-stage approach
following Anderson et al. (2016). First, we use the pretrained dependency parser (Klein and Manning,
2003) to establish the synthetic dependency between the words. Then we map from the dependency
trees to scene graphs using a rule-based system (Schuster et al., 2015). Given scene graphs extracted
from the text and the human-annotated graphs (Krishna et al., 2017), our metric computes an F-score
based on the synonym match2 Denkowski and Lavie (2014) between the two graphs among the
conjunction of three sets of concepts: (object), (object, attribute), and (object, relationship, subject).
Paying homage to Anderson et al. (2016), we name our approach SPIPE, Semantic Propositional
Image Paragraph Evaluation.

5 Empirical Analysis
The basic evaluation of the generated output should include three aspects:

1. Accuracy. Most of the contents appearing in the paragraph should be from the image;
2. Completeness. Most of the contents appearing in the image should be included in the paragraph;
3. Coherence. Paragraphs should be more than concatenating the sentences together.

We evaluate the accuracy and completeness of the generated descriptions using the proposed automatic
evaluation metric SPIPE, and do human evaluation to quantify the coherence. We include 500
randomly sampled outputs in output.html in the Supplement Materials for readers to perform a
qualitative study.

2Tuples are considered to be matched if their lemmatized word forms are equal or if they are found in the
same WordNet (Miller, 1995) synset.
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Table 1: Comparison between different methods using SPIPE metric on the test set of the Stanford
dataset (Krause et al., 2017).

Name F-score Precision Recall

Models

BLIP-large 7.6 38.0 4.4
Socratic model 3.2 13.9 1.9
BEST–general domain 8.8 15.3 6.6
BEST–VG domain 10.0 17.5 7.6

Oracle BEST with human extracted visual clues 22.9 32.8 19.0

Annotation Stanford dataset 17.3 27.7 14.0
Concatenation of VG captions 18.9 40.0 14.1

5.1 Model Specification

Models. We adopt Florence-H (Yuan et al., 2021) as the vision-language model, BLIP-large (Li et al.,
2022) finetuned on COCO captions dataset (Chen et al., 2015) as the captioner with its default setting,
and one-stage detector as a general object detector. To be more specific about the detector, we first
omit the category information from COCO (Chen et al., 2015) datatset and train Dynamic Head (Dai
et al., 2021) on the bounding boxes only to formulate a class-agnostic object detector. We then use
non-maximum suppression (NMS) to select the top 100 object proposals.

We use GPT-3 (Brown et al., 2020) Davinci-text-001 model as the language model. To enable
more difference in the generated candidates, we adopt temperature as 0.8, as a higher temperature
encourages the model to have more creative outputs. We adopt the frequency penalty as 0.5 and the
maximum number of tokens as 100.

Customized sets. To construct a general domain tag set, we collect the most frequently searched 400
thousand queries in Bing Search as the tags {ti}Ni=1. We adopt the attribute set of the Visual Genome
dataset (Krishna et al., 2017) as the attribute set {ai}Vi=1.

Parameters. We adopt number of tags M = 5, thresholds β = γ = 0.2, and number of candidates
K = 40. Among K = 40 candidates, half of them are generated without caption information while
the remaining half are with them. This is because we notice the caption model sometimes cannot
output good captions due to too small bounding boxes. We also remove the bounding boxes that are
smaller than 1/400 of the image sizes.

5.2 Automatic Evaluation
In this section, we use SPIPE to benchmark the accuracy and completeness of our framework. We
evaluate our framework on the test set of Stanford dataset (Krause et al., 2017). The dataset is
a subset of Visual Genome (VG) dataset3 (Krishna et al., 2017), and therefore we can obtain the
human-annotated scene graphs from VG as well. We compare the following frameworks.

BLIP (Li et al., 2022). This is the BLIP-large model finetuned on COCO captions dataset.

Socratic model (Zeng et al., 2022). We adopt the image captioning code4 without alternation.

BEST-general domain. This is our framework with the customized set listed above.

BEST-VG domain. With open-vocabulary capability, our framework can adapt to a specific domain.
Here, we replace the customized tag set {ti}Ni=1 for the local objects as the object set of VG datasets.

The results are shown in Table 1. Our general domain framework significantly outperforms the BLIP
model and the Socratic model. With the domain specified to VG, the performance is further boosted.

Figure 4 shows an example with a image cropped from the Socratic model paper (Zeng et al., 2022)
directly. We find that caption generation does not require the complex prompt used in Socratic model.
Our framework with only tagging information T can generate texts with a similar degree of detail.
See Appendix D for more discussion.

3We remark that the VG caption data is included in the pretraining data of BLIP model. Therefore we do not
claim our framework as a zero-shot method, despite that it can handle the images in the wild in a zero-shot way.

4https://github.com/google-research/google-research/tree/master/socraticmodels
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BEST: This image features a group of people standing under a tree with
pink blossoms. The people are all dressed in various types of clothing, and
some are carrying bags or backpacks. The tree is a sakura tree, and the
blossoms are in full bloom. There is a bench in the background, and the
ground is covered in fallen petals.
SM: People gather under a blossoming cherry tree, enjoying the beauty of
natural together.
BLIP: A group of people standing around a blue table.
BEST with only tags: The image is of people gathered in a park, looking
at cherry blossoms. The parks are full of people enjoying the festival and
the beautiful view.

Figure 4: An example cropped from Zeng et al. (2022) paper, with other outputs for comparison.
To evaluate the representation capability of our visual clues, we also compare it to a naive scene graph
generation method. We use the vision-language model to assign objects, attributes, and relationships
between the objects, using the object set, attribute set, and relationship set of VG. And then we
compare the generated scene graph to the human-annotated graph. The F-score is 0.3, with precision
0.8 and recall 0.2. We discuss more on why this does not work in Appendix D.

We also build an oracle model to see the limit of our framework. The oracle model in Table 1 uses the
ground truth objects with ground truth attributes to replace the corresponding concepts in the visual
clues of our framework. It significantly outperforms the human annotation, either from Stanford
dataset or from VG. This reveals the large potential of BEST with the development of object detectors.

5.3 Ablation Table 2: Ablation on each components. The metrics are
F-score (F), Precision (P), and Recall (R).

Name F P R

BEST-VG domain 10.0 17.5 7.6

Extraction with YOLOv5 9.0 19.0 6.3
Remove local information 8.0 14.4 6.0
Remove caption model c(·) 8.7 15.0 6.6
Input tags T only 5.9 10.7 4.4
Smaller language model (curie) 8.9 15.9 6.7
Weaker tagger (CLIP ViT-L/14) 7.8 16.4 5.6

We perform an ablation study to see how
each of the components contributes to
the performance. Especially, we consider
replacing the open-vocabulary object de-
tector with YOLO v5 (Jocher, 2020),
which is a closed-set detector trained
with COCO classes. Table 2 shows the
results. The performance of the YOLO
v5 alternation is competitive compared
to our general domain version. The pre-
cision is higher, which may be a conse-
quence that YOLO models tend to recog-
nize fewer objects (Zou et al., 2019). However, it is still inferior to our VG domain model.

5.4 Human Evaluation
To further evaluate our framework, we perform human evaluation. We first compare BEST to human
annotation. Specifically, we randomly sample 200 descriptions from the test set of the two sources.
For each assignment, we present one image and two corresponding descriptions, and ask human
evaluators to evaluate on accuracy, completeness, coherence, and ask an additional question “which
of the descriptions is written by human” for the humanlikeness aspect. They will choose one answer
from {Description 1, Description 2, Cannot determine}. For each assignment, we hire 5 workers
using the Amazon Mechanical Turk platform. More details can be found in Appendix E. As the
difference between the long texts can be subtle, we perform two statistical tests to see whether the
difference is statistically significant. Please refer to Appendix E.2 for the hypotheses.

Table 3 shows the results. There is no significant evidence (p value ≈ 0.5) showing human annotation
is better than BEST in terms of completeness and humanlikeness. However, BEST still falls behind
in terms of accuracy and coherence. The failure cases are usually because the BEST outputs might
contain small mistakes that cannot be easily filtered out, mostly from the hallucination of the language
model. We show more examples in Appendix C.

We then compare BEST to BLIP and the Socratic model using similar hypothesis tests. The results
show BEST are significantly better than BLIP and Socratic models under most of the metrics (p value
< 0.05). Note that here accuracy is defined slightly different than the precision used in Table 1: In
human evaluation, providing background information about concepts in the image is not viewed as
inaccurate, while in Table 1 it will hurt the precision.
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Table 3: Human evaluation. p-value 1 is with the binomial test, and p-value 2 is with Mann–Whitney
U test. The blue regions in the voted proportion section represent the proportion that the descriptions
from the first source are better than the second, while the orange ones represent the second are better
than the first. The 1.2% and 0.6% in the middle of row 4 and 12 represent “Cannot determine”.

Sources Criteria Voted proportion p-value 1 p-value 2

Anno. / BEST

Accuracy 61.0% 39.0% 2× 10−3 9× 10−6

Completeness 51.5% 48.5% 0.38 0.50

Coherence 59.7% 40.3% 5× 10−3 8× 10−4

Humanlikeness 54.7% 1.2% 44.2% 0.10 0.50

BEST / BLIP

Accuracy 57.2% 42.8% 0.03 3× 10−3

Completeness 73.6% 26.4% 2× 10−11 2× 10−28

Coherence 56.2% 43.8% 0.05 5× 10−3

Humanlikeness 58.3% 41.7% 9× 10−3 5× 10−4

BEST / Socratic

Accuracy 59.4% 40.6% 6× 10−3 7× 10−5

Completeness 71.3% 28.7% 2× 10−9 1× 10−24

Coherence 68.7% 31.3% 3× 10−7 2× 10−12

Humanlikeness 53.4% 0.6% 46.0% 0.18 0.35

6 Variants and Real-world Applications

The proposed framework opens up many creative real-world applications. For example, People with
vision deficiencies may not be able to view images easily. BEST can help convert it into precise and
comprehensive descriptions for general domain images.

Table 4: Finetune BLIP-large on different data.

Name F P R

No finetune 7.6 38.0 4.4
With Socratic generated data 3.9 17.5 2.3
With BEST generated data 11.6 23.1 8.2

Another example is the closed-loop training
of the large models. The large-scale vision-
language model and language model used in
BEST are trained on tremendous amounts of
data, and thus can memorize knowledge beyond
human capability. We can use it to automati-
cally annotate data, which is easy to scale up.
Furthermore, it can incorporate commonsense knowledge into the text naturally. For example, in the
second example of Figure 1, the text contains “This image captures the everyday life of Cubans, with
their traditional horse-drawn carts still in use.” This is because our tags contain “Cuba” and “buggy”,
and the language model knows traditional horse-drawn carts are still in use in Cuba. We finetune a
BLIP-large model on our BEST generated data. The training images are similar to Stanford dataset
(Krause et al., 2017), which is around 15 thousands. After finetuning, the F-score improves more
than 50%.

With small modifications, the proposed framework enables us to free human labor for even more
applications. To list a few examples,

Visual storytelling. As shown in Figure 5 (a), the framework can generate charming stories based on
the input image. To do so, we simply change the end of the prompt to be “Tell me a creative story:”.

Automatic ads generation: As shown in Figure 5 (b), with the framework, the merchants only need
to upload an image, and make small modifications to the generated advertisement as wanted. As
there is usually one product in an image, we adopt the number of input tags M = 1. We also change
the end of the prompt to be “Write a product description to sell in eBay or Amazon marketplace to
get lots of engagement:”.

Social media post. As shown in Figure 5 (c), the framework can be a social media bot, which may
alleviate the workload of internet celebrities. We change the end to be “Social media post:”.

Background generation. As shown in Figure 5 (d), the framework can also be used to provide some
background knowledge. To do so, we change the end of the prompt to be “Textbook text:”.
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(a)

As the Hogwarts Express made its way through the Scottish countryside,
a young wizard named Harry peered out the window at the stunning
Glenfinnan Viaduct. He had always dreamed of traveling on the venerable
steam train, and now he was finally doing it! The locomotive chugged
along, its great iron wheels clanking over the rails, as passengers in
every car gazed in wonder at the beautiful scenery.

(b)

Looking for a stylish and practical coat to keep you warm this winter?
Look no further than our long parka! Made from high quality beige
fabric, this coat is sure to keep you warm and comfortable all winter
long. It features a stylish and flattering fit, as well as a warm and cozy
hood, making it perfect for cold days out.

(c) What do you think of this Chevy Impala Lowrider? I spotted it at the
Sema Car Show and it’s definitely a head-turner!

(d)

A tench is a fish that lives in fresh water. It is a common fish that can be
found in many lakes and rivers. The tench is a large fish, and can grow
to be quite large. It has a greenish-brown body, and is covered in scales.
The tench feeds on insects, plants, and small fish.

(e)

The image is of a cover of The Economist magazine. The headline is
“March of the machines”. The cover features a drawing of the Maschi-
nenmensch, or machine man, in the center. The background is art deco in
style. This image represents the rise of robots and artificial intelligence,
as they become increasingly important in our society.

Figure 5: Examples for real-world applications with variants of the proposed framework.

Applications with scene texts. As shown in Figure 5 (e), when the input image has rich scene text,
we plug in an OCR (Optical Character Recognition) model (Farley, 2022), and insert the OCR output
into the prompts with prefix “This image contains text:” before the captions.

7 Applications to Visual Question Answering

The visual clues is a faithful and detailed description of the image, which can be used to answer visual
questions leveraging the question answering ability of language models. Specifically, we replaced the
ending of the prompt to be the question, e.g., we replace the “Describe the image in detail:” by “What
is the man holding?”. We benchmark its performance in two Visual Question Answering (VQA)
datasets – we use the GQA (Hudson and Manning, 2019) dataset for probing the capability of scene
understanding, and the OK-VQA (Marino et al., 2019) dataset for the awareness of the commonsense
knowledge.

Since no training is performed, BEST generated answer usually have different formatting from the
ground truth, causing difficulty in evaluation. For example, for question “Is the ground blue or
brown?”, the ground truth answer in GQA is “brown”, but the BEST answer is “The ground in
the image is brown.”. Therefore, we use GPT-3 model again to reformat the answer. We refer this
evaluation method as Generative. Furthermore, for the GQA dataset, the answers in the training set
and test set have a large overlap. So we adopt the nearest embedding from the training answers as the
final answer, and refer the method as Discriminative. More details can be found in Appendix F.

Table 5 shows the evaluation results. BEST outperforms Socratic models significantly, suggesting our
visual clues are better image representations. We also benchmark the accuracy on BLIP (finetuned on
VQA v2 dataset (Goyal et al., 2017) and Visual Genome dataset (Krishna et al., 2017)) for reference,
which is not directly comparable since its pretrain and finetune datasets have a significant overlap
with the evaluation datasets. Figure 6 and Figure 7 show some success and failure cases of from the
VQA datasets.
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Table 5: The VQA accuracy on GQA and OK-VQA datasets.
Method Evaluation GQA OK-VQA

Socratic Generative 24.95 16.50
Discriminative 26.89 –

Visual Clues Generative 37.00 28.89
Discriminative 39.93 –

BLIP Exact Match 47.58 43.62

Question:What mate-
rial is the crosswalk in
front of the stores?
GT: Concrete
BEST: Concrete

Question: What ingredient
is missing from the picture to
make a pb and j sandwich?
GT: Jelly
BEST: Jelly

Figure 6: Examples of the success cases from the GQA (left) and the OK-VQA (right).

8 Limitations and Further Improvements

Prompt tuning. As suggested in Brown et al. (2020), language models can infer better when they are
shown examples in the prompt. In our experiments, however, this results in model directly copying
sentence pieces from example paragraphs, introducing unnecessary noise. We suspect this prompt
tuning approach may work better if the input examples are similar to the generated one. This may be
a promising direction as we can better control writing style.

Visual clues as a scene graph. Our visual clue extraction process is motivated by the fact that an
image can be comprehensively represented by a scene graph (Johnson et al., 2015). As mentioned in
Section 4, a scene graph contains objects, attributes of objects, and the relationship between objects.
In BEST, however, we do not include the relationships, as we observe in our initial study that the
current vision-language models, although powerful, are not good at inferring relationships (echoing
findings from Thrush et al. (2022)). Yet, relationships among the objects are important components
of an image. This can be plugged into our framework if better vision-language models are developed.

A well-trained filter model. We find that the current filtering strategy (6) is not immune to certain
types of mistakes. As also mentioned in Thrush et al. (2022), the vision-language model cannot
accurately associate attributes to their corresponding objects. For example, in the second image
of Figure 1, if there is a sentence “The man wears a black shirt.”, it will lead to a high image-text
relevance score, since there is a man, a shirt, and dark bush in the image. To handle this issue, we
crop the image into local regions and pair each region with an attribute. Still, if it is the language
model who hallucinates new attributes and the attributes happen to be in the image, these captions
cannot be filtered out. We suspect an adversarially trained filter is needed to perform the task.

Broader Societal Impact. BEST inherits the risks of large vision and language models. BEST
can potentially output offensive language and propagate social biases and stereotypes. For real
applications, we can use rule-based methods or train a specific filter to filter out the offensive text.
This is an area that we plan to explore to gain more insights further.

Question:What place
is pictured?
GT: Shore
BEST: Africa

Question: Where in the world
would you find this structure?
GT: California
BEST: Los Angeles, Califor-
nia

Figure 7: Examples of the failure cases from the GQA (left) and the OK-VQA (right).
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A More Examples of Generated Paragraphs and Visual Clues

BEST: This image features a doughnut and a cup of coffee on a table. The
doughnut is chocolate and glazed and the coffee is black. There is also a
daypack visible in the image, as well as some straps that may be used to
hold the backpack in place.
SM: Home office sink with book and coffee.
BLIP: A doughnut and a cup of coffee on a table.
BEST with only tags: This image is of a coffee and donut in a daypack.
The donut is labelled the "donut of shame" as it is a bit battered and not as
fresh looking as the coffee.
Human Annotation: A table has some items on it. The table is made of
wood. There is a donut on a plate. The donut is made of chocolate. The
plate is white. The plate is round. There is a cup of coffee on the table. The
cup is white with a blue rim. The is a backpack by the cup and plate. The
backpack is brown and white. There is a book on the backpack. The book is
a paperback. The table is by a wall. The table has a chair by it.

BEST: This image shows a train traveling over a bridge over a street in
Las Vegas. The train is a monorail, and is traveling next to tall buildings
and the Stratosphere casino. There is a blinking red light on the train, and a
blinking green light on the bridge.
SM: A photo of an indoor parking garage.
BLIP: A train traveling over a bridge over a street.
BEST with only tags: This image is of the Las Vegas Monorail. It is a high-
speed, driverless railway system that runs on a single beam. The Monorail
connects the Las Vegas Strip to the Las Vegas Convention Center and other
major hotels, including the Stratosphere, MGM Grand, and Sahara.
Human Annotation: There are two skyscrapers. There is also a train going
around a track above the road. The traffic lights are lit to red and green.
There are palm trees to the left.

BEST: This image captures a surfer performing a cutback maneuver at the
Superbank surf competition. The surfer is positioned in the middle of the
frame and is relatively small in comparison to the surrounding waves. The
waves are large and crashing, providing an impressive backdrop for the
surfing action.
SM: A person is surfing on a wave at a medina.
BLIP: A man riding a wave on top of a surfboard.
BEST with only tags: This image captures a surfer cutting back in a
competition at the Superbank. The surfer is Bruna Surfistinha and the
competition is the Chris Ward Surf Invitational. The waves are huge and the
surfer is doing a great job of carving through them.
Human Annotation: A man is in a black wetsuit. The man is riding a white
surfboard. There is a large wave in the water the man is surfing on.

Figure 8: Examples of generated image paragraph.
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Prompt: Objects in this image:
a donut on a plate next to a cup of coffee. coffee and donut, is at middle of
the image and is large in the image. Attribute: donut
a donut on a plate next to a cup of coffee. coffee and donut, is at middle of
the image and is large in the image. Attribute: doughnut
a donut on a plate next to a cup of coffee. coffee and donut, is at lower left
of the image and is moderate-sized in the image. Attribute: chocolate glazed
Caption:
a doughnut and a cup of coffee on a table
Tags:
This image is about coffee and donuts, daypack, the donut of shame, dohnut,
randys donuts
Describe this image in detail:

Prompt: Objects in this image:
a train traveling through a city next to tall buildings. monorail, is at middle
of the image and is moderate-sized in the image. Attribute: monorail
a black and white photo of a clock. golden sword, is at lower middle of the
image and is small in the image. Attribute: gold-tipped
Caption:
a train traveling over a bridge over a street
Tags:
This image is about las vegas monorail, las vegas metro, monorail, high
roller stratosphere, high roller
Describe this image in detail:

Prompt: Objects in this image:
a dog is sitting under an umbrella in the snow. leg on surfboard, is at middle
of the image and is small in the image. Attribute: wake boarding
a man riding a wave on top of a surfboard. black surfers, is at middle of the
image and is small in the image. Attribute: concentrated surfing
a man riding a wave on top of a surfboard. black surfers, is at middle of the
image and is moderate-sized in the image. Attribute: concentrated surfing
a man holding a surfboard on top of a wave. on surfboard, is at middle of
the image and is small in the image. Attribute: surfboarding
a man riding a wave on top of a surfboard. man on surfboard, is at middle
of the image and is small in the image. Attribute: concentrated surfing
Caption:
a man riding a wave on top of a surfboard
Tags:
This image is about bruna surfistinha, chris ward surfer, superbank, cutback,
surf competition
Describe this image in detail:

Figure 9: Examples of generated prompts of images in Figure 8. We can see the prompts may contain
minor errors. But language model tends to ignore the concepts that are too irrelevant to the scene.
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BEST: This image shows a kitchen with white appliances and wooden
cabinets. The stove is in the middle of the image and the refrigerator is on
the right. There is also a sink on the left.
SM: A photo of a kitchen, with a stove, kitchen range, and range hood.
BLIP: A kitchen with white appliances and wooden cabinets.
BEST with only tags: This image is of a kitchen that has been remodeled.
It is a galley style kitchen with an oak cabinet. There is a sink, stove, and
refrigerator in the kitchen. The countertops are granite and the flooring is
wood.
Human Annotation: A kitchen that has a brown wooden floor,wooden
brown cabinets with a white stove and white refrigerator. the sink is empty
and clean along with the counter which is white in color with a window
above the sink which has brown blinds.

BEST: This image is of a group of people who appear to be waiting to
enter a running room. The people are standing on a sidewalk and most are
wearing athletic clothing. In the background, there is a yellow school bus
parked on the side of the road.
SM: Runners in a fastfood restaurant.
BLIP: A group of people standing outside of a running room.
BEST with only tags: This image is of a marathon coach and two runners.
The marathon coach is giving instructions to the runners and they are getting
ready to run. There is a banner in the background that says "Run Around".
Human Annotation: A store named the Running Room is to the left of the
road. A yellow school bus is parked next to the store. There are people in
running clothes lined up the side of the building. Large windows surround
the first level of the store. Some bikes are leaned up against the front of the
building. There are clouds in the sky and electrical wires are on poles above
the road.

BEST: This image is a red fire hydrant that is sitting on the side of the road.
The fire hydrant has a black hat on top of it and it is made out of metal.
The hydrant is red and the hat is black. The hat might be used to keep the
hydrant from freezing in the winter.
SM: The fire hydrant stands out against the snowy background.
BLIP: A red fire hydrant sitting on the side of a road.
BEST with only tags: This image shows a firefighter in front of a fire
hydrant. The firefighter is wearing a fire hat and has a woodford hydrant.
The freeze proof hydrant is behind the woodford hydrant.
Human Annotation: A red fire hydrant with a white top and a black knit
cap on top of it sits on a sidewalk at the side of a parking lot. The hydrant
is casting a shadow on the sidewalk where leaves are scattered around it.
There is a manhole cover a bit down from the hydrant. Behind the manhole
cover is a small area with small green shrubs and mostly covered by leaves.
At the end of the sidewalk are rows of cars with a store in the far back. A
couple of people are near their cars in the parking lot. At the end of one
row of cars is a wooden fence with a brick building behind it.

Figure 10: Examples of generated image paragraph.
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BEST: This image shows a group of people gathered around luggage carts
at an airport. There is a mix of different types of luggage, including suitcases,
backpacks, and duffel bags. There are also a few people in the image who
are not carrying any luggage.
SM: People waiting in an airport terminal.
BLIP: A group of people standing around carts with luggage.
BEST with only tags: The image shows several people waiting in a line at
an airport baggage claim. The airport is likely in China, as both Pudong
and Shenzhen airports are located there. Beijing airport is also located in
China. All three airports are major international hubs, with flights arriving
from all over the world.
Human Annotation: There are people standing in a room. There are signs
on the walls behind them. There are three scooters that have luggage on top
of them in front of the people.

BEST: This black and white photo shows an old train station that is now
abandoned. The train itself looks quite old and is in the middle of the image,
taking up most of the space. There are other objects in the image such as a
funicular and cog railroad, but the old train is the main focus.
SM: Abandoned railcar at a forgotten railway platform.
BLIP: A black and white photo of an old train.
BEST with only tags: This image features an abandoned train station.
The station is located in the canfranc international railway station, and is
part of the durango and silverton narrow gauge railroad. The funiculaire
can also be seen in the background, as well as the cog railroad.
Human Annotation: A worn wooden building is on the side of a set of
train tracks. The building has many windows with screens over the windows.
Many of the screens are torn or missing. The paint on the building is severely
thinned and peeling. A small foliage bush is at the front of the building. Tall
mountains are in the far distance. A large metal structure is suspended in
the air above the building and the train tracks.

BEST: This image features a group of people, all of whom are standing on
a tennis court. The people in the image are all dressed in appropriate tennis
gear, and each is holding a racquet of some kind. In the background, there
is a fence and beyond that, some trees.
SM: A group of people enjoying a game of tennis.
BLIP: A group of people standing on top of a tennis court.
BEST with only tags: This image features the Bollettieri Tennis Academy,
which is a well-known junior tennis training center. The academy is situated
in Bradenton, Florida and has produced many top tennis players, such as
Andre Agassi, Monica Seles, and Jim Courier. The academy has a kids’
court that is visible in this image, as well as a grand slam tennis court in
the background.
Human Annotation: A group of kids and teenagers are posing for a picture
on a tennis court. An adult instructor is standing at the far right of the kids.
A net is behind them and the court ground is dark green with white painted
lines. There are tennis balls on the ground in front of the kneeling kids. A
chain link fence is behind the court and a group of trees is in the background.
Everyone is wearing shorts, t-shirts and sneakers.

Figure 11: More examples of generated image paragraph.
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BEST: This image is of a kitchen with white cabinets and a sink. The kitchen
has a retro feel to it, with the white cabinets and old-fashioned sink. There is
a small amount of light in the image, coming from what may be a window in
the upper left corner of the photograph. The rest of the image is fairly dark,
with only a small amount of light illuminating the countertop and floor.
SM: A person in a kitchen, cooking food on a stove.
BLIP: A kitchen with white cabinets and a sink.
BEST with only tags: This image is of a retro kitchen in the night. It is a
small, first kitchen with white cabinets and appliances. There is a light over
the sink and a window with a curtain.
Human Annotation: White cabinets are in a kitchen. There is a window
above the sink with white curtains. There is a white microwave on the
counter.

BEST: This is a black and white photo of a toilet. The toilet is white and it
looks like it is sitting outside of a building next to a bush.
SM: A photo of a toilet.
BLIP: A toilet sitting outside of a building next to a bush.
BEST with only tags: This image is of a toilet throne. It is a Universal
Rundle toilet with a Portland Loo in the background. The American Standard
toilet is to the right of the Portland Loo. The Toto Drake is to the right of
the American Standard toilet.
Human Annotation: A white toilet with no lid is sitting outside of a brick
building on the concrete ground. The toilet is white and is placed against
the brick wall of a building. It is in a corner. A tree is on one side of the
toilet. A window is in the wall just above the toilet. There are cracks in the
concrete on the ground. A door with a doormat is beside the tree.

BEST: This image captures the traffic on the Subic-Clark-Tarlac Express-
way in the Klang Valley region of Malaysia. The expressway is a 4-lane,
controlled-access highway that connects the two major metropolitan areas
of the country. The image shows several cars and trucks travelling on the
highway, as well as an ambulance and a police motorcycle.
SM: A divided highway with many cars and people.
BLIP: A busy city street filled with lots of traffic.
BEST with only tags: This image is of the Tarlac-Pangasinan-La Union
Expressway (TPLEX), a toll expressway in the Philippines. The expressway
is seen here in the Klang Valley area of Selangor, Malaysia, and is crowded
with cars and carreolas (two-wheeled carts).
Human Annotation: This is a photo of a busy roadway. Many different
vehicles can be seen on the road. A long narrow grass strip is separating
the different sides of the roads. Tall lamp poles are lining the roadway. A
large blue and white sign is standing on the left side of the roadway. Tall
green trees and a long steep hill can be seen in the background of the photo.

Figure 12: More examples of generated image paragraph.
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B Other Automatic Evaluation Metrics

In Table 6 we compare different zero-shot methods using the metrics inherit from image captioning
tasks. We can see that our framework BEST still performs the best.

Table 6: Comparison between different methods using captioning metrics on the test set of the
Stanford dataset (Krause et al., 2017).

Name Bleu-1 Bleu-2 Bleu-3 Bleu-4 METEOR ROUGE-L CIDEr

BLIP-large 0.4 0.2 0.1 0.1 5.4 15.1 0.6
Socratic model 0.6 0.2 0.1 0.0 3.0 9.3 0.5
BEST–general domain 30.9 15.9 8.1 4.2 11.9 23.7 11.3
BEST–VG domain 31.8 16.5 8.5 4.4 12.5 24.3 11.9

C Negative Examples

Figure 13 shows a few failure cases of BEST generation, which may highlight the direction for further
improvement. The first example demonstrates two issues. The first one is the vision-language model
cannot accurately match attributes to the objects, as we discussed in Section 8. The second issue is
the language model sometimes repeat the input sentences. This issue will be alleviated if we adopt
better language models, e.g., replacing Davinci-text-001 by its upgraded version Davinci-text-002.

The second example suggests the Optical Character Recognition (OCR) capability of the vision-
language model is not well-trained. So if for datasets with images involving text photos, we should
explicitly plug in an OCR model.

The third example shows the current VL model cannot differentiate the relationship between the
objects. This may be because the training loss, e.g., contrastive loss, does not require the model to
differentiate the complex relationships – only recognizing the objects is enough.

In this image, we see a young boy riding a bicycle with a back-
pack on. To the right, we see another boy skateboarding. In the
background, we see people walking and running. This image is
about streetsurfing, street surfing, street sesh, skatejoring, and
longboarding.

This image captures a homeless man taking a much-needed nap
in the middle of the day. The bright red fire hydrant is a stark
contrast to his muted red clothing, and stands out in the image.
The man is lying on his back, with his arms and legs sprawled out,
and appears to be asleep. He is surrounded by empty bottles and
cans, as well as a few pieces of trash. There is an inscription on
the wall behind him that reads "Siesta".

This image features Andy Roddick serving during the US Open
Tennis Championships in 2009. Roddick is a former world number
one tennis player and is known for his powerful serve. In the im-
age, he is shown hitting a forehand shot. The ball is seen speeding
towards the opponent’s court, and the racquet appears to be at
the top of its arc. The umpire can be seen in the background, and
the top of the racquet is visible in the foreground.

Figure 13: Negative examples of generated image paragraph.
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D More Details on Baselines

Scene Graph Generation Baseline As mentioned earlier, to evaluate the representation capability
of our visual clues, we also compare it to a naive scene graph generation method. We use the
vision-language model to assign objects, attributes, and relationships between the objects, using the
object set, attribute set, and relationship set of VG. Algorithm 1 shows the complete scene graph
generation algorithm. And then we compare the generated scene graph to the human-annotated graph.

Algorithm 1 Algorithm for the Scene Graph Generation Baseline

Select the bounding boxes in the same way as BEST
Associate each of the bounding boxes with one object name and one attribute
for each pair of bounding boxes do

Compute the minimum bounding box covering the union of the two bounding boxes
Assign a relationship to the minimum bounding box using the open-vocabulary tagger
Choose from (object 1, relationship, object 2) and (object 2, relationship, object 1) with tagger
Add the chosen relationship with its object and subject to the output

end for

The F-score is 0.3, with precision 0.8 and recall 0.2. We show an example of the output graphs in
Figure 14. The particularly bad performance is majorly due to the sets from VG are noisy, so the
synonym match between nodes yields very low score.

Why Socratic model cannot perform well? The major issue of Socratic model is that its prompt
contains inaccurate or useless information, and is not informative enough. Its prompt is

“I am an intelligent image captioning bot. This image is a {img_type}. There {num_people}. I think
this photo was taken at a {place1}, {place2}, or {place3}. I think there might be a {object1}, {object2},
{object3},... in this {img_type}. A creative caption I can generate to describe this image is:”

There are three issues with this prompt:

1. Useless information. We find a much shorter prompt, e.g., “This is a {img_type} taken at
{place1} containing {object1}, {object2}, {object3}. . . Generate a caption:” has comparable
or even better performance as the one above.

2. Inaccurate information. As we discussed in Section 7, VL models trained with contrastive
loss cannot differentiate some details in the sentence. We observe that the num_people
obtained by Socratic model is basically a random guess.

3. Lacking information. The img_type only contains four categories, photo, cartoon, sketch,
painting. The object list is a list of common objects, not as comprehensive as ours. The
place information usually redundant given the object information.

In contrast, our prompt is much more informative and well-constructed.

Comparison with traditional IPC methods: It is unfair to compare methods with complete training
data and training pipeline to our nearly zero-shot framework. Not only because the training cost is
not comparable, but also for the trained models, the language style is aligned with the test data. For
example, human annotators without domain specific knowledge tend to say, “The man is riding a
white surfboard”, while our framework outputs “This image captures a surfer performing a cutback
maneuver”. The difference in language styles significantly lowers the scores of our framework. As a
matter of fact, our BEST scores in Table 6 are not as good as IPC methods. For example, the scores
for paper Melas-Kyriazi et al. (2018) are BLEU-4 10.58, METEOR 17.86, CIDEr 30.63.

As a matter of fact, our framework and traditional IPC methods are essentially different pipelines.
Our framework has unique advantages that traditional IPC methods do not have:

1. Easier implementation. Our framework involves no training and no data for training.
Therefore, the cost of building such a pipeline is much lower than traditional frameworks.
Traditionally to build a machine learning application, researchers need to 1). Collect a
dataset; 2). Select a training framework; 3). Train the model with repeated hyper-parameter
tuning. And then we can have a model that is specifically designed for such an application.
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Model Generation
Objects: plastic cups, woman eats pizza, spinach on pizza, enjoying a
sandwich, eating contest, plastic cup, ribs, case is brown, griddle, foot
pedal, parsley on plate
Attributes:
(object: plastic cups, attr: solo cup),
(object: woman eats pizza, attr: eating italian),
(object: spinach on pizza, attr: looking at pizza),
(object: enjoying a sandwich, attr: getting her lunch),
(object: plastic cup, attr: solo cup),
(object: ribs, attr: bacon) ...
Relationships:
(object: woman eats pizza, subject: plastic cups, rel: eating pizza),
(object: spinach on pizza, subject: plastic cups, rel: eating pizza),
(object: plastic cups, subject: enjoying a sandwich, rel: eating pizza),
(object: case is brown, subject: plastic cups, rel: cup on),
(object: griddle, subject: plastic cups, rel: table has items)...

Human Annotation
Objects: "bracelet", "glasses", "face", "cup", "phone", "table", "pizza",
"hand", "tray", "neon sign", "wall", "napkin holder", "picture", "paper
plate", "women", "pizza", "cups", "paper napkins", "woman", "tanktop",
"woman", "blue shirt", "napkin", "plate", "some food", "advertisement",
"cell phone", "short hair", "white napkins", "toppings", "ale", "plate and
napkin", "dark hair", "wrist"
Attributes:
(object: bracelet, attr: blue),
(object: glasses, attr: black),
(object: cup, attr: plastic),
(object: pizza, attr: large),
(object: cell phone, attr: black) ...
Relationships:
(object: face, subject: glasses, rel: on),
(object: table, subject: phone, rel: on),
(object: hand, subject: pizza, rel: in),
(object: table, subject: tray, rel: on),
(object: wall, subject: picture, rel: on)...

Figure 14: One examples of the generated scene graphs.

If the business need is adjusted, the process needs to be repeated to accommodate the shifted
application domain.
In contrast, what we propose is a light-weighted solution: The pretrained models are either
available via API service (e.g., GPT3, captioner), or will be available soon (e.g., Florence
tagger). To build our framework, researchers only need to plug in the APIs. As suggested by
Figure 5, it can handle various scenarios with only minor modification.
One may argue that some applications require fast inference, which our large pretrained
model cannot handle. Yet, using the synthetic data generated by BEST (around 20K),
we have successfully replaced GPT-3 by a DeBERTa-large model (He et al., 2020) with
comparable performance. Generating data using BEST is faster and more stable than
recruiting human laborers.

2. Versatile to different application scenarios, as suggested by Figure 5.

3. Robust to domain shift. As suggested Figure 1 of Melas-Kyriazi et al. (2018), for a black
and white image which the model is not trained on, the inference of the well-trained model
does not make sense. One example is:
“A man is skateboarding on a skateboard. He is wearing a black shirt and black pants. He is
wearing a black cap and a black hat. A man is wearing a black cap and a black shirt. A
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Figure 15: An example screenshots given to participants.

man is wearing a black shirt and a black pants. A man is wearing a black shirt and a black
pants. A man is wearing a black shirt and a black pants. . . . . . A man is wearing a black
shirt and a black pants.”
Yet the man actually wears a white hat. This is a common issue of models trained on small
language datasets. In comparison, our Figure 11 and 12 include some black and white
examples.

4. Better language quality. The large language models are trained on tremendous amount of
data, leading to much better capability in text generation. Figure 8, 10, 11, and 12 show a
few examples of the smooth, coherent paragraphs. In contrast, here is a successful example
from Figure 1 of Melas-Kyriazi et al. (2018):
“Two people are sitting on a bench. The elephant is sitting on the dirt. The man is sitting on
top of the elephant. The woman is wearing a white shirt. The man is wearing a black shirt.
There is a tree behind the elephant. There are trees on the ground. There are trees in the
background.”
We cannot even tell how many people are there according to the text (as a matter of fact,
there are two), due to lack of coherence among the sentences.

5. Awareness of commonsense knowledge. As suggested by Figure 1, our framework output
background knowledge like “This image captures the everyday life of Cubans, with their tra-
ditional horse-drawn carts still in use”, which smoothly complete the paragraph. Traditional
IPC methods cannot have enough training data to enable such capability.

E More Details on Human Evaluation

E.1 Instructions

Figure 15 shows an example screenshot we give to the human evaluator. For each metric, we ask
different questions, and give different instructions.

Accuracy:

• Question:
Which of the descriptions has less mistakes describing the image?

• Detailed instruction:
We would like to evaluate which one of the two image descriptions is more accurate.
Definition of “accurate”:
Accurate means all concepts appeared in the text are from the image. It is OK to include
background knowledge for the objects appeared in the image. It is not OK to include
irrelevant objects. For example, if a family is celebrating Christmas eve, it is not OK to
say it is a sunny day, but it is OK to say celebrating Christmas is a tradition in western
countries.
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Comprehensive:

• Question:
Which description for this image includes more details?

• Detailed instruction:
We would like to evaluate which one of the two image descriptions is more comprehensive.
Definition of “comprehensive”:
Comprehensive means all concepts appeared in the image are included in the description.

Coherent:

• Question:
For the two image descriptions, which one is more coherent?

• Detailed instruction:
We would like to evaluate which one of the two image descriptions is more coherent.
Definition of “coherent”:
Coherence describes the way that the elements in our paragraphs hang together to produce
meaning. The sentences should be logically connected, instead of just simply concatenating
individual sentences together.
The coherence also include the coherence between the text and image. An image description
can include related objects that is not clearly visible in the image, but should not include
objects that violates the scene. For example, if the image is a family celebrating Christmas
in door, and the background is blurred, it is OK to say there are Christmas decorations
behind, but it is not OK to say there is a bird flying in the sky.

Humanlikeness:

• Question:
Which description for this image is written by human?

• Detailed instruction:
For the two image descriptions, which one is written by human?
Only one of the two descriptions is written by human, the other one is from a machine
learning model.

E.2 Hypothesis Tests

First, we adopt the voted results of the 5 workers, and perform a binomial test, treating the 200
outcomes as i.i.d samples. The null hypothesis here is

Given an image, the probability that human annotation is better than BEST output is 0.5.

To further utilize the detailed outcomes for each image, we perform a Mann–Whitney U test with the
null hypothesis as

The number of people that think (the human annotation is better than the BEST output) is similar to
the number of people that think (the BEST output is better than the human annotation).

F More Details on VQA Evaluation

For generative evaluation, we show two made-up examples to GPT-3, to let it know the level of
detailness we are looking for. For example, for the question “Is the ground blue or brown?” and the
BEST answer “The ground in the image is brown.”, we feed the following text into GPT-3:

Question: What is this bird called?

Long answer: The bird in this image is called a cockatoo.

Short answer: Cockatoo.
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Question: Is the chair on the left or on the right of the desk?

Long answer: The chair is on the left of the desk.

Short answer: Left.

Question: Is the ground blue or brown?

Long answer: The ground in the image is brown.

Short answer:

The two examples are fixed for all the evaluations.

For discriminative evaluation, we collect the possible answers {at
i} in the training set, and encode

them with text encoder ft(·). We then encode the generative short answer ag generated as above, and
adopt the answer with highest similarity as the final answer af,

af = argmax
at
i

⟨ft(a
t
i), ft(a

g).
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