
Appendix

A Additional table

Table 2 presents the numerical results for the ablation study in Section 4.2.

Table 2: Normalized returns for experiments on the D4RL tasks. Mean and standard deviation across five random
seeds are reported. NW denotes the No-Weights variant in Section 4.2 (a). VPM, GenDICE, and DualDICE
denote the variants for the MIW estimation in Section 4.2 (b). WPR denotes the Weighted Policy Regularizer
variant in Section 4.2 (c). The results of our main method in Section 4.1 is reported in column Main. Here,
“hcheetah” denotes “halfcheetah”, “med” denotes “medium”, “rep” denotes “replay”, and “exp” denotes “expert”.

Task Name NW VPM GenDICE DualDICE WPR Main

maze2d-umaze 31.3 ± 25.3 57.8 ± 29.1 46.2 ± 23.1 42.6 ± 19.4 14.4 ± 21.4 55.8 ± 3.9

maze2d-med 85.4 ± 28.6 91.1 ± 54.3 101.3 ± 50.3 74.8 ± 42.6 5.0 ± 8.3 107.2 ± 45.0

maze2d-large 131.4 ± 63.0 150.2 ± 64.3 136.1 ± 63.0 149.2 ± 32.7 104.3 ± 48.1 180.0 ± 39.3

Average Maze2D 82.7 99.7 94.5 88.9 41.2 114.3

hcheetah-med 51.5 ± 0.3 50.8 ± 0.7 33.5 ± 18.8 3.5 ± 1.8 50.1 ± 0.4 51.7 ± 0.4

walker2d-med 77.3 ± 6.0 63.7 ± 28.3 78.7 ± 5.3 79.7 ± 4.7 41.8 ± 18.9 83.1 ± 1.8

hopper-med 55.0 ± 8.9 52.3 ± 6.6 56.5 ± 11.3 51.6 ± 9.1 52.5 ± 21.6 58.9 ± 7.9

hcheetah-med-rep 44.6 ± 0.3 44.3 ± 0.4 43.8 ± 1.2 34.9 ± 18.1 44.4 ± 0.4 44.6 ± 0.7

walker2d-med-rep 74.6 ± 4.2 73.5 ± 7.3 37.8 ± 32.6 66.9 ± 29.6 55.8 ± 14.3 81.5 ± 3.0

hopper-med-rep 75.4 ± 19.1 16.6 ± 20.0 87.7 ± 16.6 79.7 ± 19.8 40.1 ± 11.1 91.1 ± 9.5

hcheetah-med-exp 88.0 ± 5.1 54.0 ± 43.2 79.0 ± 18.6 19.4 ± 35.9 80.1 ± 5.9 90.2 ± 2.0

walker2d-med-exp 99.1 ± 7.9 90.3 ± 30.2 68.3 ± 32.3 103.9 ± 4.3 62.9 ± 17.6 107.7 ± 2.1

hopper-med-exp 41.7 ± 16.9 69.8 ± 9.6 54.7 ± 22.5 56.2 ± 26.5 11.3 ± 7.6 76.0 ± 15.7

Average MuJoCo 67.5 57.3 60.0 55.1 48.8 76.1

pen-human 11.4 ± 8.6 13.8 ± 12.1 15.7 ± 9.7 16.4 ± 11.9 24.8 ± 14.7 20.6 ± 10.7

pen-cloned 35.3 ± 15.7 39.5 ± 15.8 34.4 ± 17.2 37.3 ± 16.4 35.5 ± 13.8 57.4 ± 19.2

pen-exp 129.6 ± 15.4 98.1 ± 33.7 128.6 ± 16.2 130.4 ± 16.0 102.0 ± 36.3 138.3 ± 6.6

door-exp 73.5 ± 30.9 39.3 ± 45.2 83.1 ± 25.9 68.0 ± 35.0 20.7 ± 16.4 96.3 ± 9.8

Average Adroit 62.4 47.7 65.4 63.0 45.8 78.2

Average All 69.1 62.8 67.8 63.4 46.6 83.8

Table 3 provides additional ablation study on several building blocks of our main method. In Table 3,
we test the following variants to demonstrate the effectiveness of our framework.

• Main denotes the results of our main method in Section 4.1.
• NW denotes the No-Weights variant in Section 4.2 (a).
• WPR denotes the Weighted Policy Regularizer variant in Section 4.2 (c).
• KL-Dual denotes the variant changing the JSD regularizer in Main to the
KL(P ∗(s′ | s, a)πb(a

′ | s′) || P̂ (s′ | s, a)π(a′ | s′)) term in Theorem 1, where (s, a) ∼ dP
∗

πb,γ
and

the KL term is estimated via the dual representation KL(p || q) = supT
{
Ep[T]− log(Eq[e

T])
}

[34].
• KL-Dual+WPR denotes the variant changing the JSD regularizer in Main to the weighted KL

term Dπ(P
∗, P̂) in Theorem 1.

• Gaussian denotes the variant changing the implicit policy in Main to the Gaussian policy.
• No Reg. denotes the variant removing the proposed regularizer in the policy learning.
• No model-rollout denotes the variant of no rollout data in policy learning.
• Rew. Test denotes the variant of using the estimated reward function as the test function when

training the MIW ω.

18

Table 3: Normalized returns for experiments on the D4RL tasks. Mean and standard deviation across five random
seeds are reported.
Main denotes the results of our main method in Section 4.1. NW denotes the No-Weights variant in Section 4.2
(a). WPR denotes the Weighted Policy Regularizer variant in Section 4.2 (c). KL-Dual denotes the variant
changing the JSD regularizer in Main to the KL term in Theorem 1. KL-Dual+WPR denotes the variant
changing the JSD regularizer in Main to the weighted KL term Dπ(P

∗, P̂) in Theorem 1. Gaussian denotes
the variant changing the implicit policy in Main to the Gaussian policy. No Reg. denotes the variant removing
the proposed regularizer in the policy learning. No model-rollout denotes the variant of no rollout data in policy
learning. Rew. Test denotes the variant of using the estimated reward function as the test function when training
the MIW ω. Here, “hcheetah” denotes “halfcheetah,” “med” denotes “medium,” “rep” denotes “replay,” and
“exp” denotes “expert.”

Task Name Main NW WPR KL-Dual KL-Dual+WPR Gaussian No Reg. No model-rollout Rew. Test

maze2d-umaze 55.8 ± 3.9 31.3 ± 25.3 14.4 ± 21.4 -3.3 ± 18.6 -0.9 ± 16.5 41.5 ± 26.3 -13.9 ± 1.3 48.4 ± 14.7 34.9 ± 24.3

maze2d-medium 107.2 ± 45.0 85.4 ± 28.6 5.0 ± 8.3 16.9 ± 17.9 4.8 ± 23.2 59.5 ± 29.5 83.3 ± 30.1 120.7 ± 41.9 85.6 ± 45

maze2d-large 180.0 ± 39.3 131.4 ± 63.0 104.3 ± 48.1 -1.0 ± 4.0 -0.5 ± 7.4 106.1 ± 51.0 0.6 ± 0.7 121.0 ± 26.5 143.8 ± 44

Average Maze2D 114.3 82.7 41.2 4.2 1.1 69.0 23.3 96.7 88.1

hcheetah-med 51.7 ± 0.4 51.5 ± 0.3 50.1 ± 0.4 16.2 ± 13.0 28.3 ± 2.9 49.2 ± 0.4 30.5 ± 26.3 51.9 ± 0.6 51.5 ± 0.6

walker2d-med 83.1 ± 1.8 77.3 ± 6.0 41.8 ± 18.9 0.3 ± 1.5 2.8 ± 3.4 72.5 ± 6.7 3.5 ± 4.4 83.3 ± 4.4 77.8 ± 8.4

hopper-med 58.9 ± 7.9 55.0 ± 8.9 52.5 ± 21.6 7.6 ± 3.4 6.9 ± 7.0 52.1 ± 3.7 6.2 ± 9.0 42.8 ± 22.8 57.3 ± 9.7

hcheetah-med-rep 44.6 ± 0.7 44.6 ± 0.3 44.4 ± 0.4 23.1 ± 5.9 18.9 ± 8.0 41.1 ± 0.7 67.3 ± 2.7 41.9 ± 1.7 44.6 ± 0.2

walker2d-med-rep 81.5 ± 3.0 74.6 ± 4.2 55.8 ± 14.3 2.3 ± 4.4 1.1 ± 2.5 54.1 ± 5.8 10.6 ± 8.9 13.8 ± 13.4 72.8 ± 10.4

hopper-med-rep 91.1 ± 9.5 75.4 ± 19.1 40.1 ± 11.1 6.0 ± 5.7 5.5 ± 7.3 71.3 ± 19.7 9.9 ± 6.5 85.8 ± 16.8 79.3 ± 20.6

hcheetah-med-exp 90.2 ± 2.0 88.0 ± 5.1 80.1 ± 5.9 20.7 ± 11.1 19.1 ± 9.4 85.0 ± 2.9 7.5 ± 12.6 79.0 ± 7.2 88.5 ± 4.5

walker2d-med-exp 107.7 ± 2.1 99.1 ± 7.9 62.9 ± 17.6 0.3 ± 1.0 1.3 ± 2.7 90.6 ± 6.6 2.6 ± 0.8 104.7 ± 3.4 103 ± 6.9

hopper-med-exp 76.0 ± 15.7 41.7 ± 16.9 11.3 ± 7.6 3.1 ± 1.4 4.5 ± 3.3 59.1 ± 25.5 12.4 ± 9.6 48.7 ± 17.4 59.8 ± 26

Average MuJoCo 76.1 67.5 48.8 8.8 9.8 63.9 16.7 61.3 70.5

pen-human 20.6 ± 10.7 11.4 ± 8.6 24.8 ± 14.7 9.3 ± 4.0 4.7 ± 7.6 8.5 ± 5.6 1.6 ± 5.4 8.4 ± 9.0 12.2 ± 10.6

pen-cloned 57.4 ± 19.2 35.3 ± 15.7 35.5 ± 13.8 22.4 ± 12.5 35.7 ± 12.8 39.3 ± 16.4 39.1 ± 21.3 3.5 ± 6.2 37.5 ± 16.6

pen-exp 138.3 ± 6.6 129.6 ± 15.4 102.0 ± 36.3 31.2 ± 15.5 30.1 ± 18.3 102.0 ± 14.9 5.2 ± 7.6 109.2 ± 40.9 133 ± 12.7

door-exp 96.3 ± 9.8 73.5 ± 30.9 20.7 ± 16.4 0.1 ± 1.4 0.2 ± 0.4 20.3 ± 21.2 -0.3 ± 0.1 53.9 ± 41.4 86 ± 24.3

Average Adroit 78.2 62.4 45.8 15.8 17.7 42.5 11.4 43.8 67.2

Average All 83.8 69.1 46.6 9.7 10.2 59.5 16.6 63.6 73.0

Apart from the discussion in Section 4.2 (a) and Section 4.2 (c) on the NW and the WPR variants.
We see that changing the proposed JSD regularizer in Section 3.2 to the KL-dual-based regularizers
breaks the policy learning. This may be related to the unstable estimation of KL-dual discussed in
Section 3.2. Changing the implicit policy to the Gaussian policy generally leads to worse performance.
The performance difference is especially significant on the Maze2D and Adroit datasets. This aligns
with the observation in Yang et al. [51] that a uni-model Gaussian policy may be insufficient to capture
the necessary multiple action modes in the Maze2D and Adroit datasets, while an implicit policy is
likely to be capable. Removing the proposed regularization term breaks the policy learning, showing
the efficacy of the proposed regularizer. Removing rollout data in the policy learning generally
leads to worse performance and larger standard deviations. This shows the benefit of adding the
model-rollout data, that they can mitigate the off-policy issue by taking into account the rollouts of
the learned policy. Finally, compared with the main method that uses the action-value function as the
test function, the Rew. Test variant generally has worse performance and larger standard deviations.
As discussed in Appendix C, using the (estimated) reward function as the test function loses the
nice mathematical properties, and the resulting objective for training the MIW ω may not be easy to
optimize.

B Proofs

B.1 Preliminary on discounted stationary state-action distribution

Recall that the discounted visitation frequency for a policy π on MDP M with transition P ∗ is
defined as

dP
∗

π,γ (s, a) ≜ (1− γ)
∑∞

t=0 γ
t Pr (st = s, at = a |µ0, π, P

∗) .

Denote T ∗
π (s

′ | s) = pπ (st+1 = s′ | st = s) =
∑

a∈A P ∗ (st+1 = s′ | st = s, at = a)π (a | s).

19

From Liu et al. [27], Lemma 3, for dP
∗

π,γ(s) we have,

γ
∑
s

T ∗
π (s

′ | s)dP∗

π,γ(s)− dP
∗

π,γ(s
′) + (1− γ)µ0(s

′) = 0, ∀ s′ ∈ S,

where µ0 is the initial-state distribution. Multiply π(a′ | s′) on both sides, we get, ∀ (s′, a′) ∈ S× A,

γ
∑
s

T ∗
π (s

′ | s)dP∗

π,γ(s)π(a
′ | s′)− dP

∗

π,γ(s
′, a′) + (1− γ)µ0(s

′)π(a′ | s′) = 0

⇐⇒ γ
∑
s,a

P ∗ (s′ | s, a) dP∗

π,γ(s, a)π(a
′ | s′)− dP

∗

π,γ(s
′, a′) + (1− γ)µ0(s

′)π(a′ | s′) = 0

We can also multiply π̃(a′ | s′) on both sides to get, ∀ (s′, a′) ∈ S× A,

γ
∑
s

T ∗
π (s

′ | s)dP∗

π,γ(s)π̃(a
′ | s′)− dP

∗

π,γ(s
′)π̃(a′ | s′) + (1− γ)µ0(s

′)π̃(a′ | s′) = 0.

Denote dP
∗

π,γ (s, a, s
′) ≜ dP

∗

π,γ(s)π(a | s)P ∗(s′ | s, a). For any integrable function f(s, a), we multiply
both sides of the above equation by f(s′, a′) and summing over s′, a′, we get

γE(s,a,s′)∼dP∗
π,γ

a′∼π̃(· | s′)

[f (s′, a′)]− E
s∼dP∗

π,γ

a∼π̃(· | s)

[f (s, a)] + (1− γ)E s∼µ0

a∼π̃(· | s)
[f (s, a)] = 0.

For any given bounded function g(s, a), define function f to satisfy
f(s, a) = g(s, a) + γEs′∼P∗(· | s,a),a′∼π(· | s′) [f(s

′, a′)] ,∀ s, a,
then we have
Es∼µ0(·),a∼π(· | s) [f (s, a)] = Es∼µ0(·),a∼π(· | s)

[
g(s, a) + γEs′∼P∗(· | s,a),a′∼π(· | s′) [f(s

′, a′)]
]

= E

[∞∑
t=0

γtg (st, at) | s0 ∼ µ0(·), at ∼ π(· | st), st+1 ∼ P ∗ (· | st, at)
]

= (1− γ)
−1 E(s,a)∼dP∗

π,γ
[g (s, a)] ,

based on the definition of dP
∗

π,γ(s, a) stated above.

Indeed, f (s, a) is the action-value function of policy π under the reward g(s, a) on MDPM, and
can be approximated using neural network under the classical regularity assumptions on g(s, a) and
M. Also, under these classical regularity conditions, reward function g and its action-value function
f have one-to-one correspondence, with f being the unique solution to the Bellman equation.

B.2 Proofs of Theorem 1

The following Lemma will be used in the proof of Theorem 1.
Lemma 3. For any P̂ (s′ | s, a), π(a′ | s′), P ∗(s′ | s, a), πb(a

′ | s′), we have

KL
(
P ∗(s′ | s, a)πb(a

′ | s′) || P̂ (s′ | s, a)π(a′ | s′)
)
≥ KL

(
P ∗(s′ | s, a) || P̂ (s′ | s, a)

)
.

Proof. Since KL(· || ·) ≥ 0, we have

KL
(
P ∗(s′ | s, a)πb(a

′ | s′) || P̂ (s′ | s, a)π(a′ | s′)
)

=

∫
P ∗(s′ | s, a)πb(a

′ | s′) log P ∗(s′ | s, a)πb(a
′ | s′)

P̂ (s′ | s, a)π(a′ | s′)
d(s′, a′)

=

∫
P ∗(s′ | s, a)πb(a

′ | s′)
(
log

P ∗(s′ | s, a)
P̂ (s′ | s, a)

+ log
πb(a

′ | s′)
π(a′ | s′)

)
d(s′, a′)

=

∫
P ∗(s′ | s, a)πb(a

′ | s′) log πb(a
′ | s′)

π(a′ | s′) d(s′, a′) +

∫
P ∗(s′ | s, a) log P ∗(s′ | s, a)

P̂ (s′ | s, a)
ds′

=Es′∼P∗(· | s,a) [KL (πb(a
′ | s′) ||π(a′ | s′))] + KL

(
P ∗(s′ | s, a) || P̂ (s′ | s, a)

)
≥KL

(
P ∗(s′ | s, a) || P̂ (s′ | s, a)

)
,

as desired.

20

Remark 4. It also holds that

E(s,a)∼dP∗
πb,γ

[
KL
(
P ∗(s′ | s, a)πb(a

′ | s′) || P̂ (s′ | s, a)π(a′ | s′)
)]

≤KL
(
P ∗(s′ | s, a)πb(a

′ | s′)dP∗

πb,γ
(s, a) || P̂ (s′ | s, a)π(a′ | s′)dP∗

πb,γ
(s)π(a | s)

)
,

by using similar proof steps.

Proof of Theorem 1.

∣∣∣J(π, P̂)− J(π, P ∗)
∣∣∣

=

∣∣∣∣(1− γ)E s∼µ0

a∼π(·|s)

[
QP̂

π (s, a)
]
− EdP∗

π,γ

[
QP̂

π (s, a)
]
+ EdP∗

π,γ

[
QP̂

π (s, a)
]
− E(s,a)∼dP∗

π,γ
[r(s, a)]

∣∣∣∣
=

∣∣∣∣(1− γ)E s∼µ0

a∼π(·|s)

[
QP̂

π (s, a)
]
− EdP∗

π,γ

[
QP̂

π (s, a)
]
+ E(s,a)∼dP∗

π,γ

[
QP̂

π (s, a)− r(s, a)
]∣∣∣∣

=

∣∣∣∣∣(1− γ)E s∼µ0

a∼π(·|s)

[
QP̂

π (s, a)
]
− EdP∗

π,γ

[
QP̂

π (s, a)
]
+ γE(s,a)∼dP∗

π,γ

[
Es′∼P̂ (·|s,a)

a′∼π(·|s′)

[
QP̂

π (s
′, a′)

]]∣∣∣∣∣
=

∣∣∣∣∣−γE(s,a)∼dP∗
π,γ

[
Es′∼P∗(·|s,a)

a′∼π(·|s′)

[
QP̂

π (s
′, a′)

]]
+ γE(s,a)∼dP∗

π,γ

[
Es′∼P̂ (·|s,a)

a′∼π(·|s′)

[
QP̂

π (s
′, a′)

]]∣∣∣∣∣
=γ

∣∣∣∣∣E(s,a)∼dP∗
π,γ

[
Es′∼P∗(·|s,a)

a′∼π(·|s′)

[
QP̂

π (s
′, a′)

]
− Es′∼P̂ (·|s,a)

a′∼π(·|s′)

[
QP̂

π (s
′, a′)

]]∣∣∣∣∣
=γ
∣∣∣E(s,a)∼dP∗

π,γ

[
Es′∼P∗(·|s,a)

[
V P̂
π (s′)

]
− Es′∼P̂ (·|s,a)

[
V P̂
π (s′)

]]∣∣∣
≤γE(s,a)∼dP∗

π,γ

{∣∣∣Es′∼P∗(·|s,a)

[
V P̂
π (s′)

]
− Es′∼P̂ (·|s,a)

[
V P̂
π (s′)

]∣∣∣}
≤γ · rmax

1− γ
E(s,a)∼dP∗

π,γ

{
sup
V ∈V

∣∣∣Es′∼P∗(·|s,a) [V (s′)]− Es′∼P̂ (·|s,a) [V (s′)]
∣∣∣}

=
γ · rmax

1− γ
E(s,a)∼dP∗

π,γ

[
TV

(
P ∗(·|s, a)||P̂ (·|s, a)

)]
≤γ · rmax

1− γ
E(s,a)∼dP∗

π,γ

[√
1

2
KL
(
P ∗(·|s, a)||P̂ (·|s, a)

)]

≤ γ · rmax√
2 · (1− γ)

√
E(s,a)∼dP∗

π,γ

[
KL
(
P ∗(·|s, a)||P̂ (·|s, a)

)]
≤ γ · rmax√

2(1− γ)

√
E(s,a)∼dP∗

π,γ

[
KL
(
P ∗(s′ | s, a)πb(a′ | s′) || P̂ (s′ | s, a)π(a′ | s′)

)]
=

γ · rmax√
2(1− γ)

√
E(s,a)∼dP∗

πb,γ

[
ω(s, a)KL

(
P ∗(s′ | s, a)πb(a′ | s′) || P̂ (s′ | s, a)π(a′ | s′)

)]

(18)

where V is the set of functions bounded by 1, ω(s, a) ≜
dP∗
π,γ(s,a)

dP∗
πb,γ

(s,a)
is the marginal importance weight

(MIW). Here we use the assumption that ∀ s, a, |r(s, a)| ≤ rmax, and hence |V P̂
π (·)| ≤ rmax

1−γ . We
use Lemma 3 to introduce π and πb into KL (· || ·).

21

B.3 Derivation of Eq. (8)

Derivarion of Eq. (8). We follow the literature [e.g., 79, 80] to assume that ∀ s, a, ω(s, a) ≤ ωmax

for some unknown finite constant ωmax. Using Remark 4 and this assumption, we have

Dπ(P
∗, P̂) = E(s,a)∼dP∗

πb,γ

[
ω(s, a)KL

(
P ∗(s′ | s, a)πb(a

′ | s′) || P̂ (s′ | s, a)π(a′ | s′)
)]

≤ ωmax · E(s,a)∼dP∗
πb,γ

[
KL
(
P ∗(s′ | s, a)πb(a

′ | s′) || P̂ (s′ | s, a)π(a′ | s′)
)]

≤ ωmax ·KL
(
P ∗(s′ | s, a)πb(a

′ | s′)dP∗

πb,γ
(s, a) || P̂ (s′ | s, a)π(a′ | s′)dP∗

πb,γ
(s)π(a | s)

)
≈ ωmax · JSD

(
P ∗(s′ | s, a)πb(a

′ | s′)dP∗

πb,γ
(s, a) || P̂ (s′ | s, a)π(a′ | s′)dP∗

πb,γ
(s)π(a | s)

)
≜ ωmax · D̃π(P

∗, P̂),

where we approximate the KL divergence by the JSD.

B.4 Derivation of Eq. (9)

Derivarion of Eq. (9). We have, ∀ (s, a) ∈ S× A,

dP
∗

πb,γ
(s, a) · ω(s, a) = dP

∗

π,γ(s, a) ⇐⇒
dP

∗

πb,γ
(s′, a′) · ω(s′, a′) = dP

∗

π,γ(s
′, a′)

=γ
∑
s

T ∗
π (s

′ | s)dP∗

π,γ(s)π(a
′ | s′) + (1− γ)µ0(s

′)π(a′ | s′)

=γ
∑
s,a

P ∗(s′ | s, a)dP∗

π,γ(s, a)π(a
′ | s′) + (1− γ)µ0(s

′)π(a′ | s′)

=γ
∑
s,a

P ∗(s′ | s, a)ω(s, a)dP∗

πb,γ
(s, a)π(a′ | s′) + (1− γ)µ0(s

′)π(a′ | s′),

(19)

where T ∗
π (s

′ | s) = ∑a∈A P ∗(s′ | s, a)π(a | s) is the state-transition kernel. Here we change (s, a)
into (s′, a′) in the “⇐⇒ ” for notation simplicity.

B.5 Proof of Proposition 2

Proof of Proposition 2. With the assumed conditions, we would like to show that T is a contraction
mapping under ∥ · ∥∞, i.e., ∥T ω − T u∥∞ ≤ c · ∥ω − u∥∞, for all MIWs ω, u : S × A → R, for

22

some constant c < 1. We have,

∥T ω − T u∥∞
=max

s′,a′
|(T ω − T u)(s′, a′)| = max

s′,a′
|T ω(s′, a′)− T u(s′, a′)|

=max
s′,a′

∣∣∣∣∣γ
∑

s,a π(a
′ | s′)P ∗(s′ | s, a)dP∗

πb,γ
(s, a)(ω(s, a)− u(s, a))

dP∗
πb,γ

(s′, a′)

∣∣∣∣∣
≤max

s′,a′

γ
∑

s,a π(a
′ | s′)P ∗(s′ | s, a)dP∗

πb,γ
(s, a)|ω(s, a)− u(s, a)|

dP∗
πb,γ

(s′, a′)

≤max
s′,a′

γ
∑

s,a π(a
′ | s′)P ∗(s′ | s, a)dP∗

πb,γ
(s, a)

dP∗
πb,γ

(s′, a′)
· ∥ω − u∥∞

=

{
max
s′,a′

γ
∑

s,a π(a
′ | s′)P ∗(s′ | s, a)dP∗

πb,γ
(s, a)

γ
∑

s,a πb(a′ | s′)P ∗(s′ | s, a)dP∗
πb,γ

(s, a) + (1− γ)µ0(s′)πb(a′ | s′)

}
· ∥ω − u∥∞

=

{
max
s′,a′

π(a′ | s′)
πb(a′ | s′)

·
γ
∑

s,a P
∗(s′ | s, a)dP∗

πb,γ
(s, a)

γ
∑

s,a P
∗(s′ | s, a)dP∗

πb,γ
(s, a) + (1− γ)µ0(s′)

}
· ∥ω − u∥∞

=

max
s′,a′

π(a′ | s′)
πb(a′ | s′)

·
(
1− (1− γ)µ0(s

′)

γ
∑

s,a P
∗(s′ | s, a)dP∗

πb,γ
(s, a) + (1− γ)µ0(s′)

)
︸ ︷︷ ︸

≜ c(s′)<1

· ∥ω − u∥∞

=

{
max
s′,a′

π(a′ | s′)
πb(a′ | s′)

· c(s′)
}
· ∥ω − u∥∞ ≜ c · ∥ω − u∥∞.

(20)

If the current policy π is close to the behavior policy πb, in a sense that π(a′ | s′)
πb(a′ | s′) is close to 1 on the

entire finite state-action space, specifically,

∀ s′, a′, π(a′ | s′)
πb(a′ | s′)

<
1

c(s′)
.

Then c = maxs′,a′

{
π(a′ | s′)
πb(a′ | s′) · c(s′)

}
< 1. Plug into Eq. (20), we have ∥T ω−T u∥∞ ≤ c·∥ω−u∥∞

for c < 1. Thus T is a c-contraction mapping under ∥ · ∥∞. It follows that there exists a unique fixed
point ω∗ under the mapping T , such that ω∗ = T ω∗. Finally, we have

∥ωk+1−ω∗∥∞ = ∥T ωk−T ω∗∥∞ ≤ c ·∥ωk−ω∗∥∞ ≤ · · · ≤ ck+1 ·∥ω0−ω∗∥∞ → 0, as k →∞,

which shows that the iterate defined by T converges geometrically.

C Discussion on the choice of test function for MIW

We first discuss the original minimax optimization loss [27, 30, 81] for learning the MIW ω(s, a).
When given an offline dataset Denv, the objective is

minω∈W maxf∈F

{
(1− γ)Eµ0,π[f(s, a)] + E(s,a,s′)∼dP∗

πb,γ
,a′∼π(· | s′) [γω(s, a)f(s

′, a′)− ω(s, a)f(s, a)]
}
, (21)

where f ∈ F is a test function similar to the discriminator in adversarial training.

A number of prior works on learning ω(s, a) (e.g. DualDICE [29], GenDICE [30]) can be viewed
as variants of the above minimax objective, with some additional regularization terms on ω(s, a).
For example, there is an additional 1

2ω
2 term in DualDICE to penalize ω so that the resulting MIW

values ω(s, a) will not be too large. This term thus serves as a regularization.

However, the optimization process for ω(s, a) in Eq. (21) can be unstable due to the following two
reasons: (1) the minimax optimization is itself a challenging problem, especially for neural-network-
based function approximator; (2) when we fix f(s, a) and optimize ω(s, a), the gradients for ω that

23

come from γω(s, a)f(s′, a′) and ω(s, a)f(s, a) are close to each other, especially when γ is close
to 1 (e.g., 0.99). This makes the overall gradient for ω small and unstable, especially when we use
stochastic gradient descent to optimize ω. The empirical distributions of the MIW from DualDICE
and GenDICE in Fig. 2 illustrate the optimization difficulty of these two methods. Therefore, we
wish to get rid of the minimax optimization and stabilize the training process.

Another closely related work that also tries to address the aforementioned issues is VPM [40], where
the authors use the MIW ω itself as the test function f , based on the observation that the optimum test
function under the f -divergence is the MIW; and use the variational power iteration to solve for ω.
We refer to Wen et al. [40] for the detailed derivations. Empirically, we can observe in Fig. 2a that the
distribution of ω(s, a) obtained by VPM tends to be more stable than those obtained by DualDICE
and GenDICE.

Our choice of the test function is motivated by the following constrained optimization formulation of
off-policy evaluation [37, 81]:

min
Q

(1− γ)Es∼µ0,a∼π(· | s) [Q(s, a)]

s.t. Q(s, a) ≥ r(s, a) + γEs′∼P (· | s,a),a′∼π(· | s′) [Q(s′, a′)] , ∀ (s, a) ∈ S× A .

One can show that QP∗

π (s, a) is the optimal solution of the above (primal) optimization problem. The
dual form of this optimization problem can be reformulated as

max
d: S×A→R+

Ed[r(s, a)]

s.t. d(s′, a′) = (1− γ)µ0(s
′)π(a′ | s′) + γ

∑
s,a

d(s, a)P (s′ | s, a)π(a′ | s′), ∀ (s′, a′) ∈ S× A .

One can show that the stationary distribution dP
∗

π,γ is the solution to the above dual problem.

For the dual problem, we introduce the Lagrange multiplier Q(s, a) for each (s, a) tuple, and the
Lagrangian can be written as

L(d,Q) := Ed[r(s, a)] + (1− γ)Eµ0,π[Q(s, a)] + Ed,P,π[γQ(s′, a′)−Q(s, a)] .

From the previous observations, the optimal Lagrange multiplier for this Lagrangian is QP∗

π (s, a),
which is the solution to the primal problem. Changing d to the MIW ω, we have

L(ω,Q) = E(s,a)∼dP∗
πb,γ

[ω(s, a)r(s, a)]︸ ︷︷ ︸
1⃝: Estimator for J(π,P∗) via ω(s,a)

+(1− γ)Eµ0,π[Q(s, a)] + E(s,a,s′)∼dP∗
πb,γ

,a′∼π(· | s′)[γω(s, a)Q(s′, a′)− ω(s, a)Q(s, a)]︸ ︷︷ ︸
2⃝: Loss for ω(s,a) that ideally should be 0

,
(22)

where the first term 1⃝ estimates the expected return J(π, P ∗) via ω(s, a), which is accurate if ω is
the true density ratio. The second term 2⃝ of Eq. (22) is a loss for ω(s, a) as in Eq. (21), except that
we replace the test function f(s, a) with Q(s, a). With the optimal Lagrange multiplier QP∗

π (s, a),
we can get rid of the inner minimization of the original maximin problem. In practice, since QP∗

π is
unknown, one may directly set Q to be the “estimated optimal multiplier” QP̂

π and optimize ω solely.

From Eq. (22), the MIW ω can be optimized via two alternative approaches. (1) We can directly
optimize ω with L(ω,QP̂

π), whose optimum should be close to J(π, P ∗). (2) We can optimize ω
w.r.t. 2⃝, because we know that if 2⃝ is close to zero, ω is close to the true MIW, and the resulting
L(ω,QP̂

π) is again close to J(π, P ∗) based on the term 1⃝. In theory the main difference of these two
approaches is that we may obtain a more accurate estimate for J(π, P ∗) using approach (1) since we
optimize ω on both the first and the second terms. However, since the true reward function r(s, a) is
unknown, when we optimize ω using approach (1), the optimization process may be unstable due to
the approximation error for r(s, a). By contrast, for approach (2), we know that ω is accurate when
2⃝ is close to zero, thus we can leverage the MSE loss to optimize ω so that 2⃝ is shrunk towards

zero. This approach is similar to the supervised learning and can be more stable in practice. Since our
goal is to obtain a good estimate of the MIW ω, not the numerical value of J(π, P ∗), we therefore
choose approach (2) that optimize ω w.r.t. 2⃝.

24

Another intuitive motivation for using QP∗

π as the test function is that the minimax loss Eq. (21)
for optimizing ω is based on a saddle-point optimization, and f ∈ F is the dual variable for the
MIW ω. From the previous discussion, MIW and the action-value function have some primal-dual
relationship, and QP∗

π is the optimal “dual” variable for the off-policy evaluation problem w.r.t. the
MIW ω. Since the dual variable f in Eq. (21) is indeed some action-value function [29], we may set
f to be this optimal “dual” of ω, which will lead to the choice of QP∗

π as the test function.

Remark. Note that both our approach and VPM choose the test function based on some
mathematical relationships between the test function and the MIW ω, so that the objective for ω could
potentially be easier to optimize. Both methods are not the best theoretical way to optimize ω. The
best theoretical way is simply using the saddle-point-optimization based methods such as DualDICE,
GenDICE, or a direct minimax optimization on L(ω,Q) in Eq. (22). However, as we discussed
above, there are some practical difficulties for the saddle-point-optimization based approaches. As
we observed in Fig. 2, the empirical results indeed show that our approach and VPM are more stable
than DualDICE and GenDICE. Further, it is feasible to use other functions as the test function, such
as the reward function or any other initialized neural networks. However, these choices may not have
nice mathematical properties, such as being the fixed-point solution or some primal-dual relationship,
and thus the resulting objective may not be easier to optimize. Table 3 in Appendix A contains an
ablation study where we use the reward function as the test function to optimize ω. Indeed, this
variant generally performs worse than our main method that uses the Q-function as the test function.

D Using value function as the discriminator of model training

Eq. (18) of the proof of Theorem 1 motivates us to use the value function V P̂
π (·) as the discriminator

of the model training. Specifically, the model training objective is

arg min
P̂∈P

E(s,a)∼dP∗
πb,γ

{
ω(s, a) ·

∣∣∣Es′∼P∗(· | s,a)

[
V P̂
π (s′)

]
− Es′∼P̂ (· | s,a)

[
V P̂
π (s′)

]∣∣∣} , (23)

where the discriminator V P̂
π can be implemented by the current estimate of the action-value function,

which is treated as fixed during the model training. We implement this idea as a variant where
the model is trained by the weighed objective Eq. (23) that uses the value-function estimate to
discriminate the predicted transition from the real. The reward function r̂ is still estimated by the
weighted-MLE objective. The model is initialized by the MLE loss. Other technical details follow
the main algorithm. We dubbed this variant as “V-Dis”.

Table 4 compares this variant with our main method. We see that V-Dis underperforms our main
method on almost all dataset, often by a large margin. The inferior results of V-Dis may be related to
the coupled effect on model training from the inaccurate value-function estimation. In Eq. (23), this
inaccuracy can affect both the value difference (the |·| term) and the MIW ω. Our fix of V P̂

π during
the model training process may also affect the performance. Future work can investigate how to train
V P̂
π together with P̂ in the model estimation.

E Technical details

E.1 Details for the main algorithm

Our main algorithm consists of three major components: model training (Appendix E.1.1), the
marginal importance weight training (Appendix E.1.2), and RL policy training via actor-critic
algorithm (Appendix E.1.3).

The non-zero assumption of QP̂
π in the derivation of Eq. (11) motivates us to scale the rewards in the

offline dataset to be roughly within (0, 1], similar to Chen et al. [82]. Specifically, before starting our
main algorithm, we normalize the rewards ri’s in the offline dataset via (ri− rmin +0.001)/(rmax−
rmin), where rmin and rmax respectively denote the minimum and maximum reward in the offline
dataset.

25

Table 4: Normalized returns for experiments on the D4RL tasks. Mean and standard deviation across five
random seeds are reported. “V-Dis” denotes the variant where the model is trained by the value-function-
discriminated weighted objective Eq. (23). The results of our main method in Section 4.1 is reported in column
Main. Here, “hcheetah” denotes “halfcheetah,” “med” denotes “medium,” “rep” denotes “replay,” and “exp”
denotes “expert.”

Task Name V-Dis Main

maze2d-umaze 36.7 ± 28.3 55.8 ± 3.9
maze2d-med 36.9 ± 19.0 107.2 ± 45.0
maze2d-large 23.9 ± 17.6 180.0 ± 39.3
hcheetah-med 38.3 ± 17.1 51.7 ± 0.4
walker2d-med 46.9 ± 28.3 83.1 ± 1.8
hopper-med 58.4 ± 7.4 58.9 ± 7.9
hcheetah-med-rep 21.3 ± 13.9 44.6 ± 0.7
walker2d-med-rep 16.3 ± 12.9 81.5 ± 3.0
hopper-med-rep 69.0 ± 19.6 91.1 ± 9.5
hcheetah-med-exp 39.7 ± 4.2 90.2 ± 2.0
walker2d-med-exp 51.3 ± 29.4 107.7 ± 2.1
hopper-med-exp 24.0 ± 8.0 76.0 ± 15.7
pen-human 11.4 ± 10.0 20.6 ± 10.7
pen-cloned 36.3 ± 10.5 57.4 ± 19.2
pen-exp 131.3 ± 16.7 138.3 ± 6.6
door-exp 60.4 ± 33.0 96.3 ± 9.8

Average Score 43.9 83.8

E.1.1 Model training

We follow the literature [83, 15, 16, 47] to assume no prior knowledge about the reward function and
thus use neural network to approximate transition dynamic and the reward function. Our model is
constructed as an ensemble of Gaussian probabilistic networks . Except for the weighted loss function,
we use the same model architecture, ensemble size (=7), number of elite model (=5), train-test set
split, optimization scheme, elite-model selection criterion, and sampling method as in Yu et al. [16].
To save computation, we define each epoch of model training as 1000 mini-batch gradient steps,
instead of the original n_train / batch_size.

As in Yu et al. [16], the input to our dynamic model is
(
(s, a)− µ(s,a)

)
/σ(s,a), where µ(s,a)

and σ(s,a) are respectively coordinate-wise mean and standard deviation of (s, a) in the offline
dataset. We follow Kidambi et al. [19] and Matsushima et al. [84] to define the learning target as(
(r,∆s)− µ(r,∆s)

)
/σ(r,∆s), where ∆s denote s′ − s , µ(r,∆s) and σ(r,∆s) denote the coordinate-

wise mean and standard deviation of (r,∆s) in the offline dataset. As in prior work using Gaussian
probabilistic ensemble on model-based RL [83, 15, 16, 21, 18], we use a double-head architecture
for our dynamic model, where the two output heads represent the mean and log-standard-deviation of
the normal distribution of the predicted output, respectively. We augment the maximum likelihood
loss in Yu et al. [16] as the weighted maximum likelihood loss, independently for each model in the
ensemble. Specifically, the dynamic model is initially trained using un-weighted maximum likelihood
loss. We then employ the warm-start strategy to start each subsequent weighted re-training from the
current dynamic model, with the weights ω(s, a) from the latest marginal importance weight network.
To unify the learning rate across each run of model (re-)training, the weights ω(s, a)’s are normalized
so that their mean is 1 across the offline dataset.

To improve training stability, we are motivate by Hishinuma and Senda [47] to heuristically
augment the environmental termination function by (1) any(|ŝ′| > 2 · maxs,s′∈Denv

{|s|, |s′|})
where all operations are coordinate-wise, i.e., whether any coordinate of the predicted next state
is outside of this relaxed observation-range in the offline dataset; and (2) |r̂(s, a)| > rrange ≜
max (|rmin − 10 · σr|, |rmax + 10 · σr|)) where rmin, rmax, σr are the minimum, maximum, and
standard deviation of rewards in the offline dataset, i.e., whether the predicted reward is outside of
this relaxed reward-range in the offline dataset. To penalize the policy for visiting out-of-distribution

26

state-action pair, we modify r̂(s, a) to be −rrange if either (1) or (2) is violated. No modification for
r̂(s, a) is performed if only the environmental termination is triggered.

E.1.2 Marginal importance weight training

We follow the OPE literature [27, 43, 30] to assume that the initial-state distribution µ0 is known.
In the implementation, we augment Denv with 105 samples from the ground-truth µ0. To enhance
training stability, we are motivated by the double Q-learning [85] to use a target marginal importance
weight network ω′(s, a) and a target critic network Q′(s, a) in the implementation of MIW training.
We employ the warm-start strategy so that each retraining of the marginal importance weight starts
from the current ω(s, a). On each run of the weight-retraining, Q′ is initialized as the current critic
target Qθ′ . Since the weights ω(s, a)’s are normalized to have mean 1 in the weighted re-training of
the dynamic model, to narrow the gap between the learning and the application of the weights, we
add a constraint into the training of ω that its mean on each mini-batch is upper bounded by some
constant gconstraint. Specifically, on each mini-batch gradient step, MIW is trained by the following
constraint optimization

argmin
ω

 1

|B|
∑

(si,ai)∈B

ω (si, ai) ·Qθ (si, ai)− y

2

,

s.t.
1

|B|
∑

(si,ai)∈B

ω (si, ai) ≤ gconstraint,

where y = γ · 1

|B|
∑

(si,ai,s
′
i)∈B

a′
i
∼πϕ(· | s′i)

ω′ (si, ai) ·Q′ (s′i, a
′
i) + (1− γ) · 1

|Binit|
∑

s0∈Binit
a0∼πϕ(· | s0)

Q′ (s0, a0) ,

(24)

where gconstraint is conveniently chosen as 10 and B,Binit ∼ Denv. To optimize Eq. (24), we use
the constraint optimization method in Gong et al. [86] with base optimizer Adam [87]. For training
stability, the gradient norm is clipped to be bounded by 1.

As in double Q-learning, we update Q′ towards Qθ and ω′ towards ω via exponential moving average
with rate 0.01 after each gradient step. We use batch sizes |B| = 1024 and |Binit| = 2048 to train the
marginal importance weight model ω(s, a).

E.1.3 Actor-critic training

Our policy training consists of the following six parts.

Generate synthetic data using dynamic model. We follow Janner et al. [15] and Yu et al. [16] to
perform h-step rollouts branching from the offline dataset Denv, using the learned dynamic P̂ , r̂, and
the current policy πϕ. The generated data is added to a separate replay buffer Dmodel.

To save computation, we generate synthetic data every rollout_generation_freq iterations.

Critic training. Sample mini-batch B ∼ D = f ·Denv+(1−f) ·Dmodel, with f ∈ [0, 1]. For each
s′ ∈ B, sample one corresponding actions a′ ∼ πϕ′(· | s′). Calculate the estimate of the action-value
of the next state-action pair as

Q̃ (s, a) ≜ c min
j=1,2

Qθ′
j
(s′, a′) + (1− c) max

j=1,2
Qθ′

j
(s′, a′) .

Calculate the critic-learning target defined as

Q̃ (s, a)← r(s, a) + γ · Q̃ (s, a) ·
(∣∣∣Q̃ (s, a)

∣∣∣ < 2000
)
, (25)

where 2000 is conveniently chosen to enhance the termination condition stored in B for training
stability. Then minimize the critic loss with respect to the double critic networks, over (s, a) ∈ B,
with learning rate ηθ,

∀ j = 1, 2, argmin
θj

1

|B|
∑

(s,a)∈B

Huber
(
Qθj (s, a) , Q̃(s, a)

)
,

27

where Huber(·) denote the Huber-loss with threshold conveniently chosen as 500. Finally, the norm
of the gradient for critic update is clipped to be bounded by 0.1 for training stability.

As a remark, the mentioned enhanced termination condition, Huber loss and gradient-norm clipping
are engineering designs for stable training in combating for not knowing the true reward function.
We use a unified setting for these designs across all tested datasets in all experiments, and thus a
per-dataset tuning may further improve our results.

Discriminator training. The “fake” samples Bfake for discriminator training is formed by the
following steps: first, sample |B| states s ∼ D; second, for each s get one corresponding action
a ∼ πϕ (· | s); third, for each (s, a) get an estimate of the next state s′ using P̂ as s′ ∼ P̂ (· | s, a), with
terminal states removed; fourth, sample one next action a′ for each next state s′ via a′ ∼ πϕ (· | s′).
The “fake” samples Bfake is subsequently formed by

Bfake ≜
[
(s , a)
(s′, a′)

]
.

Note that terminal states are removed since by definition, no action choices are needed on them. The
“true” samples Btrue consists of |Bfake| state-action samples from Denv.

The discriminator Dψ is optimized with learning rate ηψ as

argmax
ψ

1

|Btrue|
∑

(s,a)∼Btrue

logDψ(s, a) +
1

|Bfake|
∑

(s,a)∼Bfake

log (1−Dψ(s, a)) .

Actor training. The policy is updated once every k updates of the critic and the discriminator.
Using the “fake” samples Bfake and the discriminator Dψ , the generator loss for actor training is

Lg(ϕ) =
1

|Bfake|
∑

(s,a)∈Bfake

[log (1−Dψ (s, a))] .

The policy is optimized with learning rate ηϕ as

argmin
ϕ
−λ · 1

|B|
∑

s∈B,a∼πϕ(· | s)

[
min
j=1,2

Qθj (s, a)

]
+ Lg(ϕ),

where in all tested datasets the regularization coefficient λ ≜ 10/Qavg with soft-updated Qavg and
the penalty coefficient 10 conveniently chosen, similar to Fujimoto and Gu [42].

Soft updates. We follow Fujimoto et al. [11] to soft-update the target-network parameter and the
Qavg value,

ϕ′ ← βϕ+ (1− β)ϕ′,

θ′
j ← βθj + (1− β)θ′

j , ∀ j = 1, 2,

Qavg ← β
1

|B|
∑

s∈B,a∼πϕ(· | s)

∣∣∣∣min
j=1,2

Qθj (s, a)

∣∣∣∣+ (1− β)Qavg.

Soft-updates are performed after each iteration.

Warm-start step. We follow Kumar et al. [45] and Yue et al. [88] to warm-start our policy training
in the first Nwarm epochs. In this step, the policy is optimized w.r.t. the generator loss Lg(ϕ) only,
i.e., argminϕ Lg(ϕ). The learning rate ηϕ in the warm-start step is the same as the normal training
step.

E.2 Details for the continuous-control experiment

Datasets. We evaluate algorithms on the continuous control tasks in the D4RL benchmark [31]. Due
to limited computational resources, we select therein a representative set of datasets. Specifically, (1)
we select the “medium-expert,” “medium-replay,” and “medium” datasets for the Hopper, HalfChee-
tah, and Walker2d tasks in the Gym-MuJoCo domain, which are commonly used benchmarks in prior

28

work [12, 13, 89, 45]. As in recent literature [21, 90, 91], we do not test on the “random” and “expert”
datasets, as they are considered as less practical [84] and can be simply solved by directly applying
standard off-policy RL algorithms [14] and behavior cloning on the offline dataset. We note that a
data-quality agnostic setting may not align with practical offline RL applications, i.e., one typically
should know the quality of the offline datasets, e.g., whether it is collected by random policy or by
experts. (2) Apart from the Gym-MuJoCo domain, we further consider the Maze2D domain of tasks2

for the non-Markovian data-collecting policy and the Adroit tasks3 [92] for their high dimensionality
and sparse rewards.

Evaluation protocol. Our algorithm is trained for 1000 epochs, where each epoch consists of 1000
mini-batch gradient descent steps. After each epoch of training, a rollout of 10 episodes is performed.
Both our algorithm and baselines are run under five random seeds {0, 1, 2, 3, 4}, and we report the
mean and standard deviation of the final rollouts across the five seeds. We follow Fu et al. [31]
to rerun the baselines under the recommended hyperparameter setting, including dataset-specific
hyperparameters if available.

Results of CQL. We run CQL using the implementation suggested by Kostrikov et al. [91], which
only provide hyperparameters for the Gym-MuJoCo and AntMaze domains. For the Maze2D and
Adroit datasets, we run both sets of recommended hyperparameters and per-dataset select the better
result to report. We note that hyperparameter settings for the Maze2D and Adroit datasets are also
not provided in the original CQL implementation. An in-depth tuning of CQL on these two domains
of datasets is beyond the scope of this paper.

Implicit policy implementation. We follow White [93] to choose the noise distribution as the
isotropic normal, i.e., pz (z) ≜ N

(
0, σ2

noiseI
)
, where the default setting of the dimension of z

is dim (z) = min(10, state_dim//2) and of the noise standard deviation is σnoise = 1. In the
forward pass of the implicit policy, for a given state s, a noise sample z ∼ pz(z) is first independently
drawn. Then s is concatenated with z and the resulting [s, z] is inputted into the (deterministic) policy
network to sample stochastic action.

Terminal states. In practice, the episodes in the offline dataset have finite horizon. Thus, special
treatment is needed for those terminal states in calculating the Bellman update target. We combine
common practice [94, 95] with our critic update target Eq. (25) as

Q̃ (s, a) =

{
r(s, a) + γ · Q̃ (s, a) ·

(∣∣∣Q̃ (s, a)
∣∣∣ < 2000

)
if s′ is a non-terminal state

r(s, a) if s′ is a terminal state
,

since the action-value function is undefined on the terminal s′ due to no action choice therein.

Our network architecture is presented in Appendix E.2.1. To save computation, we use simple
neural networks as in Fujimoto et al. [12]. A fine-tuning of the noise distribution pz (z), the network
architecture, the optimizer hyperparameters, etc., is left for future work.

E.2.1 Details for the implementation of AMPL

With the training techniques for GAN suggested by previous work in generative modeling, we are
able to stably and effectively train the GAN structure on data with moderate dimension, e.g., the
D4RL datasets we consider. In this paper, we adopt the following techniques from the literature.

• Following Goodfellow et al. [35], πϕ is trained to maximize E(s,a)∈Bfake
[log (Dψ(s, a))] .

• We are motivated by Radford et al. [96] to use LeakyReLU activation function in both the generator
and the discriminator, with negative_slope being the default value 0.01.

• For stable training, we follow Radford et al. [96] to use a reduced momentum term β1 = 0.4
in the Adam optimizers of the policy and the discriminator networks; and to use learning rates
ηϕ = ηψ = 2× 10−4.

2We use the tasks “maze2d-umaze,” “maze2d-medium,” and “maze2d-large.”
3We use the tasks “pen-human,” “pen-cloned,” “pen-expert,” and “door-expert.”

29

• To avoid discriminator overfitting, we are motivated by Salimans et al. [97] and Goodfellow [98]
to use one-sided label smoothing with soft and noisy labels. Specifically, random numbers in
[0.8, 1.0) are used as the labels for the “true” sample Btrue. No label smoothing is needed for the
“fake” sample Bfake, i.e., their labels are all 0.

• Binary cross entropy loss between the labels and the discriminator outputs is used as the loss for
the discriminator training in the underlying GAN structure.

• We are motivated by TD3 [11] and GAN to update the policy πϕ(· | s) once per k updates of the
critics and the discriminator.

Table 5 shows the shared hyperparameters for all datasets in our experiments. Many of these
hyperparameters follow the literature without further tuning. For example, we use ηϕ = ηψ =
2× 10−4 as in Radford et al. [96], ηθ = 3× 10−4 and Nwarm = 40 as in Kumar et al. [45], c = 0.75
as in Fujimoto et al. [12], policy frequency k = 2 as in Fujimoto et al. [11], f = 0.5 as in Yu et al.
[18] and model learning rate ηP̂ = 0.001 as in Yu et al. [16]. Unless specified, the shared and the
non-shared hyperparameters are used throughout the main results and the ablation study.

Table 5: Shared hyperparameters for AMPL.

Hyperparameter Value

Optimizer Adam
Training iterations 106

Training iterations for ω(s, a) 105

Model retrain period per 100 epochs
Learning rate ηθ 3× 10−4

Learning rate ηϕ, ηψ 2× 10−4

Learning rate ηP̂ 1× 10−3

Learning rate ηω for ω(s, a) 1× 10−6

Penalty coefficient 10
Batch size 512 (as in Lee et al. [44])
Discount factor γ 0.99
Target network update rate β 0.005
Weighting for clipped double Q-learning c 0.75
Noise distribution pz(z) N

(
0, σ2

noiseI
)

Default value of σnoise 1
Policy frequency k 2
Rollout generation frequency per 250 iterations
Number of model-rollout samples per iteration 128
Rollout retain epochs 5
Real data percentage f 0.5
Warm start epochs Nwarm 40
Random seeds {0, 1, 2, 3, 4}

Since the tested datasets possess diverse nature, we follow the common practice in offline model-based
RL to perform gentle dataset-specific hyperparameter tuning. Details are discussed below.

We are motivated by Janner et al. [15] and Yu et al. [16] to consider the rollout horizon h ∈
{1, 3, 5}. We use h = 1 for halfcheetah-medium, hopper-medium, hopper-medium-replay, maze2d-
large, pen-expert, door-expert, pen-human; h = 3 for hopper-medium-expert, walker2d-medium,
halfcheetah-medium-replay, maze2d-umaze, maze2d-medium; and h = 5 for halfcheetah-medium-
expert, walker2d-medium-expert, walker2d-medium-replay, pen-cloned.

Zheng and Zhou [99] and Zhang et al. [100] show that a larger noise dimension, e.g., 50, can
help learning a more flexible distribution, while a smaller noise dimension, e.g., 1, can make the
distribution leaning towards deterministic. Hence we use the default noise dimension for the tasks:
maze2d-umaze, door-expert; noise dimension 50 for the tasks: hopper-medium-expert, halfcheetah-
medium-expert, walker2d-medium-expert, halfcheetah-medium, hopper-medium, walker2d-medium,
halfcheetah-medium-replay, hopper-medium-replay, walker2d-medium-replay, maze2d-medium,
maze2d-large, pen-expert; and noise dimension 1 for the tasks: pen-cloned, pen-human.

30

Due to the narrow data distribution, we use σnoise = 0.001 for datasets pen-human and pen-cloned to
avoid training divergence.

We state below the network architectures of actor, critic, discriminator, and MIW in the implementa-
tion of AMPL. Motivated by the clipped double Q-learning, two critic networks are used with the
same architecture.

Actor

Linear(state_dim + noise_dim, 400)
LeakyReLU
Linear(400, 300)
LeakyReLU
Linear(300, action_dim)
max_action × tanh

Critic

Linear(state_dim + action_dim, 400)
LeakyReLU
Linear(400, 300)
LeakyReLU
Linear(300, 1)

Discriminator

Linear(state_dim + action_dim, 400)
LeakyReLU
Linear(400, 300)
LeakyReLU
Linear(300, 1)
Sigmoid

MIW

Linear(state_dim + action_dim, 400)
LeakyReLU
Linear(400, 300)
LeakyReLU
Linear(300, 1)
(softplus(· − 10−8) + 10−8).power(α)

In the MIW network, α is the smoothing exponent to smooth the distribution of the weight estimates
in the offline dataset, whose design is motivated by Hishinuma and Senda [47]. We fix α as 0.5 on
the MuJoCo datasets and as 0.2 on the Maze2D and Adroit datasets. The output of the MIW network
prior to power(α) is lower bounded by 10−8 to avoid gradient explode. We follow Dai et al. [69] to
initialize the weights of last layer of the MIW network from Uniform (−0.003, 0.003), and bias as 0.

E.3 Details for the implementation of alternative MIW estimation methods in Section 4.2

We implement and train the alternative methods VPM, GenDICE, and DualDICE in Section 4.2
based on the corresponding papers and source codes. To stabilize training, the design of target MIW
network in Section E.1.2 is applied wherever applicable. The target MIW network is hard-updated,
as suggested by the corresponding papers. The ν network in GenDICE and DualDICE has the same
architecture as the critic network and has its own hard-updated target network. We follow the official
implementation of GenDICE and DualDICE to clip the gradient values by 1. For the convex function
f in DualDICE, we use f(x) = 2

3 |x|
3/2, as suggested in its Section 5.3.

F Potential negative societal impacts

Since offline RL has strong connection with the supervised learning, offline RL methods, including
the proposed AMPL in this paper, are subject to the bias in the offline dataset. The data-bias can be
exploited by both the dynamic-model learning and the policy training.

G Computing resources

We ran all experiments on 4 NVIDIA Quadro RTX 5000 GPUs.

31

