
On the non-universality of deep learning:
quantifying the cost of symmetry

Emmanuel Abbe
EPFL

Enric Boix-Adserà
MIT

Abstract

We prove limitations on what neural networks trained by noisy gradient descent
(GD) can efficiently learn. Our results apply whenever GD training is equivariant,
which holds for many standard architectures and initializations. As applications,
(i) we characterize the functions that fully-connected networks can weak-learn on
the binary hypercube and unit sphere, demonstrating that depth-2 is as powerful as
any other depth for this task; (ii) we extend the merged-staircase necessity result
for learning with latent low-dimensional structure [ABM22] to beyond the mean-
field regime. Under cryptographic assumptions, we also show hardness results
for learning with fully-connected networks trained by stochastic gradient descent
(SGD).

1 Introduction

Over the last decade, deep learning has made advances in areas as diverse as image classifica-
tion [KSH12], language translation [BCB14], classical board games [SHS+18], and programming
[LCC+22]. Neural networks trained with gradient-based optimizers have surpassed classical methods
for these tasks, raising the question: can we hope for deep learning methods to eventually replace all
other learning algorithms? In other words, is deep learning a universal learning paradigm? Recently,
[AS20, AKM+21] proved that in a certain sense the answer is yes: any PAC-learning algorithm
[Val84] can be efficiently implemented as a neural network trained by stochastic gradient descent;
analogously, any Statistical Query algorithm [Kea98] can be efficiently implemented as a neural
network trained by noisy gradient descent.

However, there is a catch: the result of [AS20] relies on a carefully crafted network architecture with
memory and computation modules, which is capable of emulating an arbitrary learning algorithm.
This is far from the architectures which have been shown to be successful in practice. Neural
networks in practice do incorporate domain knowledge, but they have more “regularity” than the
architectures of [AS20], in the sense that they do not rely on heterogeneous and carefully assigned
initial weights (e.g., convolutional networks and transformers for image recognition and language
processing [LB+95, LKF10, VSP+17], graph neural networks for analyzing graph data [GMS05,
BZSL13, VCC+17], and networks specialized for particle physics [BAO+20]). We therefore refine
our question:

Is deep learning with “regular” architectures and initializations a universal learning paradigm?
If not, can we quantify its limitations when architectures and data are not well aligned?

We would like an answer applicable to a wide range of architectures. In order to formalize the problem
and develop a general theory, we take an approach similar to [Ng04, Sha18, LZA21] of understanding
deep learning through the equivariance group G (a.k.a., symmetry group) of the learning algorithm.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Definition 1.1 (G-equivariant algorithm). A randomized algorithm A that takes in a data distribution
D 2 P(X ⇥ Y)1 and outputs a function A(D) : X ! Y is said to be G-equivariant if for all g 2 G

A(D)
d
= A(g(D)) � g. (G-equivariance)

Here g is a group element that acts on the data space X , and so is viewed as a function g : X ! X ,
and g(D) is the distribution of (g(x), y), where (x, y) ⇠ D.

In the case that the algorithm A is deep learning on the distribution D, the equivariance group depends
on the optimizer, the architecture, and the network initialization [Ng04, LZA21].2

Examples of G-equivariant algorithms in deep learning In many deep learning settings, the
equivariance group of the learning algorithm is large. Thus, in this paper, we call an algorithm “regular”
if it has a large equivariance group. For example, SGD training of fully-connected networks with
Gaussian initialization is orthogonally-equivariant [Ng04]; and is permutation-equivariant if we add
skip connections [HZRS16]. SGD training of convolutional networks is translationally-equivariant if
circular convolutions are used [SNPP19], and SGD training of i.i.d.-initialized transformers without
positional embeddings is equivariant to permutations of tokens [VSP+17]. Furthermore, [LZA21,
Theorem C.1] provides general conditions under which a deep learning algorithm is equivariant. See
also the preliminaries in Section 2.

Summary of this work Based off of G-equivariance, we prove limitations on what “regular” neural
networks trained by noisy gradient descent (GD) or stochastic gradient descent (SGD) can efficiently
learn, implying a separation with the initializations and architectures considered in [AS20]. For GD,
we prove a master theorem that enables two novel applications: (a) characterizing which functions
can be efficiently weak-learned by fully-connected (FC) networks on both the hypercube and the unit
sphere; and (b) a necessity result for which functions on the hypercube with latent low-dimensional
structure can be efficiently learned. See Sections 1.2 and 1.3 for more details.

1.1 Related work

Most prior work on computational lower bounds for deep learning has focused on proving limitations
of kernel methods (a.k.a. linear methods). Starting with [Bar93] and more recently with [WLLM19,
AL19, KMS20, AL20, Hsu, HSSV21, ABM22] it is known that there are problems on which kernel
methods provably fail. These results apply to training neural networks in the Neural Tangent Kernel
(NTK) regime [JGH18], but do not apply to more general nonlinear training. Furthermore, for specific
architectures such as FC architectures [GMMM21, Mis22] and convolutional architectures [MM21],
the kernel and random features models at initialization are well understood, yielding stronger lower
bounds for training in the NTK regime.

For nonlinear training, which is the setting of this paper, considerably less is known. In the context of
sample complexity, [Ng04] introduced the study of the equivariance group of SGD, and constructed
a distribution on d dimensions with a ⌦(d) versus O(1) sample complexity separation for learning
with an SGD-trained FC architecture versus an arbitrary algorithm. More recently, [LZA21] built
on [Ng04] to show a O(1) versus ⌦(d2) sample-complexity separation between SGD-trained convo-
lutional and FC architectures. In this paper, we also analyze the equivariance group of the training
algorithm, but with the goal of proving superpolynomial computational lower bounds.

In the context of computational lower bounds, it is known that networks trained with noisy3 gradient
descent (GD) fall under the Statistical Query (SQ) framework [Kea98], which allows showing
computational limitations for GD training based on SQ lower bounds. This has been combined
in [AS20, SSS17, MS20, ACHM22] with the permutation symmetry of GD-training of i.i.d. FC
networks to prove impossibility of efficiently learning high-degree parities and polynomials. In

1The set of probability distributions on ⌦ is denoted by P(⌦). You should think of D 2 P(X ⇥ Y) as a
distribution of pairs (x, y) of covariates and labels.

2Note that the equivariance group of a training algorithm should not be confused with the equivariance
group of an architecture in the context of geometric deep learning [BBCV21]. In that context, G-equivariance
refers to the property of a neural network architecture fNN(·;✓) : X ! Y that fNN(g(x);✓) = g(fNN(x;✓))
for all x 2 X and all group elements g 2 G. In that case, G acts on both the input in X and output in Y .

3Here the noise is used to control the gradients’ precision as in [AS20, AKM+21].

2

our work, we show that these arguments can be viewed in the broader context of more general
group symmetries, yielding stronger lower bounds than previously known. For stochastic gradient
descent (SGD) training, [ABM22] proves a computational limitation for training of two-layer mean-
field networks, but their result applies only when SGD converges to the mean-field limit, and does
not apply to more general architectures beyond two-layer networks. Finally, most related to our
SGD hardness result is [Sha18], which shows limitations of SGD-trained FC networks under a
cryptographic assumption. However, the argument of [Sha18] relies on training being equivariant to
linear transformations of the data, and therefore requires that data be whitened or preconditioned.
Instead, our result for SGD does not require any preprocessing steps.

There is also recent work showing sample complexity benefits of invariant/equivariant neural network
architectures [MMM21, EZ21, Ele21, BVB21, Ele22]. In contrast, we study equivariant training
algorithms. These are distinct concepts: a deep learning algorithm can be G-equivariant, while the
neural network architecture is neither G-invariant nor G-equivariant. For example, a FC network is
not invariant to orthogonal transformations of the input. However, if we initialize it with Gaussian
weights and train with SGD, then the learning algorithm is equivariant to orthogonal transformations
of the input (see Proposition 2.5 below).

1.2 Contribution 1: Lower bounds for noisy gradient descent (GD)

Consider the supervised learning setup where we train a neural network fNN(·;✓) : X ! R
parametrized by ✓ 2 Rp to minimize the mean-squared error on a data distribution D 2 P(X ⇥ R),

`D(✓) = E(x,y)⇠D[(y � fNN(x;✓))
2]. (1)

The noisy Gradient Descent (GD) training algorithm randomly initializes ✓0 ⇠ µ✓ for some initial-
ization distribution µ✓ 2 P(Rp), and then iteratively updates the parameters with step size ⌘ > 0 in a
direction gD(✓k) approximating the population loss gradient, plus Gaussian noise ⇠k ⇠ N (0, ⌧2I),

✓k+1 = ✓k � ⌘gD(✓
k) + ⇠k. (GD)

Up to a constant factor, gD(✓) is the population loss gradient, except we have clipped the gradients of
the network with the projection operator ⇧B(0,R) to lie in the ball B(0, R) = {z : kzk2  R} ⇢ Rp,4

gD(✓) = �E(x,y)⇠D[(y � fNN(x;✓))(⇧B(0,R)r✓fNN(x;✓))].

Clipping the gradients is often used in practice to avoid instability from exploding gradients (see,
e.g., [ZHSJ19] and references within). In our context, clipping ensures that the injected noise ⇠k is
on the same scale as the gradient r✓fNN of the network and so it controls the gradients’ precision.
Similarly to the works [AS20, AKM+21, ACHM22], we consider noisy gradient descent training to
be efficient if the following conditions are met.
Definition 1.2 (Efficiency of GD, informal). GD training is efficient if the clipping radius R, step
size ⌘, and inverse noise magnitude 1/⌧ are all polynomially-bounded in d, since then (GD) can be
efficiently implemented using noisy minibatch SGD5.

We prove that some data distributions cannot be efficiently learned by G-equivariant GD training.
For this, we introduce the G-alignment:
Definition 1.3 (G-alignment). Let G be a compact group, let µX 2 P(X) be a distribution over
data points, and let f 2 L

2(µX) be a labeling function. The G-alignment of (µX , f) is:

C((µX , f);G) = sup
h

Eg⇠µG [Ex⇠µX [f(g(x))h(x)]
2],

where µG is the Haar measure of G and the supremum is over h 2 L
2(µX) such that khk2 = 1.

In our applications, we use tools from representation theory (see e.g., [Kna96]) to evaluate the
G-alignment. Using the G-alignment, we can prove a master theorem for lower bounds:
Theorem 1.4 (GD lower bound, informal statement of Theorem 3.1). Let Df 2 P(X ⇥ R) be the
distribution of (x, f(x)) for x ⇠ µX . If µX is G-invariant6 and the G-alignment of (µX , f) is small,
then f cannot be efficiently learned by a G-equivariant GD algorithm.

4Note that if fNN is an R-Lipschitz model, then gD(✓) will simply be the population gradient of the loss.
5Efficient implementability by minibatch SGD assumes bounded residual errors.
6Meaning that if x ⇠ µX , then for any g 2 G, we also have g(x) ⇠ µX .

3

Proof ideas We first make an observation of [Ng04]: if a G-equivariant algorithm can learn the
function f by training on the distribution Df , then, for any group element g 2 G, it can learn f � g

by training on the distribution Df�g. In other words, the algorithm can learn the class of functions
F = {f � g : g 2 g}, which can potentially be much larger than just the singleton set {f}. We
conclude by showing that the class of functions F cannot be efficiently learned by GD training. The
intuition is that the G-alignment measures the diversity of the functions in F . If the G-alignment is
small, then there is no function h that correlates with most of the functions in F , which can be used
to show F is hard to learn by gradient descent.

This type of argument appears in [AS20, ACHM22] in the specific case of Boolean functions and for
permutation equivariance; our proof both applies to a more general setting (beyond Boolean functions
and permutations) and yields sharper bounds; see Appendix A.3. Our bound can also be interpreted
in terms of the Statistical Query framework, as we discuss in Appendix A.4. While Theorem 1.4 is
intuitively simple, we demonstrate its power and ease-of-use by deriving two new applications.

Application: Characterization of weak-learnability by fully-connected (FC) networks In our
first application, we consider weak-learnability: when can a function be learned non-negligibly
better than just outputting the estimate fNN ⌘ 0? Using Theorem 1.4, we characterize which
functions over the binary hypercube f : {+1,�1}d ! R and over the sphere f : Sd�1

! R are
efficiently weak-learnable by GD-trained FC networks with i.i.d. symmetric and i.i.d. Gaussian
initialization, respectively. The takeaway is that a function f : {+1,�1}d ! R is weak-learnable if
and only if it has a nonnegligible Fourier coefficient of order O(1) or d�O(1). Similarly, a function
f : Sd�1

! R is weak-learnable if and only if it has nonnegligible projection onto the degree-O(1)
spherical harmonics. Perhaps surprisingly, such functions can be efficiently weak-learned by 2-layer
fully-connected networks, which shows that adding more depth does not help. This application is
presented in Section 3.1.

Application: Evidence for the staircase property In our second application, we consider learning
a target function f : {+1,�1}d ! R that only depends on the first P coordinates, f(x) =
h(x1, . . . , xP). Our regime of interest here is when the function hand : {+1,�1}P ! R remains
fixed and the dimension d grows, since this models the situation where a latent low-dimensional
space determines the labels in a high-dimensional dataset. Recently, [ABM22] studied SGD-training
of mean-field two-layer networks, and gave a near-characterization of which functions can be
learned to arbitrary accuracy ✏ in Oh,✏(d) samples, in terms of the merged-staircase property (MSP).
Using Theorem 1.4, we prove that the MSP is necessary for GD-learnability whenever training is
permutation-equivariant (which applies beyond the 2-layer mean-field regime) and we also generalize
it beyond leaps of size 1. Details are in Section 3.2.

1.3 Contribution 2: Hardness for stochastic gradient descent (SGD)

The second part of this paper concerns Stochastic Gradient Descent (SGD) training, which randomly
initializes the weights ✓0 ⇠ µ✓ , and then iteratively trains the parameters with the following update
rule to try to minimize the loss (1):

✓k+1 = ✓k � ⌘r✓(y � fNN(xk+1;✓))
2
|✓=✓k , (SGD)

where (yk+1,xk+1) ⇠ D is a fresh sample on each iteration, and ⌘ > 0 is the learning rate.7

Proving computational lower bounds for SGD is a notoriously difficult problem [AKM+21], exacer-
bated by the fact that for general architectures SGD can be used to simulate any polynomial-time
learning algorithm [AS20]. However, we demonstrate that one can prove hardness results for SGD
training based off of cryptographic assumptions when the training algorithm has a large equivariance
group. We demonstrate the non-universality of SGD on a standard FC architecture.
Theorem 1.5 (Hardness for SGD, informal statement of Theorem 4.4). Under the assumption that the
Learning Parities with Noise (LPN) problem8 is hard, FC neural networks with Gaussian initialization

7For brevity, we focus on one-pass SGD with a single fresh sample per iteration. Our results extend to
empirical risk minimization (ERM) setting and to mini-batch SGD, see Remark E.1.

8See Section 4 and Appendix D.3 for definitions and discussion on LPN.

4

trained by SGD cannot learn fmod8 : {+1,�1}d ! {0, . . . , 7},

fmod8(x) ⌘
dX

i=1

xi (mod 8),

in polynomial time from noisy samples (x, fmod8(x) + ⇠) where x ⇠ {+1,�1}d and ⇠ ⇠ N (0, 1).

This result shows a limitation of SGD training based on an average-case reduction from a crypto-
graphic problem. The closest prior result is in [Sha18], which proved hardness results for learning
with SGD on FC networks, but required preprocessing the data with a whitening transformation.

Proof idea The FC architecture and Gaussian initialization are necessary: an architecture that
outputted fmod8(x) at initialization would trivially achieve zero loss. However, SGD on Gaussian-
initialized FC networks is sign-flip equivariant, and this symmetry makes fmod8 hard to learn. If
a sign-flip equivariant algorithm can learn the function fmod8(x) from noisy samples, then it can
learn the function fmod8(x� s) from noisy samples, where s 2 {+1,�1}d is an unknown sign-flip
vector, and � denotes elementwise product. However, this latter problem is hard under standard
cryptographic assumptions. More details in Section 4.

2 Preliminaries

Notation Let Hd = {+1,�1}d be the binary hypercube, and Sd�1 = {x 2 Rd : kxk2 = 1} be
the unit sphere. The law of a random variable X is L(X). If S is a finite set, then X ⇠ S stands for
X ⇠ Unif[S]. Also let x ⇠ Sd�1 denote x drawn from the uniform Haar measure on Sd�1. For a set
⌦, let P(⌦) be the set of distributions on ⌦. Let � be the elementwise product. For any µX 2 P(X),
and group G acting on X , we say µX is G-invariant if g(x) d

= x for x ⇠ µX and any g 2 G.

2.1 Equivariance of GD and SGD

We define GD and SGD equivariance separately.
Definition 2.1. Let AGD be the algorithm that takes in data distribution D 2 P(X ⇥ R), runs (GD)
on initialization ✓0 ⇠ µ✓ for k steps, and outputs the function A

GD(D) = fNN(·;✓k)

We say “(fNN, µ✓)-GD is G-equivariant” if AGD is G-equivariant in the sense of Definition 1.1.
Definition 2.2. Let ASGD be the algorithm that takes in samples (xi, yi)i2[n], runs (SGD) on
initialization ✓0 ⇠ µ✓ for n steps, and outputs ASGD((xi, yi)i2[n]) = fNN(·;✓k).

We say “(fNN, µ✓)-SGD is G-equivariant” if ASGD((xi, yi)i2[n])
d
= A

SGD((g(xi), yi)i2[n]) � g for
any g 2 G, and any samples (xi, yi)i2[n].

2.2 Regularity conditions on networks imply equivariances of GD and SGD

We take a data space X ✓ Rd, and consider the following groups that act on Rd.
Definition 2.3. Define the following groups and actions:

• Let Gperm = Sd denote the group of permutations on [d]. An element � 2 Gperm acts on
x 2 Rd in the standard way: �(x) = (x�(1), . . . , x�(d)).

• Let Gsign,perm denote the group of signed permutations, an element g = (s,�) 2 Gsign,perm

is given by a sign-flip vector s 2 Hd and a permutation � 2 Gperm. It acts on x 2 Rd by
g(x) = s� �(x) = (s1x�(1), . . . , sdx�(d)).9

• Let Grot = SO(d) ✓ GL(d,R) denote the rotation group. An element g 2 Grot is a
rotation matrix that acts on x 2 Rd by matrix multiplication.

9The group product is g1g2 = (s1,�1)(s2,�2) = (s1 � �1(s2),�1 � �2).

5

Under mild conditions on the neural network architecture and initialization, GD and SGD training
are known to be Gperm-, Gsign,perm-, or Grot-equivariant [Ng04, LZA21].
Assumption 2.4 (Fully-connected i.i.d. first layer and no skip connections from the input). We can
decompose the parameters as ✓ = (W ,), where W 2 Rm⇥d is the matrix of the first-layer weights,
and there is a function gNN(·;) : Rm

! R such that fNN(x;✓) = gNN(Wx;). Furthermore, the
initialization distribution is µ✓ = µW ⇥ µ , where µW = µ

⌦(m⇥d)
w for µw 2 P(R).

Notice that Assumption 2.4 is satisfied by FC networks with i.i.d. initialization. Under assumptions
on µw, we obtain equivariances of GD and SGD (see Appendix E for proofs.)
Proposition 2.5 ([Ng04, LZA21]). Under Assumption 2.4, GD and SGD are Gperm-equivariant. If
µw is sign-flip symmetric, then GD and SGD are Gsign,perm-equivariant. If µw = N (0,�2) for some
�, then GD and SGD are Grot-equivariant.

3 Lower bounds for learning with GD

In this section, let D(f, µX) 2 P(X ⇥ R) denote the distribution of (x, f(x)) where x ⇠ µX .

We give a master theorem for computational lower bounds for learning with G-equivariant GD.
Theorem 3.1 (GD lower bound using G-alignment). Let G be a compact group, and let fNN(·;✓) :
X ! R be an architecture and µ✓ 2 P(Rp) be an initialization such that GD is G-equivariant.

Fix any G-invariant distribution µX 2 P(X), any label function f⇤ 2 L
2(µX), and any baseline

function ↵ 2 L
2(µX) satisfying ↵ � g = ↵ for all g 2 G. Let ✓k be the random weights after k

time-steps of GD training with noise parameter ⌧ > 0, step size ⌘ > 0, and clipping radius R > 0
on the distribution D = D(f⇤, µX). Then, for any ✏ > 0,

P✓k [`D(✓
k)  kf⇤ � ↵k

2
L2(µX) � ✏] 

⌘R
p
kC

2⌧
+

C

✏
,

where C = C((f⇤ � ↵, µX);G) is the G-alignment of Definition 1.3.

As discussed in Section 1.2, the theorem states that if the G-alignment C is very small, then GD
training cannot efficiently improve on the trivial loss from outputting ↵: either the number of steps k,
the gradient precision R/⌧ , or the step size ⌘ have to be very large in order to learn. Appendix A
shows a generalization of the theorem for learning a class of functions F = {f1, . . . , fm} instead
of just a single function f⇤. This result goes beyond the lower bound of [AS20] even when G is
the trivial group with one element: the main improvement is that Theorem 3.1 proves hardness for
learning real-valued functions beyond just Boolean-valued functions. We demonstrate the usefulness
of the theorem through two new applications in Sections 3.1 and 3.2.

3.1 Application: Characterizing weak-learnability by FC networks

In our first application of Theorem 3.1, we consider FC architectures with i.i.d. initialization, and
show how to use their training equivariances to characterize what functions they can weak-learn: i.e.,
for what target functions f⇤ they can efficiently achieve a non-negligible correlation after training.
Definition 3.2 (Weak learnability). Let {µd}d2N be a family of distributions µd 2 P(Xd), and let
{fd}d2N be a family of functions fd 2 L

2(µd). Finally, let {f̃d}d2N be a family of estimators, where
f̃d is a random function in L

2(µd). We say that {fd, µd}d2N is “weak-learned” by the family of
estimators {f̃d}d2N if there are constants d0, C > 0 such that for all d > d0,

Pf̃d
[kfd � f̃dk

2
L2(µd)

 kfdk
2
L2(µd)

� d
�C] � 9/10. (2)

The constant 9/10 in the definition is arbitrary. In words, weak-learning measures whether the
family of estimators {f̃d} has a non-negligible edge over simply estimating with the identically zero
functions f̃d ⌘ 0. We study weak-learnability by GD-trained FC networks.
Definition 3.3. We say that {fd, µd}d2N is efficiently weak-learnable by GD-trained FC networks if
there are FC networks and initializations {fNN,d, µ✓,d}, and hyperparameters {⌘d, kd, Rd, ⌧d} such
that for some constant c > 0,

6

• Hyperparameters are polynomial size: 0  ⌘d, kd, Rd, 1/⌧d  O(dc);

• {f̃d} weak-learns {fd, µd} in the sense of Definition 3.2, where f̃d = fNN(·;✓d) for weights
✓d that are GD-trained on D(fd, µd) for kd steps with step size ⌘d, clipping radius Rd, and
noise ⌧d, starting from initialization µ✓,d.

If µ✓,d is i.i.d copies of a symmetric distribution, we say that the FC networks are symmetrically-
initialized, and Gaussian-initialized if µ✓,d is i.i.d. copies of a Gaussian distribution.

3.1.1 Functions on hypercube, FC networks with i.i.d. symmetric initialization

Let us first consider functions on the Boolean hypercube f : Hd ! R. These can be uniquely written
as a multilinear polynomial

f(x) =
X

S✓[d]

f̂(S)
Y

i2S

xi,

where f̂(S) are the Fourier coefficients of f [O’D14]. We characterize weak learnability of functions
on the hypercube in terms of their Fourier coefficients. The full proof is deferred to Appendix B.1.
Theorem 3.4. Let {fd}d2N be a family of functions fd : Hd ! R with kfdkL2(Hd)  1. Then
{fd,Hd} is efficiently weak-learnable by GD-trained symmetrically-initialized FC networks if and
only if there is a constant C > 0 such that for each d 2 N there is Sd ✓ [d] with |Sd|  C or
|Sd| � d� C, and |f̂d(Sd)| � ⌦(d�C).

The algorithmic result can be achieved by two-layer FC networks, and relies on random features
analysis where each network weight is initialized to 0 with probability 1 � p, and +1 or �1 with
equal probability p/2.10 Therefore, for weak learning on the hypercube, two-layer networks are as
good as networks of any depth. For the converse impossibility result, we apply Theorem 3.1, recalling
that GD is Gsign,perm-equivariant by Proposition 2.5, and noting that Gsign,perm-alignment is:

Lemma 3.5. Let f : Hd ! R. Then C((f,Hd);Gsign,perm) = maxk2[d]

�d
k

��1P
S✓[d]
|S|=k

f̂(S)2.

Proof. In the following, let s ⇠ Hd and � ⇠ Gperm, so that g = (s,�) ⇠ Gsign,perm. Also let
x,x0

⇠ Hd be independent. For any h : Hd ! R, by (a) tensorizing, (b) expanding f in the Fourier
basis, (c) the orthogonality relation Es[�S(s)�S0(s)] = �S,S0 , and (d) tensorizing,

Eg[Ex[f(g(x))h(x)]
2] = E�,s[Ex[f(s� �(x))h(x)]2]

(a)
= E�,s,x,x0 [f(s� �(x))f(s� �(x0))h(x)h(x0)]

(b)
= Ex,x0,�[

X

S,S0✓[d]

f̂(S)f̂(S0)h(x)h(x0)�S(�(x))�S0(�(x0))Es[�S(s)�S0(s)]]

(c)
= Ex,x0,�[

X

S✓[d]

f̂(S)2h(x)h(x0)�S(�(x))�S(�(x
0))]

(d)
= E�[

X

S✓[d]

f̂(S)2 Ex[h(x)�S(�(x))]
2]

=
X

S✓[d]

f̂(S)2 E�[ĥ(�
�1(S))2]

=
X

S✓[d]

f̂(S)2
✓

d

|S|

◆�1 X

S0,|S0|=|S|

ĥ(S0)2.

And since
P

S0,|S0|=|S|
ĥ(S0)2  khk

2
L2(Hd)

, the supremum over h such that khkL2(Hd) = 1 is
achieved by taking h(x) = �S(x) for some S.

10Surprisingly, this means that the full parity function f⇤(x) =
Qd

i=1 xi can be efficiently learned with such
initializations. See Appendix B.

7

So if the Fourier coefficients of f are negligible for all S s.t. min(|S|, d � |S|)  O(1), then the
Gsign,perm-alignment of f is negligible. By Theorem 3.1, this means f cannot be learned efficiently.
In Appendix B.1.2 we give a concrete example of a hard function, that was not previously known.

3.1.2 Functions on sphere, FC networks with i.i.d. Gaussian initialization

We now study learning a target function on the unit sphere, f 2 L
2(Sd�1), where we take the standard

Lebesgue measure on Sd�1. A key fact in harmonic analysis is that L2(Sd�1) can be written as the
direct sum of subspaces spanned by spherical harmonics of each degree (see, e.g., [Hoc12]).

L
2(Sd�1) =

1M

l=0

Vd,l,

where Vd,l ✓ L
2(Sd�1) is the space of degree-l spherical harmonics, which is of dimension

dim(Vd,l) =
2l + d� 2

l

✓
l + d� 3

l � 1

◆
.

Let ⇧Vd,l : L
2(Sd�1) ! Vd,l be the projection operator to the space of degree-l spherical harmonics.

In Appendix B.2, we prove this characterization of weak-learnability for functions on the sphere:
Theorem 3.6. Let {fd}d2N be a family of functions fd : Sd�1

! R with kfdkL2(Sd�1)  1. Then
{fd, Sd�1

} is efficiently weak-learnable by GD-trained Gaussian-initialized FC networks if and only
if there is a constant C > 0 such that

PC
l=0 k⇧Vd,lfdk

2
� d

�C .

The algorithmic result can again be achieved by two-layer FC networks, and is a consequence of the
analysis of the random feature kernel in [GMMM21], which shows that the projection of fd onto
the low-degree spherical harmonics can be efficiently learned. For the impossibility result, we apply
Theorem 3.1, noting that GD is Grot-equivariant by Proposition 2.5, and the Grot-alignment is:
Lemma 3.7. Let f 2 L

2(Sd�1). Then C((f, Sd�1);Grot) = maxl2Z�0
k⇧Vd,lfk

2
/ dim(Vd,l).

Proof. The Grot-alignment is computed using the representation theory of Grot, specifically the Schur
orthogonality theorem (see, e.g., [Ser77, Kna96]). For any l, the subspace Vd,l is invariant to action
by Grot, meaning that we may define the representation �l of Grot, which for any g 2 Grot, f 2 Vd,l

is given by �l(g) : Vd,l ! Vd,l and �l(g)f = f � g
�1. Furthermore, �l is a unitary, irreducible

representation, and �l is not equivalent to �l0 , for any l 6= l
0 (see e.g., [Sta90, Theorem 1]).

Therefore, by the Schur orthogonality relations [Kna96, Corollary 4.10], for any v1, w1 2 Vd,l1 and
v2, w2 2 Vd,l2 , we have

Eg⇠Grot [h�l1(g)v1, w1iL2(Sd�1)h�l2(g)v2, w2iL2(Sd�1)]

= �l1l2hv1, v2iL2(Sd�1)hw1, w2iL2(Sd�1)/ dim(Vd,l1). (3)

Let g ⇠ Grot, drawn from the Haar probability measure. For any h 2 L
2(Sd�1) such that

khk
2
L2(Sd�1) = 1, by (a) the decomposition of L2(Sd�1) into subspaces of spherical harmonics,

(b) the Grot-invariance of each subspace Vd,l, and (c) the Schur orthogonality relations in (3),

Eg[hf � g, hi
2
L2(Sd�1)]

(a)
=

1X

l1,l2=0

Eg[h⇧Vd,l1
(f � g),⇧Vd,l1

hiL2(Sd�1)h⇧Vd,l2
(f � g),⇧Vd,l2

hiL2(Sd�1)]

(b)
=

1X

l1,l2=0

Eg[h(⇧Vd,l1
f) � g,⇧Vd,l1

hiL2(Sd�1)h(⇧Vd,l2
f) � g,⇧Vd,l2

hiL2(Sd�1)]

(c)
=

1X

l=0

1

dim(Vd,l)
k⇧Vd,lfk

2
L2(Sd�1)k⇧Vd,lhk

2
L2(Sd�1)



1X

l=0

k⇧Vd,lhk
2
L2(Sd�1)

!
max
l2Z�0

1

dim(Vd,l)
k⇧Vd,lfk

2
L2(Sd�1)

= max
l2Z�0

1

dim(Vd,l)
k⇧Vd,lfk

2
L2(Sd�1).

8

Let l⇤ be the optimal value of l in the last line, which is known to exist by the fact that k⇧Vd,lfk
2


kfk
2 and dim(Vd,l) ! 1 as l ! 1. The inequality is achieved by h = ⇧Vd,l⇤ f/k⇧Vd,l⇤ fk.

This implies that the Grot-alignment of f is negligible if and only if its projection to the low-order
spherical harmonics is negligible. By Theorem 3.1, this implies the necessity result of Theorem 3.6.

3.2 Application: Extending the merged-staircase property necessity result

In our second application, we study the setting of learning a sparse function on the binary hypercube
(a.k.a. a junta) that depends on only P  d coordinates of the input x, i.e.,

f⇤(x) = h⇤(x1, . . . , xP),

where h⇤ : HP ! R. The regime of interest to us is when h⇤ is fixed and d ! 1, representing a
hidden signal in a high-dimensional dataset. This setting was studied by [ABM22], who identified
the “merged-staircase property” (MSP) as an extension of [ABB+21]. We generalize the MSP below.
Definition 3.8 (l-MSP). For l 2 Z+ and h⇤ : HP ! R, we say that h⇤ satisfies the merged staircase
property with leap l (i.e., l-MSP) if its set of nonzero Fourier coefficients S = {S : ĥ⇤(S) 6= ;} can
be ordered as S = {S1, . . . , Sm} such that for all i 2 [m], |Si \ [j<iSj |  l.

For example, h⇤(x) = x1 + x1x2 + x1x2x3 satisfies 1-MSP; h⇤(x) = x1x2 + x1x2x3 satisfies
2-MSP, but not 1-MSP because of the leap required to learn x1x2; similarly h⇤(x) = x1x2x3 + x4

satisfies 3-MSP but not 2-MSP. If h⇤ satisfies l-MSP for some small l, then the function f⇤ can be
learned greedily in an efficient manner, by iteratively discovering the coordinates on which it depends.
In [ABM22] it was proved that the 1-MSP property nearly characterized which sparse functions could
be ✏-learned in O✏,h⇤(d) samples by one-pass SGD training in the mean-field regime.

We prove the MSP necessity result for GD training. On the one hand, our necessity result is for a
different training algorithm, GD, which injects noise during training. On the other, our result is much
more general since it applies whenever GD is permutation-equivariant, which includes training of
FC networks and ResNets of any depth (whereas the necessity result of [ABM22] applies only to
two-layer architectures in the mean-field regime). We also generalize the result to any leap l.
Theorem 3.9 (l-MSP necessity). Let fNN(·;✓) : Hd ! R be an architecture and µ✓ 2 P(Rp) be
an initialization such that GD is Gperm-equivariant. Let ✓k be the random weights after k steps
of GD training with noise parameter ⌧ > 0, step size ⌘, and clipping radius R on the distribution
D = D(f⇤,Hd). Suppose that f⇤(x) = h⇤(z) where h⇤ : HP ! R does not satisfy l-MSP for some
l 2 Z+. Then there are constants C, ✏0 > 0 depending on h⇤ such that

P✓k [`D(✓
k)  ✏0] 

C⌘R

2⌧

r
k

dl+1
+

C

dl+1
.

The interpretation is that if h⇤ does not satisfy l-MSP, then to learn f⇤ to better than ✏0 error
with constant probability, we need at least ⌦h⇤,✏(d

l+1) steps of (GD) on a network with step size
⌘ = Oh⇤,✏(1), clipping radius R = Oh⇤,✏(1), and noise level ⌧ = ⌦h⇤,✏(1). The proof is deferred to
Appendix C. It proceeds by first isolating the “easily-reachable” coordinates T ✓ [P], and subtracting
their contribution from f⇤. We then bound G-alignment of the resulting function, where G is the
permutation group on [d] \ T .

4 Hardness for learning with SGD

In this section, for � > 0, we let D(f, µX , �) 2 P(X ⇥ R) denote the distribution of (x, f(x) + ⇠)
where x ⇠ µX and ⇠ ⇠ N (0, �2) is independent noise.

We show that the equivariance of SGD on certain architectures implies that the function fmod8 :
Hd ! {0, . . . , 7} given by

fmod8(x) ⌘
X

i

xi (mod 8) (4)

is hard for SGD-trained, i.i.d. symmetrically-initialized FC networks. Our hardness result relies
on a cryptographic assumption to prove superpolynomial lower bounds for SGD learning. For any
S ✓ [d], let �S : Hd ! {+1,�1} be the parity function �S(x) =

Q
i2S xi.

9

Definition 4.1. The learning parities with Gaussian noise, (d, n, �)-LPGN, problem is parametrized
by d, n 2 Z>0 and � 2 R>0. An instance (S, q, (xi, yi)i2[n]) consists of (i) an unknown subset
S ✓ [d] of size |S| = bd/2c, and (ii) a known query vector q ⇠ Hd, and i.i.d. samples (xi, yi)i2[n] ⇠

D(�S ,Hd, �). The task is to return �S(q) 2 {+1,�1}.11

Our cryptographic assumption is that poly(d)-size circuits cannot succeed on LPGN.
Definition 4.2. Let � > 0. We say �-LPGN is poly(d)-time solvable if there is a sequence of
sample sizes {nd}d2N and circuits {Ad}d2N such that nd, size(Ad)  poly(d), and Ad solves
(d, nd, �)-LPGN with success probability at least 9/10, when inputs are rounded to poly(d) bits.
Assumption 4.3. Fix �. The �-LPGN-hardness assumption is: �-LPGN is not poly(d)-time solvable.

The LPGN problem is the simply standard Learning Parities with Noise problem (LPN) [BKW03],
except with Gaussian noise instead of binary classification noise, and we are also promised that
|S| = bd/2c. In Appendix D.3, we derive Assumption 4.3 from the standard hardness of LPN. We
now state our SGD hardness result.
Theorem 4.4. Let {fNN,d, µ✓,d}d2N be a family of networks and initializations satisfying Assump-
tion 2.4 (fully-connected) with i.i.d. symmetric initialization. Let � > 0, and let {nd} be sample sizes
such that (fNN,d, µ✓,d)-SGD training on nd samples from D(fmod8,Hd, �) rounded to poly(d) bits
yields parameters ✓d with

E✓d [kfmod8 � fNN(·;✓d)k
2]  0.0001.

Then, under (�/2)-LPGN hardness, (fNN,d, µ✓,d)-SGD on nd samples cannot run in poly(d) time.

In order to prove Theorem 4.4, we use the sign-flip equivariance of gradient descent guaranteed by
the symmetry in the initialization. A sign-flip equivariant network that learns fmod8(x) from �-noisy
samples, is capable of solving the harder problem of learning fmod8(x� s) from �-noisy samples,
where s 2 Hd is an unknown sign-flip vector. However, through an average-case reduction we show
that this problem is (�/2)-LPGN-hard. Therefore the theorem follows by contradiction.

5 Discussion

The general GD lower bound in Theorem 3.1 and the approach for basing hardness of SGD training
on cryptographic assumptions in Theorem 4.4 could be further developed to other settings.

There are limitations of the results to address in future work. First, the GD lower bound requires
adding noise to the gradients, which can hinder training. Second, real-world data distributions are
typically not invariant to a group of transformations, so the results obtained by this work may not
apply. It is open to develop results for distributions that are approximately invariant.

Finally, it is open whether computational lower bounds for SGD/GD training can be shown beyond
those implied by equivariance. For example, consider the function f : Hd ! {+1,�1} that computes
the “full parity”, i.e., the parity of all of the inputs f(x) =

Qd
i=1 xi. Past work has empirically

shown that SGD on FC networks with Gaussian initialization [SSS17, AS20, NY21] fails to learn this
function. Proving this would represent a significant advance, since there is no obvious equivariance
that implies that the full parity is hard to learn — in fact we have shown weak-learnability with
symmetric Rad(1/2) initialization, in which case training is Gsign,perm-equivariant.

Acknowledgements

We thank Jason Altschuler, Guy Bresler, Elisabetta Cornacchia, Sonia Hashim, Jan Hazla, Hannah
Lawrence, Theodor Misiakiewicz, Dheeraj Nagaraj, and Philippe Rigollet for stimulating discussions.
We thank the Simons Foundation and the NSF for supporting us through the Collaboration on the
Theoretical Foundations of Deep Learning (deepfoundations.ai). This work was done in part while
E.B. was visiting the Simons Institute for the Theory of Computing and the Bernoulli Center at EPFL,
and was generously supported by Apple with an AI/ML fellowship.

11More formally, one would express this as a probabilistic promise problem [Ale03].

10

References

[ABB+21] E. Abbe, E. Boix-Adsera, M. S. Brennan, G. Bresler, and D. Nagaraj. The staircase
property: How hierarchical structure can guide deep learning. Advances in Neural
Information Processing Systems, 34:26989–27002, 2021.

[ABM22] E. Abbe, E. Boix-Adsera, and T. Misiakiewicz. The merged-staircase property: a
necessary and nearly sufficient condition for sgd learning of sparse functions on two-
layer neural networks. arXiv preprint arXiv:2202.08658, 2022.

[ACHM22] E. Abbe, E. Cornacchia, J. Hązła, and C. Marquis. An initial alignment between
neural network and target is needed for gradient descent to learn. arXiv preprint
arXiv:2202.12846, 2022.

[AKM+21] E. Abbe, P. Kamath, E. Malach, C. Sandon, and N. Srebro. On the power of differ-
entiable learning versus PAC and SQ learning. In Advances in Neural Information
Processing Systems, volume 34, 2021.

[AL19] Z. Allen-Zhu and Y. Li. What can resnet learn efficiently, going beyond kernels?
Advances in Neural Information Processing Systems, 32, 2019.

[AL20] Z. Allen-Zhu and Y. Li. Backward feature correction: How deep learning performs
deep learning. arXiv preprint arXiv:2001.04413, 2020.

[Ale03] M. Alekhnovich. More on average case vs approximation complexity. In 44th Annual
IEEE Symposium on Foundations of Computer Science, 2003. Proceedings., pages
298–307. IEEE, 2003.

[AS20] E. Abbe and C. Sandon. Poly-time universality and limitations of deep learning. arXiv
preprint arXiv:2001.02992, 2020.

[BAO+20] A. Bogatskiy, B. Anderson, J. Offermann, M. Roussi, D. Miller, and R. Kondor. Lorentz
group equivariant neural network for particle physics. In International Conference on
Machine Learning, pages 992–1002. PMLR, 2020.

[Bar93] A. R. Barron. Universal approximation bounds for superpositions of a sigmoidal
function. IEEE Transactions on Information theory, 39(3):930–945, 1993.

[BBCV21] M. M. Bronstein, J. Bruna, T. Cohen, and P. Velicković. Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478, 2021.

[BBH18] M. Brennan, G. Bresler, and W. Huleihel. Reducibility and computational lower bounds
for problems with planted sparse structure. In Conference On Learning Theory, pages
48–166. PMLR, 2018.

[BCB14] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to
align and translate. arXiv preprint arXiv:1409.0473, 2014.

[BF02] N. H. Bshouty and V. Feldman. On using extended statistical queries to avoid member-
ship queries. Journal of Machine Learning Research, 2(Feb):359–395, 2002.

[BIK90] S. Ben-David, A. Itai, and E. Kushilevitz. Learning by distances. In COLT, pages
232–245, 1990.

[BKW03] A. Blum, A. Kalai, and H. Wasserman. Noise-tolerant learning, the parity problem,
and the statistical query model. Journal of the ACM (JACM), 50(4):506–519, 2003.

[Boi20] E. Boix-Adsera. Average-case statistical query algorithms, 2020. Report for MDS Lab
Internship.

[BVB21] A. Bietti, L. Venturi, and J. Bruna. On the sample complexity of learning under
geometric stability. Advances in Neural Information Processing Systems, 34, 2021.

[BZSL13] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral networks and locally
connected networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

[Ele21] B. Elesedy. Provably strict generalisation benefit for invariance in kernel methods.
Advances in Neural Information Processing Systems, 34, 2021.

[Ele22] B. Elesedy. Group symmetry in pac learning. In ICLR 2022 Workshop on Geometrical
and Topological Representation Learning, 2022.

11

[EZ21] B. Elesedy and S. Zaidi. Provably strict generalisation benefit for equivariant models.
In International Conference on Machine Learning, pages 2959–2969. PMLR, 2021.

[GMMM21] B. Ghorbani, S. Mei, T. Misiakiewicz, and A. Montanari. Linearized two-layers neural
networks in high dimension. The Annals of Statistics, 49(2):1029–1054, 2021.

[GMS05] M. Gori, G. Monfardini, and F. Scarselli. A new model for learning in graph domains. In
Proceedings. 2005 IEEE international joint conference on neural networks, volume 2,
pages 729–734, 2005.

[Hoc12] H. Hochstadt. The functions of mathematical physics. Courier Corporation, 2012.

[HSSV21] D. Hsu, C. Sanford, R. A. Servedio, and E. Vlatakis-Gkaragkounis. On the approxima-
tion power of two-layer networks of random relus. arXiv preprint arXiv:2102.02336,
2021.

[Hsu] D. Hsu. Dimension lower bounds for linear approaches to function approximation.

[HZRS16] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages
770–778, 2016.

[JGH18] A. Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: Convergence and gener-
alization in neural networks. Advances in neural information processing systems, 31,
2018.

[Kea98] M. Kearns. Efficient noise-tolerant learning from statistical queries. Journal of the
ACM (JACM), 45(6):983–1006, 1998.

[KMS20] P. Kamath, O. Montasser, and N. Srebro. Approximate is good enough: Probabilistic
variants of dimensional and margin complexity. In Conference on Learning Theory,
pages 2236–2262. PMLR, 2020.

[Kna96] A. W. Knapp. Lie groups beyond an introduction, volume 140. Springer, 1996.

[KSH12] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. Advances in neural information processing systems, 25,
2012.

[LB+95] Y. LeCun, Y. Bengio, et al. Convolutional networks for images, speech, and time series.
The handbook of brain theory and neural networks, 3361(10):1995, 1995.

[LCC+22] Y. Li, D. Choi, J. Chung, N. Kushman, J. Schrittwieser, R. Leblond, T. Eccles, J. Keel-
ing, F. Gimeno, A. D. Lago, et al. Competition-level code generation with alphacode.
arXiv preprint arXiv:2203.07814, 2022.

[LKF10] Y. LeCun, K. Kavukcuoglu, and C. Farabet. Convolutional networks and applications in
vision. In Proceedings of 2010 IEEE international symposium on circuits and systems,
pages 253–256. IEEE, 2010.

[LZA21] Z. Li, Y. Zhang, and S. Arora. Why are convolutional nets more sample-efficient than
fully-connected nets? In International Conference on Learning Representations, 2021.

[Mis22] T. Misiakiewicz. Spectrum of inner-product kernel matrices in the polynomial
regime and multiple descent phenomenon in kernel ridge regression. arXiv preprint
arXiv:2204.10425, 2022.

[MM21] T. Misiakiewicz and S. Mei. Learning with convolution and pooling operations in
kernel methods. arXiv preprint arXiv:2111.08308, 2021.

[MMM21] S. Mei, T. Misiakiewicz, and A. Montanari. Learning with invariances in random
features and kernel models. In Conference on Learning Theory, pages 3351–3418.
PMLR, 2021.

[MS20] E. Malach and S. Shalev-Shwartz. Computational separation between convolutional
and fully-connected networks. arXiv preprint arXiv:2010.01369, 2020.

[Ng04] A. Y. Ng. Feature selection, l 1 vs. l 2 regularization, and rotational invariance. In
Proceedings of the twenty-first international conference on Machine learning, page 78,
2004.

12

[NY21] I. Nachum and A. Yehudayoff. On symmetry and initialization for neural networks.
In Latin American Symposium on Theoretical Informatics, pages 401–412. Springer,
2021.

[O’D14] R. O’Donnell. Analysis of boolean functions. Cambridge University Press, 2014.
[Rey20] L. Reyzin. Statistical queries and statistical algorithms: Foundations and applications.

arXiv preprint arXiv:2004.00557, 2020.
[Ser77] J.-P. Serre. Linear representations of finite groups, volume 42. Springer, 1977.
[Sha18] O. Shamir. Distribution-specific hardness of learning neural networks. The Journal of

Machine Learning Research, 19(1):1135–1163, 2018.
[SHS+18] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot,

L. Sifre, D. Kumaran, T. Graepel, et al. A general reinforcement learning algorithm
that masters chess, shogi, and go through self-play. Science, 362(6419):1140–1144,
2018.

[SNPP19] S. Schubert, P. Neubert, J. Pöschmann, and P. Protzel. Circular convolutional neural
networks for panoramic images and laser data. In 2019 IEEE Intelligent Vehicles
Symposium (IV), pages 653–660. IEEE, 2019.

[SSS17] S. Shalev-Shwartz, O. Shamir, and S. Shammah. Failures of gradient-based deep
learning. In International Conference on Machine Learning, pages 3067–3075. PMLR,
2017.

[Sta90] D. Stanton. An introduction to group representations and orthogonal polynomials. In
Orthogonal Polynomials, pages 419–433. Springer, 1990.

[Val84] L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–
1142, 1984.

[VCC+17] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio. Graph
attention networks. stat, 1050:20, 2017.

[VSP+17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

[WLLM19] C. Wei, J. D. Lee, Q. Liu, and T. Ma. Regularization matters: Generalization and
optimization of neural nets vs their induced kernel. Advances in Neural Information
Processing Systems, 32, 2019.

[ZHSJ19] J. Zhang, T. He, S. Sra, and A. Jadbabaie. Why gradient clipping accelerates training:
A theoretical justification for adaptivity. arXiv preprint arXiv:1905.11881, 2019.

13

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [N/A]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [N/A]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [N/A]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [N/A]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14

	Introduction
	Related work
	Contribution 1: Lower bounds for noisy gradient descent (GD)
	Contribution 2: Hardness for stochastic gradient descent (SGD)

	Preliminaries
	Equivariance of GD and SGD
	Regularity conditions on networks imply equivariances of GD and SGD

	Lower bounds for learning with GD
	Application: Characterizing weak-learnability by FC networks
	Functions on hypercube, FC networks with i.i.d. symmetric initialization
	Functions on sphere, FC networks with i.i.d. Gaussian initialization

	Application: Extending the merged-staircase property necessity result

	Hardness for learning with SGD
	Discussion
	Lower bound for GD, Proof of Theorem 3.1 and generalization
	Proof of Theorem A.2
	Proof of Theorem A.4
	Remark: relation to bound based on cross-predictability, and efficiently verifying G-alignment is small
	Remark: alternative proof using the statistical query lens

	Characterization of weak-learnability by GD
	Functions on Boolean hypercube: proof of Theorem 3.4
	Functions on unit sphere: proof of Theorem 3.6

	Extension of MSP necessity result, proof of Theorem 3.9
	Hardness results for SGD
	Warm-up: hardness from permutation equivariance
	Hardness from sign-flip equivariance, proof of Theorem 4.4
	On the cryptographic assumption that LPGN is hard

	On the equivariance of SGD and GD

