
Neural Shape Deformation Priors

Jiapeng Tang1 Lev Markhasin2 Bi Wang2 Justus Thies3 Matthias Nießner1

1 Technical University of Munich 2 Sony Europe RDC Stuttgart
3 Max Planck Institute for Intelligent Systems, Tübingen, Germany

Figure 1: Neural shape deformation priors allow for intuitive shape manipulation of existing source
meshes. A user can create novel shapes by dragging handles (red circles) defined on the region of
interest (red regions) to desired locations (blue circles).

Abstract

We present Neural Shape Deformation Priors, a novel method for shape manip-
ulation that predicts mesh deformations of non-rigid objects from user-provided
handle movements. State-of-the-art methods cast this problem as an optimization
task, where the input source mesh is iteratively deformed to minimize an objective
function according to hand-crafted regularizers such as ARAP [1]. In this work,
we learn the deformation behavior based on the underlying geometric properties of
a shape, while leveraging a large-scale dataset containing a diverse set of non-rigid
deformations. Specifically, given a source mesh and desired target locations of
handles that describe the partial surface deformation, we predict a continuous
deformation field that is defined in 3D space to describe the space deformation.
To this end, we introduce transformer-based deformation networks that represent
a shape deformation as a composition of local surface deformations. It learns a
set of local latent codes anchored in 3D space, from which we can learn a set of
continuous deformation functions for local surfaces. Our method can be applied to
challenging deformations and generalizes well to unseen deformations. We validate
our approach in experiments using the DeformingThing4D dataset, and compare to
both classic optimization-based and recent neural network-based methods.

1 Introduction

Editing and deforming 3D shapes is a key component in animation creation and computer aided
design pipelines. Given as little user input as possible, the goal is to create new deformed instances
of the original 3D shape which look natural and behave like real objects or animals. The user input is
assumed to be very sparse, such as vertex handles that can be dragged around. For example, users
can animate a 3D model of an animal by dragging its feet forward. This problem is severely ill-posed
and typically under-constrained, as there are many possible deformations that can be matched with
the provided partial surface deformations of handles, especially for large surface deformations. Thus,
strong priors encoding deformation regularity are necessary to tackle this problem. Physics and

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

differential geometry provide solutions that use various analytical priors which define natural-looking
mesh deformations, such as elasticity [2, 3], Laplacian smoothness [4, 5, 6], and rigidity [1, 7, 8]
priors. They update mesh vertex coordinates by iteratively optimizing energy functions that satisfy
constraints from both the pre-defined deformation priors and given handle locations. Although these
algorithms can preserve geometric details of the original source model, they still have limited capacity
to model realistic deformations, since the deformation priors are region independent, e.g., the head
region deforms in a similar way as the tail of an animal, resulting in unrealistic deformation states.

Hence, motivated by the recent success of deep neural networks for 3D shape modeling [9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22], we propose to learn shape deformation priors of a
specific object class, e.g., quadruped animals, to complete surface deformations beyond observed
handles. We formulate the following properties of such a learned model; (1) it should be robust to
different mesh quality and number of vertices, (2) the source mesh is not limited to canonical pose
(i.e., the input mesh can have arbitrary pose), and (3) it should generalize well to new deformations.
Towards these goals, we represent deformations as a continuous deformation field which is defined
in the near-surface region to describe the space deformation caused by the corresponding surface
deformation. The continuity property enables us to manipulate meshes with infinite number of
vertices and disconnected components. To handle source meshes in arbitrary poses, we learn shape
deformations via canonicalization. Specifically, the overall deformation process consists of two
stages: arbitrary-to-canonical transformation and canonical-to-arbitrary transformation. To obtain
more detailed surface deformations and better generalization capabilities to unseen deformations,
we propose to learn local deformation fields conditioned on local latent codes encoding geometry-
dependent deformation priors, instead of global deformation fields conditioned on a single latent
code. To this end, we propose Transformer-based Deformation Networks (TD-Nets), which learns
encoder-based local deformation fields on point cloud approximations of the input mesh. Concretely,
TD-Nets encode an input point cloud with surface geometry information and incomplete deformation
flow into a sparse set of local latent codes and a global feature vector by using the vector attention
blocks proposed in [23]. The deformation vectors of spatial points are estimated by an attentive
decoder, which aggregates the information of neighboring local latent codes of a spatial point based
on the feature similarity relationships. The aggregated feature vectors are finally passed to a multi-
layer-perceptron (MLP) to predict displacement vectors which can be applied to the source mesh to
compute the final output mesh.

To summarize, we introduce transformer-based local deformation field networks which are capable
to learn shape deformation priors for the task of user-driven shape manipulation. The deformation
networks learn a set of anchor features based on a vector attention mechanism, enhancing the
global deformation context, and selecting the most informative local deformation descriptors for
displacement vector estimations, leading to an improved generalization ability to new deformations.
In comparison to classical hand-crafted deformation priors as well as recent neural network-based
deformation predictors, our method achieves more accurate and natural shape deformations.

2 Related Work

User-guided shape manipulation lies at the intersection of computer graphics and computer vision.
Our proposed method is related to polygonal mesh geometry processing, neural field representations,
as well as vision transformers.

Optimization-based Shape Manipulation. Classical methods formulate shape manipulation as
a mathematical optimization problem. They perform mesh deformations by either deforming the
vertices [24, 25] or the 3D space [26, 27, 8, 28, 29]. Performing mesh deformation without any other
information about the target shape, but only using limited user-provided correspondences is an under-
constrained problem. To this end, the optimization methods require deformation priors to constraint
the deformation regularity as well as the smoothness of the deformed surface. Various analytic priors
have been proposed which encourage smooth surface deformations, such as elasticity [2, 3], Laplacian
smoothness [4, 5, 6], and rigidity [1, 7, 8]. These methods use efficient linear solvers to iteratively
optimize energy functions that satisfy constraints from both the pre-defined deformation prior and
provided handle movements. Recently, NFGP [30] was proposed to optimize neural networks with
non-linear deformation regularizations. Specifically, it performs shape deformations by warping the
neural implicit fields of the source model through a deformation vector field, which is constrained by

2

modeling implicitly represented surfaces as elastic shells. NeuralMLS [31] learned a geometry-aware
weight function of a shape and given control points for moving least squares(MLS) deformations,
which smoothly interpolates the control point displacements over space. Although they can preserve
many geometric details of the source shape, they struggle to model complex deformations, as local
surfaces are simply constrained to be transformed in a similar manner. In contrast, we aim to learn
deformation priors based on local geometries to infer hidden surface deformations.

Learning-based Shape Reconstruction and Manipulation. Learning-based shape manipulation
has been studied to learn shape priors based on shape auto-encoding or auto-decoding. [32, 33, 34, 35]
map a class of shapes into a latent space. During inference, given handle positions as input, they
find an optimal latent code whose 3D interpretation is the most similar to the observation. In
contrast, we learn explicit deformation priors to directly predict 3D surface deformations. Jakab et
al. [36] proposed to control shapes via unsupervised 3D keypoint discovery. Instead, we use partial
surface deformations represented by handle displacements as input observations, rather than keypoint
displacements. There exist a series of methods that use deep neural networks to complete non-rigid
shapes [35, 37, 38, 39, 40, 41, 42, 43] from partial scans. Our task is partially related to this task,
but our shape manipulation task from user input requires completion of the deformation field. In
contrast to shape completion, our setting is more under-constrained, as the user-provided handle
correspondences are very sparse and more incomplete than partial point clouds from scans. Recent
methods for clothed-human body reconstruction choose to canonicalize the captured scan into a pre-
defined T-pose [44, 45, 46] using the skeletal deformation model of SMPL [47] or STAR [48] which
can also be used to later animate the human. Inspired by this, we also perform a canonicalization to
enable editing of source meshes with arbitrary poses, before applying the actual deformation towards
the target pose handles.

Continuous Neural Fields. Continuous neural field representations have been widely used in
3D shape modeling [9, 11, 10] and 4D dynamics capture [49, 40, 38, 37, 39]. Recent work that
represents 3D shapes as continuous signed distance fields [17, 12, 18, 19, 20] or occupancy fields [9,
11, 14, 50, 15, 16, 51, 21, 52, 53] can theoretically obtain volumetric reconstructions with infinite
resolutions, as they are not bound to the resolution of a discrete grid structure. Similarly, we learn
continuous deformation fields defined in 3D space for shape deformations [13, 35, 30, 54]. Due to
the continuity of the deformation fields, our method is not limited by the number of mesh vertices,
or disconnected components. Different from ShapeFlow [35], OFlow [49], LPDC-Net [40] and
NPMs [37] that learn a deformation field from a single latent code, inspired by local implicit field
learning [14, 15, 21, 52, 55], we model the deformation field as a composition of local deformation
functions, improving the representation capability of describing complex deformations as well as
generalization to new deformations.

Visual Transformers. Recently, transformer architectures [56] from natural language processing
have revolutionized many computer vision tasks, including image classification [57, 58], object
recognition [59], semantic segmentation [60], or 3D reconstruction [61, 62, 52, 55, 63]. We refer
the reader to [64] for a detailed survey of visual transformers. In this work, we propose the usage
of a transformer architecture to learn deformation fields. Given the input point cloud sampled from
the source mesh with partial deformation flow (defined by the user handles), we employ the vector
attention blocks from Point Transformer [23] as a main point cloud processing module to extract a
sparse set of local latent codes, enhancing the global understanding of deformation behaviours. Based
on the obtained local deformation descriptors, our attentive deformation decoder learns to attend to
the most informative features from near-by local codes to predict a deformation field.

3 Approach

Given a source mesh S = {V,F} where V and F denote the set of vertices and the set of faces,
respectively, we aim to deform S to obtain a target mesh T by selecting a sparse set of mesh vertices
H = {hi}ℓi=1 as handles, and dragging them to target locations O = {oi}ℓi=1. The key idea in this
work is to use deformation priors to complete hidden surface deformations. Specifically, the goal
is to learn a continuous deformation field D defined in 3D space, from which we can obtain the
deformed mesh T ′ = {V+D(V),F} through vertex deformations of the source mesh S . The overall
pipeline of the proposed approach is shown in Figure 2. Our method can be applied to input meshes

3

U
se

r I
np

ut

Source Mesh

Target Handle Locations

Backward
Deformation

Networks

Forward
Deformation

Networks

Shape Deformation via Canonicalization

Target Mesh

U
se

r I
np

ut

Source Mesh

Target Handle Locations

Backward
Deformation

Networks

Forward
Deformation

Networks

Shape Deformation via Canonicalization

Target Mesh

Figure 2: Overview. Given a source mesh S with sparse handles H (red circles) and their respective
target locations O (blue circles) as input, our method deforms the mesh to the target mesh T via
canonicalization C. The backward Ωb and forward Ωf deformation networks store the deformation
priors that allow our method to produce consistent and natural-looking outputs.

in arbitrary poses by leveraging learned shape deformation via canonicalization (see Section 3.1).
To represent the underlying deformation prior, we propose neural deformation fields as described in
Section 3.2 which can be learned from large deformation datasets (see Section 3.3).

3.1 Learning Shape Deformations via Canonicalization

To ensure robustness w.r.t. varying input mesh quality (topology and resolution), we operate on
point clouds instead of meshes. Specifically, we sample a point cloud PS = {pi}ni=0 ∈ Rn×3 from
S of size n = 5000. We define the target handle point locations PO = {oi}ni=0 ∈ Rn×3, where
we use zeros to represent unknown point flows. Further, to avoid the ambiguity of zero point flow,
we define the corresponding binary user handle masks M = {bi}ni=0 ∈ Rn where bi = 1 if pi is a
handle or otherwise bi = 0.

To learn the shape transformation between two arbitrary non-rigidly deformed poses, one can learn
deformation fields that directly map the source deformed space to target space. However, it would be
difficult to learn the deformation priors well, as there could be infinite deformation state transformation
pairs. To decrease the learning complexity, we introduce a canonical space as an intermediate state.
We divide the shape transformation process into two steps; a backward deformation that aligns the
source deformed space to canonical space, and a forward deformation that maps the canonical space to
the target deformation space. Concretely, PS is passed into the backward transformation network Ωb

to learn the backward deformation field Db which transforms the input shape PS into a canonical pose
P ′
C . Similarly, the querying non-surface point set QS = {qi}mi=0 ∈ Rm×3,m = 5000 randomly

sampled in the 3D space of S is also mapped to canonical space through Q′
C = QS + Db(QS).

Lastly, given P ′
C , M, and PO as input, a forward transformation network Ωf is learned to represent

the forward deformation field Df that predicts final locations Q′
T = Q′

C +Df (Q′
C).

3.2 Transformer-based Deformation Networks (TD-Nets)

The deformation via canonicalization is based on two deformation field predictors (forward and
backward deformations). Both networks share the same architecture, thus, in the following, we
will only describe the forward deformation network as visualized in Figure 3 while the backward
deformation network is analogous. It consists of a transformer-based deformation encoder and a
vector cross attention-based decoder network.

Point transformer encoder. Given a point set PC with handle locations PO and a binary mask M as
inputs, we use point transformer layers from [23] to build our encoder modules. The point transformer
layer is based on the vector attention mechanism [65]. Let X = {xi, fi}i and Y = {yi,gi}i be the
query and key-value sequences, where xi and yi denote the coordinates of query and key-value points
with corresponding feature vectors fi and gi. The vector cross attention operator VCA is defined as:

VCA(X ,Y) : f ′i =
∑
j∈Ni

ρ(γ(φ(gj)− ψ(fi) + δ))⊙ (α(fi) + δ), (1)

4

U
se

r I
np

ut
VCATransformer

Encoder
MLPSampling

… Target mesh

Pooling & FCs

kNN

Query

Key-Values

Figure 3: Transformer-based Forward Deformation Networks. Given a canonical mesh C with
handle positions H (red circles) and desired handle locations O (blue circles), we perform surface
sampling to obtain a point cloud PC with additional channels of handle mask M and point flow PO.
A point-transformer encoder is devised to extract a sparse set of local latent codes Z = {ci, zi}i from
this point cloud, where ci are the anchor positions of the latent features zi. For a specific point q in
3D space (i.e. a vertex from the source mesh), based on the zglo, a vector cross attention (VCA) block
is used to effectively fuse the information of Zq into zq from the k nearest neighbouring latent codes
of q. Using a multi-layer perceptron (MLP) conditioned on zq, we predict the deformed location q′

in the target space.

where f ′i are the aggregated features, φ, ψ, and α are linear projections implemented by a fully-
connected layer. γ is a mapping function implemented by a two-layer MLP to predict attention
vectors. ρ is the attention weight normalization function, in our case softmax. δ := θ(xi − yj) is the
positional embedding module [56, 66] implemented by a two linear layers with a single ReLU [67].
It leverages relatively positional information of xi and yj to benefit the network training. Then, with
the definition of VCA, the vector self-attention operator VSA can be defined as:

VSA(X) := VCA(X ,X). (2)
Based on VCA and VSA, we can define two basic modules to build our encoder network, i.e. the
point transformer block (PTB) and the point abstraction block (PAB). The definition of the point
transformer block PTB is a combination of the BatchNorm (BN) layer [68], VSA, and residual
connections, formulated as:

PTB(X) := BN(X +VSA(X)). (3)
For each point Xi, it encapsulates the information from kenc = 16 nearest neighborhoods while
keeping the point’s position xi unchanged. The point abstraction block PAB consists of farthest
point sampling (FPS), BN, VCA, and VSA, which is defined as follow:

PAB(X) := BN(FPS(X) + VSA(VCA(FPS(X),X)). (4)

The point cloud PC with handle mask M and flow PO as additional channels are passed to a point
transformer block (PTB) to obtain a feature point cloud Z0 = {c0i , z0i }ni=1. By using two consecutive
point abstraction blocks (PABs) with intermediate set size of n1 = 500 and n2 = 100, we obtain
Z1 = {c1i , z1i }

n1
i=1 and Z2 = {c2i , z2i }

n2
i=1. To enhance global deformation priors, we stack 4 point

transformer blocks with full self-attention whose kenc is set to 100 to exchange the global information
in the whole set of Z2. By doing so, we can obtain a sparse set of local deformation descriptors
Z = {ci, zi}100i=1 that are anchored in {ci}. Finally, we perform a global max-pooling operation
followed by two linear layers to obtain the global latent vector zglo.

Attentive deformation decoder. Based on the learned local latent codes Z = {ci, zi}100i=1 and global
latent vector zglo, the deformation decoder defines the forward deformation function Df : R3 −→ R3,
which maps a point q from the canonical space of C to the 3D space of T . Similar to tri-linear
interpolation operations in grid-based implicit field learning, a straightforward way to find the
corresponding feature vector zq is to use the weighted combination of kdec = 16 nearby local
codes Zq = {ck, zk}kdec

k=1. Intuitively, the weight is inversely proportional to the euclidean distance
between q and the anchoring location ck [15]. However, distance-based feature queries ignore
the relationships between deformation descriptors. Thus, we propose to obtain zq by adaptively
aggregating information of Zq based on the vector cross-attention operator:

zq = VCA({q, zglo},Zq). (5)
The local information aggregation enables us to flexibly search the local deformation priors, thus,
improving the generalizability to new deformations. Finally, the zq is fed into an MLP composed of
five Res-FC blocks to estimate the associate location q′ = q+Df (q; zq) in the target space.

5

3.3 Training Objectives

For training, we need a set of triplets (S, C, T) with dense correspondences, from which we can
randomly sample surface point clouds (PS ,PC ,PT) of size n and querying non-surface points
(QS ,QC ,QT) of size m in the 3D space. To optimize the backward deformation networks, we
employ the mean ℓ2 distance error that measures the difference between deformed points from source
space and their ground-truths in the canonical space:

Lb = ||Ωb(PS)− PC ||22 + ||Ωb(QS)−QC ||22. (6)

Similarly, to optimize the forward deformation networks, we use the following loss function:

Lf = ||Ωf (PC)− PT ||22 + ||Ωb(QC)−QT ||22 (7)

The total loss function for source-target shape deformations is defined as:

Ltotal = ||Ωf (Ωb(PS))− PT ||22 + ||Ωf (Ωb(QS))−QT ||22. (8)

4 Experiments

Dataset. Our experiments are performed on the DeformingThing4D-Animals [39] dataset which
contains 1494 non-rigidly deforming animations with various motions comprising 40 identities of 24
categories. For the train/test split, we divide all animations into training (1296) and test (198). Similar
to the D-FAUST [69] used in OFlow [49], the test set is composed of two subsets: (S1) contains
143 sequences of new motions for seen train identities, and (S2) contains 55 sequences of unseen
individuals (and thus also new motions). During training, we randomly sample two frames from
an identity as source-target deformation pairs. During inference, we consider the first frame of an
animation as source mesh, and other frames as target meshes. To evaluate the generalization ability
to unseen identities, we evaluate the pre-trained models on the animal dataset used in Deformation
Transfer [70]. For the quantitative comparison on each test subset, we compute evaluation metrics for
300 randomly sampled pairs. In addition, we also include comparisons on another animal dataset
used in TOSCA [71]. TOSCA [71] does not have correspondences between different poses of the
same animal, and hence does not easily provide handle displacements as input. Thus, we provide a
qualitative comparison under the setting of using user-specified handles as inputs.

Implementation details. Our approach is built on the PyTorch library [72]. Please refer to the
supplementary material for the details of our network architecture. Our model consists of two training
stages. We use an Adam [73] optimizer with β1 = 0.9, β2 = 0.999, and ϵ = 10−8. In the first stage,
we train the forward and backward deformation networks individually. Specifically, the backward and
forward deformation networks are respectively optimized by the objective described in Equations 6
or 7 using a batch size of 16 with the learning rate of 5e-4 for 100 epochs. In the second stage, the
whole model is trained according to Equation 8 in an end-to-end manner using a batch size of 6 with
a learning rate of 5e-5 for 20 epochs.

Baselines. We conduct comparisons against classical optimization-based and recent neural network-
based methods. For the former, we select a representative work, ARAP [1], that constrains each
local surface to be rigidly transformed as much as possible. For the latter, we compare our method
with the learning-based deformation predictor ShapeFlow [35] that embeds each shape into a latent
space and learns flow-based deformations among 3D shapes. We also compare to NFGP [30], a deep
optimization method, which constrains the implicitly represented surfaces as elastic shells during the
deformation process.

Evaluation metrics. We consider ℓ2 distance error of mesh vertices (ℓ2 ×0.001), Chamfer Distance
(CD ×0.01) of sampled point clouds of 30k points, and Face Normal Consistency (FNC ×0.01) as
primary evaluation metrics. Please refer to the supplementary material for a detailed explanation of
these metrics. Note that for ℓ2 and CD, lower is better, while for FNC, higher is better.

4.1 Comparisons

For a qualitative comparison, we visualize the vertex ℓ1 distance error maps of deformed meshes
in Figure 4 and Figure 5. As can be seen, our method has lower vertex errors in the hidden surface

6

Add shapeflow

Source mesh Target mesh ARAP [1] ShapeFlow [35] NFGP [30] Ours
and handles and handles

Figure 4: Comparison against ARAP [1], ShapeFlow [35], and NFGP [30] on new motions. We
visualize the vertex euclidean distance errors as color maps.

Source mesh Target mesh ARAP [1] ShapeFlow [35] NFGP [30] Ours
and handles and handles

Figure 5: Comparison against ARAP [1], ShapeFlow [35], and NFGP [30] on the S2 test set of
DeformingThing4D-Animals and unseen shapes of Deformation Transfer [70]. We visualize the
vertex euclidean distance errors as color maps. Our approach generalizes better in comparison to
ShapeFlow and NFGP and produces natural looking deformations (in comparison, ARAP generates
rubber-like deformations).

regions since we use data-driven deformation priors, instead of employing hand-crafted regularizers
to enforce surface smoothness. The generalization ability to unseen deformations is improved by
learning deformation fields for local surfaces, instead of modeling global deformations.Compared to
ARAP, ShapeFlow, and NFGP, we can produce more realistic results for complicated actions in the
3rd and 4th rows of Figure 4. The deformation results presented in Figure 5 demonstrate that our
method can generalize to unseen identities, and is also verified quantitatively in Table 1, where our
method consistently outperforms all baselines.

User-specified handles. To evaluate the generalization performance of our approach on unseen
identities using user-provided handle displacements that are used in interactive editing applications,
we use random translations of handles applied to animals from TOSCA [71] as input. As depicted

7

Method
New motions (S1) Unseen identities (S2) Deformation Transfer

ℓ2 ↓ CD ↓ FNC ↑ ℓ2 ↓ CD ↓ FNC ↑ ℓ2 ↓ CD ↓ FNC ↑

ARAP [1] 5.568 2.312 95.35 9.794 2.308 94.89 5.145 3.475 91.21
ShapeFlow [35] 21.03 3.494 89.69 32.08 3.925 90.73 33.72 4.093 86.36

NFGP [30] 11.77 3.130 93.34 15.96 3.364 91.80 18.90 4.150 82.54

Ours-VDF 3.590 1.887 86.01 2.368 1.837 86.99 3.111 9.164 78.63
Ours-global 2.970 1.546 93.30 2.973 1.579 94.75 2.636 8.453 84.59

Ours-3D UNet 1.011 1.111 96.02 1.253 1.426 96.20 4.553 2.362 88.31
Ours-PointNet++. 0.886 1.055 95.47 1.231 1.364 95.37 4.898 2.564 85.87

Ours-w/o atten dec. 1.184 1.210 95.64 1.227 1.417 96.16 5.252 2.772 84.95
Ours-w/o cano. 1.018 1.063 96.40 0.969 1.258 96.62 2.660 1.934 90.96

Ours-full 0.752 0.948 96.59 0.795 1.241 96.68 2.495 1.877 91.40

Table 1: Quantitative comparisons on the S1 and S2 test sets of DeformingThing4D [39] and the
unseen identities of used in Deformation Transfer [70].

in Figure 6, our approach is able to produce naturally-looking deformation results, and shows
its advantages compared to ARAP, ShapeFlow, and NFGP. Note that for this demonstration of
user-specified handles there exists no corresponding ground-truth.

Source mesh,
handles and

target handles

ARAP [1]

ShapeFlow [35]

NFGP [30]

Ours

Figure 6: Comparison against ARAP [1], ShapeFlow [35] and NFGP [30] under the setting of
user-specified handles on TOSCA dataset [71]. Our method visibly produces the best results.

4.2 Ablation Studies

To verify our final model choice, we conducted a series of ablation studies, where we analysed several
variants of our deformation fields (see Table 1 and Figure 7).

8

Source Mesh
and Handles

Target Mesh
and Handles

Ours-VDF Ours-global Ours-3D UNet

Ours-PointNet++ Ours-w/o atten dec. Ours-w/o cano. Ours-full

Figure 7: Qualitative ablation studies. Each component of our approach contributes to the final result
that has the lowest reconstruction error.

Volumetric grids vs continuous fields. As continuous fields are not bound to the resolution of a
discrete grid structure, it can better represent complex deformations. The performance degrades when
we learn grid-based volumetric deformation fields. This can be seen in the experiment “Ours-VDF"
which uses a 3D U-Net [74] to generate volumetric deformation fields of a fixed resolution 643.

Global vs local deformation fields. “Ours-global" learns a global continuous field only condi-
tioned on the global latent code. This variant tends to lose detailed information about local surface
deformations, and is more difficult to generalize to new motions or identities, leading to inferior
results in comparison to our local deformation fields.

Network Architectures (3D U-Net vs PointNet++ vs Point Transformer). Compared to grid-
based and point-based local deformation descriptors learning, the point transformer-based encoder
captures strong global contexts that enforce more global consistency constraints. This provides
performance improvements on surface accuracy of deformed meshes. To verify this, we conducted
an experiment with “Ours-3D-UNet," which learns a volumetric feature map through a 3D U-Net,
and then predicts deformation fields based on queried features via tri-linear interpolation operations.
Additionally, we compare with “Ours-PointNet++," which replaces the point transformer encoder
with PointNet++ [75].

With vs without Attention-based feature querying. The attention-based feature query mechanism
can flexibly and effectively select the most relevant deformation descriptors for a query point,
resulting in improved performance over feature interpolation purely based on euclidean distances. A
deformation decoder that for example uses an interpolation with weights that are purely based on
euclidean distance instead (“Ours-w/o atten. dec."), leading to significantly higher errors, particularly
in terms of the ℓ2 vertex error.

With vs without canonical poses. Learning shape deformations via canonicalization improves the
generalization to source meshes in different poses. Learning without canonicalization ("Ours-w/o
cano."), i.e., learning shape deformations directly between two arbitrary poses, results in considerably
higher surface errors.

4.3 Intermediate results of canonicalization

In Figure 8, we visualize our intermediate results of canonicalization. As can be seen, our method
can project source meshes with arbitrary poses into a canonical space with a same pose.

9

(a) (b) (c) (a) (b) (c)

Figure 8: The intermediate results of our canonicalization. (a) Source mesh. (b) Canonical mesh. (c)
Our canonicalized mesh.

4.4 Limitations

While compelling results have been demonstrated for shape manipulation, a few limitations still exist
in our approach that can be addressed in future work. Our approach only needs sparse user input in
form of handles which can be moved to create a new deformation state. While this allows for quick
editing, a possible extension is to add rotations to the handles. This could be done by leveraging a
different deformation representation such as a SE(3) field which is composed of a displacement and a
rotation field. Note that our displacement representation is able to represent general deformations,
but might require more user handles. Due to the limitations of the DeformingThing4D-Animals [39]
dataset in terms of available models and poses, our approach may suffer from the generalization to
out-of-distribution models and extreme poses. Additionally, the output of our model, as with other
learning-based methods, may be affected by biases in the training dataset that can limit generalization.
We believe this issue can be relieved by a larger training dataset and a richer data augmentation
strategy in future work. Lastly, our training scheme only considers handles that are selected from a
set of candidate parts of the models, thus, limiting the regions the user can interact with. Enriching
the candidate handles during training is potentially helpful for allowing free handle placement.

5 Conclusion

In this work, we introduced Neural Shape Deformation Priors, a novel approach that learns mesh
deformations of non-rigid objects from user-provided handles based on the underlying geometric
properties of shapes. To enable shape manipulation for source meshes with different poses, we
choose to learn shape deformations via canonicalization where the source mesh is first transformed
to the canonical space through a backward deformation field and then deformed to the target space
through a forward deformation field. For deformation field learning, we propose Transformer-based
Deformation Networks (TD-Net) that represent a shape deformation as a composition of local
surface deformations. Our experiments and ablation studies demonstrate that our method can be
applied to challenging new deformations, outperforming classical optimization-based methods such
as ARAP [1] and neural networks-based methods such as ShapeFlow [35] and NFGP [30], while
showing a good generalization to previously unseen identities. We see our method as an important
step in the development of 3D modeling algorithms and softwares and hope to inspire more research
in learning-based shape manipulation.

Societal impact. Our work provides an algorithm for natural-looking shape editing, which can
simplify tedious procedures in 3D content creation and empower artists in the movie and game
industries. It further has the potential to enrich 3D data with additional deformed shapes, and
could thus help improve the performance of other practical application techniques that rely on large
quantities of 3D ground-truth for training. Yet, misuse of our shape manipulation algorithm could
enable fraud or offensive content generation.

Acknowledgement. This work is supported by a TUM-IAS Rudolf Mößbauer Fellowship, the ERC
Starting Grant Scan2CAD (804724), and Sony Semiconductor Solutions Corporation. We would also
like to thank Angela Dai for the video voice over.

10

References
[1] Olga Sorkine and Marc Alexa. As-rigid-as-possible surface modeling. In Symposium on

Geometry processing, volume 4, pages 109–116, 2007.

[2] Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. Elastically deformable models.
In Proceedings of the 14th annual conference on Computer graphics and interactive techniques,
pages 205–214, 1987.

[3] Marc Alexa, Daniel Cohen-Or, and David Levin. As-rigid-as-possible shape interpolation. In
Proceedings of the 27th annual conference on Computer graphics and interactive techniques,
pages 157–164, 2000.

[4] Yaron Lipman, Olga Sorkine, Daniel Cohen-Or, David Levin, Christian Rossi, and Hans-Peter
Seidel. Differential coordinates for interactive mesh editing. In Proceedings Shape Modeling
Applications, 2004., pages 181–190. IEEE, 2004.

[5] Olga Sorkine, Daniel Cohen-Or, Yaron Lipman, Marc Alexa, Christian Rössl, and H-P Sei-
del. Laplacian surface editing. In Proceedings of the 2004 Eurographics/ACM SIGGRAPH
symposium on Geometry processing, pages 175–184, 2004.

[6] Kun Zhou, Jin Huang, John Snyder, Xinguo Liu, Hujun Bao, Baining Guo, and Heung-Yeung
Shum. Large mesh deformation using the volumetric graph laplacian. In ACM SIGGRAPH
2005 Papers, pages 496–503. 2005.

[7] Robert W Sumner, Johannes Schmid, and Mark Pauly. Embedded deformation for shape
manipulation. In ACM SIGGRAPH 2007 papers, pages 80–es. 2007.

[8] Zohar Levi and Craig Gotsman. Smooth rotation enhanced as-rigid-as-possible mesh animation.
IEEE transactions on visualization and computer graphics, 21(2):264–277, 2014.

[9] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger.
Occupancy networks: Learning 3d reconstruction in function space. In CVPR, 2019.

[10] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove.
Deepsdf: Learning continuous signed distance functions for shape representation. In CVPR,
2019.

[11] Zhiqin Chen and Hao Zhang. Learning implicit fields for generative shape modeling. In CVPR,
2019.

[12] Qiangeng Xu, Weiyue Wang, Duygu Ceylan, Radomir Mech, and Ulrich Neumann. Disn: Deep
implicit surface network for high-quality single-view 3d reconstruction. In NeurIPS, 2019.

[13] Jiapeng Tang, Xiaoguang Han, Junyi Pan, Kui Jia, and Xin Tong. A skeleton-bridged deep
learning approach for generating meshes of complex topologies from single rgb images. In
Proceedings of the ieee/cvf conference on computer vision and pattern recognition, pages
4541–4550, 2019.

[14] Julian Chibane, Thiemo Alldieck, and Gerard Pons-Moll. Implicit functions in feature space for
3d shape reconstruction and completion. In CVPR, 2020.

[15] Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc Pollefeys, and Andreas Geiger.
Convolutional occupancy networks. In ECCV, 2020.

[16] Chiyu Jiang, Avneesh Sud, Ameesh Makadia, Jingwei Huang, Matthias Nießner, Thomas
Funkhouser, et al. Local implicit grid representations for 3d scenes. In CVPR, pages 608–625,
2020.

[17] Matan Atzmon and Yaron Lipman. Sal: Sign agnostic learning of shapes from raw data. In
CVPR, pages 2565–2574, 2020.

[18] Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and Yaron Lipman. Implicit geometric
regularization for learning shapes. ICML, 2020.

11

[19] Rohan Chabra, Jan E Lenssen, Eddy Ilg, Tanner Schmidt, Julian Straub, Steven Lovegrove, and
Richard Newcombe. Deep local shapes: Learning local sdf priors for detailed 3d reconstruction.
In ECCV, pages 608–625. Springer, 2020.

[20] Edgar Tretschk, Ayush Tewari, Vladislav Golyanik, Michael Zollhöfer, Carsten Stoll, and
Christian Theobalt. Patchnets: Patch-based generalizable deep implicit 3d shape representations.
In ECCV, pages 108–124. Springer, 2020.

[21] Jiapeng Tang, Jiabao Lei, Dan Xu, Feiying Ma, Kui Jia, and Lei Zhang. Sa-convonet: Sign-
agnostic optimization of convolutional occupancy networks. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 6504–6513, 2021.

[22] Yujin Chen, Zhigang Tu, Di Kang, Linchao Bao, Ying Zhang, Xuefei Zhe, Ruizhi Chen, and
Junsong Yuan. Model-based 3d hand reconstruction via self-supervised learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10451–10460,
2021.

[23] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and Vladlen Koltun. Point transformer.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 16259–
16268, 2021.

[24] Mario Botsch and Olga Sorkine. On linear variational surface deformation methods. IEEE
transactions on visualization and computer graphics, 14(1):213–230, 2007.

[25] Olga Sorkine. Differential representations for mesh processing. In Computer Graphics Forum,
volume 25, pages 789–807. Wiley Online Library, 2006.

[26] Alec Jacobson, Ilya Baran, Jovan Popovic, and Olga Sorkine. Bounded biharmonic weights for
real-time deformation. ACM Trans. Graph., 30(4):78, 2011.

[27] Dominique Bechmann. Space deformation models survey. Computers & Graphics, 18(4):571–
586, 1994.

[28] Tim Milliron, Robert J Jensen, Ronen Barzel, and Adam Finkelstein. A framework for geometric
warps and deformations. ACM Transactions on Graphics (TOG), 21(1):20–51, 2002.

[29] Thomas W Sederberg and Scott R Parry. Free-form deformation of solid geometric models. In
Proceedings of the 13th annual conference on Computer graphics and interactive techniques,
pages 151–160, 1986.

[30] Guandao Yang, Serge Belongie, Bharath Hariharan, and Vladlen Koltun. Geometry processing
with neural fields. Advances in Neural Information Processing Systems, 34, 2021.

[31] Meitar Shechter, Rana Hanocka, Gal Metzer, Raja Giryes, and Daniel Cohen-Or. Neuralmls:
Geometry-aware control point deformation. 2022.

[32] Zerong Zheng, Tao Yu, Qionghai Dai, and Yebin Liu. Deep implicit templates for 3d shape
representation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1429–1439, 2021.

[33] Yu Deng, Jiaolong Yang, and Xin Tong. Deformed implicit field: Modeling 3d shapes with
learned dense correspondence. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 10286–10296, 2021.

[34] Zekun Hao, Hadar Averbuch-Elor, Noah Snavely, and Serge Belongie. Dualsdf: Semantic shape
manipulation using a two-level representation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 7631–7641, 2020.

[35] Chiyu Jiang, Jingwei Huang, Andrea Tagliasacchi, and Leonidas J Guibas. Shapeflow: Learn-
able deformation flows among 3d shapes. Advances in Neural Information Processing Systems,
33:9745–9757, 2020.

12

[36] Tomas Jakab, Richard Tucker, Ameesh Makadia, Jiajun Wu, Noah Snavely, and Angjoo
Kanazawa. Keypointdeformer: Unsupervised 3d keypoint discovery for shape control. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
12783–12792, 2021.

[37] Pablo Palafox, Aljaž Božič, Justus Thies, Matthias Nießner, and Angela Dai. Npms: Neural
parametric models for 3d deformable shapes. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 12695–12705, 2021.

[38] Aljaž Božič, Pablo Palafox, Michael Zollhofer, Justus Thies, Angela Dai, and Matthias Nießner.
Neural deformation graphs for globally-consistent non-rigid reconstruction. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 1450–1459,
2021.

[39] Yang Li, Hikari Takehara, Takafumi Taketomi, Bo Zheng, and Matthias Nießner. 4dcomplete:
Non-rigid motion estimation beyond the observable surface. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 12706–12716, 2021.

[40] Jiapeng Tang, Dan Xu, Kui Jia, and Lei Zhang. Learning parallel dense correspondence
from spatio-temporal descriptors for efficient and robust 4d reconstruction. In CVPR, pages
6022–6031, 2021.

[41] Shunsuke Saito, Jinlong Yang, Qianli Ma, and Michael J Black. Scanimate: Weakly supervised
learning of skinned clothed avatar networks. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 2886–2897, 2021.

[42] Shaofei Wang, Marko Mihajlovic, Qianli Ma, Andreas Geiger, and Siyu Tang. Metaavatar:
Learning animatable clothed human models from few depth images. Advances in Neural
Information Processing Systems, 34, 2021.

[43] Andrei Burov, Matthias Nießner, and Justus Thies. Dynamic surface function networks for
clothed human bodies. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 10754–10764, 2021.

[44] Shaofei Wang, Andreas Geiger, and Siyu Tang. Locally aware piecewise transformation fields
for 3d human mesh registration. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 7639–7648, 2021.

[45] Marko Mihajlovic, Yan Zhang, Michael J Black, and Siyu Tang. Leap: Learning articulated
occupancy of people. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 10461–10471, 2021.

[46] Xu Chen, Yufeng Zheng, Michael J Black, Otmar Hilliges, and Andreas Geiger. Snarf: Differ-
entiable forward skinning for animating non-rigid neural implicit shapes. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 11594–11604, 2021.

[47] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J. Black.
SMPL: A skinned multi-person linear model. ACM Trans. Graphics (Proc. SIGGRAPH Asia),
34(6):248:1–248:16, October 2015.

[48] Ahmed A A Osman, Timo Bolkart, and Michael J. Black. STAR: A sparse trained articulated
human body regressor. European Conference on Computer Vision (ECCV), pages 598–613,
2020.

[49] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and Andreas Geiger. Occupancy flow:
4d reconstruction by learning particle dynamics. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 5379–5389, 2019.

[50] Zhenxing Mi, Yiming Luo, and Wenbing Tao. Ssrnet: Scalable 3d surface reconstruction
network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 970–979, 2020.

13

[51] Jiapeng Tang, Xiaoguang Han, Mingkui Tan, Xin Tong, and Kui Jia. Skeletonnet: A topology-
preserving solution for learning mesh reconstruction of object surfaces from rgb images. IEEE
transactions on pattern analysis and machine intelligence, 2021.

[52] Simon Giebenhain and Bastian Goldlücke. Air-nets: An attention-based framework for locally
conditioned implicit representations. In 2021 International Conference on 3D Vision (3DV),
pages 1054–1064. IEEE, 2021.

[53] Biao Zhang and Peter Wonka. Training data generating networks: Shape reconstruction via
bi-level optimization. In International Conference on Learning Representations, 2021.

[54] Ka-Hei Hui, Ruihui Li, Jingyu Hu, and Chi-Wing Fu. Neural template: Topology-aware
reconstruction and disentangled generation of 3d meshes. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 18572–18582, 2022.

[55] Biao Zhang, Matthias Nießner, and Peter Wonka. 3DILG: Irregular latent grids for 3d generative
modeling. In Advances in Neural Information Processing Systems, 2022.

[56] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[57] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.
An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[58] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Non-local neural networks.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
7794–7803, 2018.

[59] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. In European conference on
computer vision, pages 213–229. Springer, 2020.

[60] Sixiao Zheng, Jiachen Lu, Hengshuang Zhao, Xiatian Zhu, Zekun Luo, Yabiao Wang, Yanwei
Fu, Jianfeng Feng, Tao Xiang, Philip HS Torr, et al. Rethinking semantic segmentation
from a sequence-to-sequence perspective with transformers. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 6881–6890, 2021.

[61] Aljaz Bozic, Pablo Palafox, Justus Thies, Angela Dai, and Matthias Nießner. Transformerfusion:
Monocular rgb scene reconstruction using transformers. Advances in Neural Information
Processing Systems, 34, 2021.

[62] Hao Yu, Fu Li, Mahdi Saleh, Benjamin Busam, and Slobodan Ilic. Cofinet: Reliable coarse-
to-fine correspondences for robust pointcloud registration. Advances in Neural Information
Processing Systems, 34, 2021.

[63] Yuchen Rao, Yinyu Nie, and Angela Dai. Patchcomplete: Learning multi-resolution patch priors
for 3d shape completion on unseen categories. Advances in Neural Information Processing
Systems, 2022.

[64] Kai Han, Yunhe Wang, Hanting Chen, Xinghao Chen, Jianyuan Guo, Zhenhua Liu, Yehui Tang,
An Xiao, Chunjing Xu, Yixing Xu, et al. A survey on visual transformer. arXiv e-prints, pages
arXiv–2012, 2020.

[65] Hengshuang Zhao, Jiaya Jia, and Vladlen Koltun. Exploring self-attention for image recognition.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 10076–10085, 2020.

[66] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi,
and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In European
conference on computer vision, pages 405–421. Springer, 2020.

14

[67] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines.
In ICML, 2010.

[68] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In International conference on machine learning, pages
448–456. PMLR, 2015.

[69] Federica Bogo, Javier Romero, Gerard Pons-Moll, and Michael J Black. Dynamic faust:
Registering human bodies in motion. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 6233–6242, 2017.

[70] Robert W Sumner and Jovan Popović. Deformation transfer for triangle meshes. ACM
Transactions on graphics (TOG), 23(3):399–405, 2004.

[71] Emanuele Rodolà, Luca Cosmo, Michael M Bronstein, Andrea Torsello, and Daniel Cremers.
Partial functional correspondence. In Computer graphics forum, volume 36, pages 222–236.
Wiley Online Library, 2017.

[72] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural information processing
systems, 32, 2019.

[73] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[74] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In International Conference on Medical image computing and
computer-assisted intervention, pages 234–241. Springer, 2015.

[75] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical
feature learning on point sets in a metric space. Advances in neural information processing
systems, 30, 2017.

Checklist

1. For all authors...
• Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] See abstract and Section 1.
• Did you describe the limitations of your work? [Yes] See Section 4.4.
• Did you discuss any potential negative societal impacts of your work? [Yes] See

Section 5.
• Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main ex-

perimental results (either in the supplemental material or as a URL)? [Yes] See the
supplemental material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Implementation details in Section 4.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Implementation details in
Section 4.

15

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We use and cite

DeformingThing4D [39].
(b) Did you mention the license of the assets? [Yes] See the data section of the supple-

mental material.
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] See the data section of the supplemental material.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes] See the data section of the supplemental
material.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

16

	Introduction
	Related Work
	Approach
	Learning Shape Deformations via Canonicalization
	Transformer-based Deformation Networks (TD-Nets)
	Training Objectives

	Experiments
	Comparisons
	Ablation Studies
	Intermediate results of canonicalization
	Limitations

	Conclusion

