Batch size-invariance for policy optimization

Jacob Hilton
OpenAI
jhilton@openai.com

Karl Cobbe
OpenAI
karl@openai.com

John Schulman
OpenAI
joschu@openai.com

Abstract

We say an algorithm is batch size-invariant if changes to the batch size can largely be compensated for by changes to other hyperparameters. Stochastic gradient descent is well-known to have this property at small batch sizes, via the learning rate. However, some policy optimization algorithms (such as PPO) do not have this property, because of how they control the size of policy updates. In this work we show how to make these algorithms batch size-invariant. Our key insight is to decouple the proximal policy (used for controlling policy updates) from the behavior policy (used for off-policy corrections). Our experiments help explain why these algorithms work, and additionally show how they can make more efficient use of stale data.

1 Introduction

Policy gradient-based methods for reinforcement learning have enjoyed great success in recent years. The stability and reliability of these methods is typically improved by controlling the size of policy updates, using either a “trust region” (TRPO) or a surrogate objective (PPO) [Schulman et al., 2015a, 2017]. The usual justification for this is that we cannot trust updates that take us too far from the policy used to collect experience, called the behavior policy. In this work we identify a subtle flaw with this: the behavior policy is irrelevant to the justification. Instead, what matters is that we control how fast the policy is updated, or put another way, that we approximate the natural policy gradient [Kakade, 2001].

Our key insight is that the “old” policy in these methods serves two independent purposes. The first purpose is for off-policy corrections, via importance sampling, for which the old policy must be the behavior policy. The second purpose is to control the size of policy updates, for which the old policy can be any recent policy, which we call the proximal policy. It does not matter whether the proximal policy is also the behavior policy; it only matters how old the proximal policy is. We demonstrate this by running PPO with stale data collected using a policy from multiple iterations ago, which causes performance to quickly degrade unless the proximal policy is decoupled from the behavior policy.

Our insight allows us to make PPO batch size-invariant, meaning that when the batch size is changed, we can preserve behavior, as a function of the number of examples processed, by changing other hyperparameters (as long as the batch size is sufficiently small). We achieve this by using an exponentially-weighted moving average (EWMA) of the policy network’s weights as the network for the proximal policy. Batch size-invariance has been studied many times before (see Section 3.1), sometimes under the name “perfect scaling”. It is of practical benefit because the batch size has a big influence on training, but is often constrained by computational resources such as GPU memory. If an algorithm is batch size-invariant, then the batch size may be freely adjusted according to computational constraints, while other hyperparameters are adjusted formulaically to compensate.

The remainder of the paper is structured as follows.

• In Section 2 we explain the difference between the proximal and behavior policies, and show how to decouple them in PPO’s objectives.

We therefore define the
expression KL penalized objective \cite{schulman2017proximal, equation (7)}:

$$L_{\text{KL PEN}} (\theta) := \hat{E}_t \left[\frac{\pi_\theta (a_t \mid s_t)}{\pi_{\theta_{\text{old}}} (a_t \mid s_t)} \hat{A}_t - \beta \text{KL} [\pi_{\theta_{\text{old}}} (\cdot \mid s_t), \pi_\theta (\cdot \mid s_t)] \right],$$

where \hat{A}_t is an estimator of the advantage at timestep t, and $\hat{E}_t [\ldots]$ indicates the empirical average over a finite batch of timesteps t. The first use of $\pi_{\theta_{\text{old}}}$ in this expression is as part of an importance sampling ratio. In order for the policy gradient estimate to be unbiased, this policy needs to be the one that was used for sampling, so we call this the behavior policy $\pi_{\theta_{\text{behav}}}$. The second use of $\pi_{\theta_{\text{old}}}$ is as a recent target to pull the current policy towards, so we call this the proximal policy $\pi_{\theta_{\text{prox}}}$. Our key insight is that the proximal policy need not equal the behavior policy. As we will show experimentally, it matters how old the proximal policy is, but it does not matter whether or not the proximal policy was used for sampling.

We therefore define the decoupled KL penalized objective

$$L_{\text{KL PEN, decoupled}} (\theta) := \hat{E}_t \left[\frac{\pi_\theta (a_t \mid s_t)}{\pi_{\theta_{\text{behav}}} (a_t \mid s_t)} \hat{A}_t - \beta \text{KL} [\pi_{\theta_{\text{prox}}} (\cdot \mid s_t), \pi_\theta (\cdot \mid s_t)] \right],$$

where $\pi_{\theta_{\text{behav}}}$ is the policy used for sampling, and $\pi_{\theta_{\text{prox}}}$ is a recent policy yet to be specified.

It is less obvious how to decouple the clipped PPO objective, because $\pi_{\theta_{\text{old}}}$ only appears once in that expression \cite{schulman2017proximal, equation (7)}:

$$L_{\text{CLIP}} (\theta) := \hat{E}_t \left[\min \left(r_t (\theta) \hat{A}_t, \text{clip} (r_t (\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_t \right) \right],$$

where $r_t (\theta) := \frac{\pi_{\theta_{\text{old}}} (a_t \mid s_t)}{\pi_{\theta_{\text{prox}}} (a_t \mid s_t)}$. However, we can rewrite this objective as

$$L_{\text{CLIP}} (\theta) = \hat{E}_t \left[\frac{1}{\pi_{\theta_{\text{old}}}} \min \left(\pi_\theta \hat{A}_t, \text{clip} (\pi_\theta, (1 - \epsilon) \pi_{\theta_{\text{old}}}, (1 + \epsilon) \pi_{\theta_{\text{old}}}) \hat{A}_t \right) \right]$$

(omitting the policy arguments $(a_t \mid s_t)$ for brevity). Now the first use of $\pi_{\theta_{\text{old}}}$ is as part of an importance sampling ratio, for which we must use the behavior policy, and the second and third uses are in applying the implicit KL penalty, for which we can use the proximal policy.

We therefore define the decoupled clipped objective

2 Decoupled policy objectives

In this section we explain the difference between the proximal and behavior policies, and introduce new versions of PPO’s objectives in which they have been decoupled.

PPO alternates between sampling data through interaction with the environment, and optimizing a surrogate objective. The policy used for sampling is denoted $\pi_{\theta_{\text{old}}}$, and is used by the objective in two different ways. This is easiest to see with the KL penalized objective \cite{schulman2017proximal, equation (8)}:

$$L_{\text{KL}} (\theta) := \hat{E}_t \left[r_t (\theta) \hat{A}_t - \beta \text{KL} [\pi_{\theta_{\text{old}}} (\cdot \mid s_t), \pi_\theta (\cdot \mid s_t)] \right],$$

where \hat{A}_t is the policy used for sampling, and $\pi_{\theta_{\text{old}}}$ is denoted $\pi_{\theta_{\text{prox}}}$.

Our key insight is that the proximal policy need not equal the behavior policy. As we will show experimentally, it matters how old the proximal policy is, but it does not matter whether or not the proximal policy was used for sampling.

We therefore define the decoupled KL penalized objective

$$L_{\text{KL, decoupled}} (\theta) := \hat{E}_t \left[\frac{r_t (\theta)}{\pi_{\theta_{\text{prox}}} (\cdot \mid s_t)} \hat{A}_t - \beta \text{KL} [\pi_{\theta_{\text{prox}}} (\cdot \mid s_t), \pi_\theta (\cdot \mid s_t)] \right],$$

where $\pi_{\theta_{\text{prox}}}$ is the policy used for sampling, and $\pi_{\theta_{\text{prox}}}$ is a recent policy yet to be specified. It is less obvious how to decouple the clipped PPO objective, because $\pi_{\theta_{\text{old}}}$ only appears once in that expression \cite{schulman2017proximal, equation (7)}:

$$L_{\text{CLIP}} (\theta) := \hat{E}_t \left[\min \left(r_t (\theta) \hat{A}_t, \text{clip} (r_t (\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_t \right) \right],$$

where $r_t (\theta) := \frac{\pi_{\theta_{\text{old}}} (a_t \mid s_t)}{\pi_{\theta_{\text{prox}}} (a_t \mid s_t)}$. However, we can rewrite this objective as

$$L_{\text{CLIP}} (\theta) = \hat{E}_t \left[\frac{1}{\pi_{\theta_{\text{old}}}} \min \left(\pi_\theta \hat{A}_t, \text{clip} (\pi_\theta, (1 - \epsilon) \pi_{\theta_{\text{old}}}, (1 + \epsilon) \pi_{\theta_{\text{old}}}) \hat{A}_t \right) \right]$$

(omitting the policy arguments $(a_t \mid s_t)$ for brevity). Now the first use of $\pi_{\theta_{\text{old}}}$ is as part of an importance sampling ratio, for which we must use the behavior policy, and the second and third uses are in applying the implicit KL penalty, for which we can use the proximal policy.

We therefore define the decoupled clipped objective

Finally, in Section 6 we discuss the theoretical and practical implications of our results.
\[L_{\text{decoupled}}(\theta) := \hat{E}_t \left[\frac{\pi_{\theta_{\text{prox}}}(a_t | s_t)}{\pi_{\theta_{\text{behav}}}(a_t | s_t)} \min \left(r_t(\theta) \hat{A}_t, \text{clip} \left(r_t(\theta), 1 - \epsilon, 1 + \epsilon \right) \hat{A}_t \right) \right], \]

where
\[r_t(\theta) := \frac{\pi_{\theta}(a_t | s_t)}{\pi_{\theta_{\text{prox}}}(a_t | s_t)}. \]

As a sanity check, note that if we set the KL penalty coefficient \(\beta = 0 \) or the clipping parameter \(\epsilon = \infty \), then the dependence on the proximal policy disappears, and we recover the vanilla (importance-sampled) policy gradient objective [Schulman et al. 2017, equation (6)].

3 Batch size-invariance

We say an algorithm is batch size-invariant to mean that when the batch size is changed, the original behavior can be approximately recovered by adjusting other hyperparameters to compensate. Here we consider behavior as a function of the total number of examples processed, so another way to put this is that doubling the batch size halves the number of steps needed. Shallue et al. [2018] and Zhang et al. [2019] refer to this as “perfect scaling”.

We treat batch size-invariance as a descriptive property that can hold to some degree, rather than as a binary property. In practice, the original behavior can never be recovered perfectly, and the extent to which it can be recovered depends on both how much and the direction in which the batch size is changed.

3.1 Batch size-invariance for stochastic gradient descent

Stochastic gradient descent (SGD) is batch size-invariant, up until the batch size approaches some critical batch size. This is the batch size at which the gradient has a signal-to-noise ratio of around 1. At smaller batch sizes than this, changes to the batch size can be compensated for by a directly proportional adjustment to the learning rate. This core observation has been made many times before [Mandt et al., 2017, Goyal et al., 2017, Smith et al., 2017, Hardin, 2017, Ma et al., 2018, Shallue et al., 2018, McCandlish et al., 2018]. A discussion of this and other previous work can be found in Section 7.2.

Sketch explanation. For the benefit of the reader’s intuition, we sketch the explanation for SGD’s batch size-invariance. For a much more thorough explanation, we refer the reader to Mandt et al. [2017].

Consider running SGD on a loss function \(L(\theta; x) \) of a parameter vector \(\theta \) and a data point \(x \). Two steps with batch size \(n \) and learning rate \(\alpha \) corresponds to the update rule
\[
\theta_{t+2} = \theta_t - \frac{\alpha}{n} \sum_{x \in B_t} \nabla_\theta L(\theta_t; x) - \frac{\alpha}{n} \sum_{x \in B_{t+1}} \nabla_\theta L(\theta_{t+1}; x),
\]
where \(B_t \) and \(B_{t+1} \) are the next two batches of size \(n \). On the other hand, a single step with batch size \(2n \) and learning rate \(2\alpha \) corresponds to the update rule
\[
\theta_{t+2} = \theta_t - \frac{2\alpha}{2n} \sum_{x \in B_t \cup B_{t+1}} \nabla_\theta L(\theta_t; x).
\]

These update rules are very similar, the only difference being whether the gradient for \(B_{t+1} \) is evaluated at \(\theta_t \) or \(\theta_{t+1} \). If the batch size is small compared to the critical batch size, then the difference between \(\theta_t \) and \(\theta_{t+1} \) is mostly noise, and moreover this noise is small compared to the total noise accumulated by \(\theta_t \) over previous updates. Hence the two update rules behave very similarly.

A good mental model of SGD in this small-batch regime is of the parameter vector making small, mostly random steps around the loss landscape. Over many steps, the noise is canceled out and the parameter vector gradually moves in the direction of steepest descent. But a single additional step makes almost no difference to gradient evaluations.
In more formal terms, SGD is numerically integrating a stochastic differential equation (SDE). Changing the learning rate in proportion the batch size leaves the SDE unchanged, and only affects the step size of the numerical integration. Once the step size is small enough (the condition that gives rise to the critical batch size), the discretization error is dominated by the noise, and so the step size stops mattering.

3.2 Batch size-invariance for Adam

Adam [Kingma and Ba, 2014] is a popular variant of SGD, and is also batch size-invariant until the batch size approaches a critical batch size (which may be different to the critical batch size for SGD) [Zhang et al., 2019]. To compensate for the batch size being divided by some constant c, one must make the following adjustments [Hardin, 2017]:

- Divide the step size α by \sqrt{c}.
- (Raise the exponential decay rates β_1 and β_2 to the power of $1/c$.)

The first adjustment should be contrasted with the linear learning rate adjustment for vanilla SGD. We discuss the reason for this difference and provide empirical support for the square root rule in Appendix C.

The second adjustment is much less important in practice, since Adam is fairly robust to the β_1 and β_2 hyperparameters (hence it has been parenthesized). Note also that β_1 also affects the relationship between the current policy and the proximal policy in policy optimization. For simplicity, we omitted this adjustment in most of our experiments, but included it in some additional experiments that are detailed in Appendix D.

3.3 Batch size-invariance for policy optimization

In policy optimization algorithms like PPO, there are two different batch sizes: the number of environment steps in each gradient step, which we call the optimization batch size, and the number of environment steps in each alternation between sampling and optimization, which we call the iteration batch size. When we say that such an algorithm is batch size-invariant, we mean that changes to both batch sizes by the same factor simultaneously can be compensated for. The motivation for this definition is that this is the effect of changing the degree of data-parallelism.

If the optimization algorithm (such as SGD or Adam) used by PPO is batch size-invariant, then by definition this makes PPO optimization batch size-invariant. In the next section, we show how to make PPO iteration batch size-invariant, and therefore batch size-invariant outright.

To measure batch size-invariance for policy optimization, there are many features of the algorithm’s behavior we could look at. As a simple metric, we use the final performance of the algorithm, since this is the primary quantity of interest to most practitioners. If an algorithm has a high degree of batch size-invariance, then the difference in final performance at different batch sizes should be small.

4 PPO-EWMA and PPG-EWMA

We now introduce a simple modification that can be made to any PPO-based algorithm:

- Maintain an exponentially-weighted moving average (EWMA) of the policy network, updating it after every policy gradient step using some decay rate β_{prox}.
- Use this as the network for the proximal policy in one of the decoupled policy objectives.

The motivation for using an EWMA is as follows. We would like to be able to use a policy from some fixed number of steps ago as the proximal policy, but this requires storing a copy of the network from every intermediate step, which is prohibitive if this number of steps is large. Using an EWMA allows us to approximate this policy using more reasonable memory requirements. Although this approximation is not exact, averaging in parameter space may actually improve the proximal policy [Izmailov et al., 2018], and the age of the proximal policy can still be controlled by adjusting β_{prox}.

We refer to this modification using the -EWMA suffix. Thus from PPO we obtain PPO-EWMA, and from Phasic Policy Gradient (PPG) [Cobbe et al., 2020] we obtain PPG-EWMA. Pseudocode
for PPO-EWMA may be found in Appendix A and code may be found at https://github.com/openai/ppo-ewma

To see how this modification helps us to achieve batch size-invariance, note that the main effect of changing the iteration batch size in PPO is to change the age of the behavior and proximal policies (which are coupled). The age of the behavior policy affects how on-policy the data is, but this does not matter much, as long as it is not too large. However, the age of the proximal policy affects the strength of the KL penalty (or the implicit KL penalty in the case of the clipped objective), which influences how fast the policy can change. We therefore need to maintain the age of the proximal policy as the iteration batch size is changed, which is what our modification enables.

More specifically, to achieve batch size-invariance for PPO- and PPG-EWMA, we make the following adjustments to compensate for the optimization and iteration batch sizes being divided by some constant c:

- Adjust the optimization hyperparameters as described in the previous section, i.e., divide the vanilla SGD learning rate by c or the Adam step size by \sqrt{c}. (We use Adam.)
- Modify β_{prox} such that $\frac{1}{1-\beta_{\text{prox}}} - 1$ is multiplied by c. (This expression is the center of mass of the proximal policy EWMA, measured in gradient steps.) This adjustment is what keeps the age of the proximal policy constant, measured in environment steps.
- If using advantage normalization, multiply the number of iterations used to estimate the advantage mean variance by c. (In practice, we use EWMAs to estimate the mean and variance, and multiply their effective sample sizes, measured in iterations, by $\frac{1}{c}$.) This keeps the overall sample sizes of these estimates constant, preventing their standard errors becoming too large.
- For PPG, multiply the number of policy iterations per phase N_π by c. (We use PPG.)

For these adjustments to work, we require that the optimization batch size is sufficiently small. We also require that the number of policy epochs (denoted E in PPO or E_π in PPG) is 1. This is because when the iteration batch size is very small, using multiple policy epochs essentially amounts to training on the same data multiple times in a row, which is redundant (modulo changing the learning rate). Our batch size-invariance experiments therefore use PPG-EWMA, where $E_\pi = 1$ is the default.

Note that PPG has a third batch size: the number of environment steps in each alternation between phases, which we call the phase batch size. The effect of our adjustment to N_π is to simply hold the phase batch size constant, thereby preserving the dynamics of the policy and auxiliary phases.

5 Experiments

To validate our analysis, we ran several experiments on Procgen Benchmark [Cobbe et al., 2019], which we found to serve as a useful testbed due to the difficulty and diversity of the environments. Hyperparameters for all of our experiments can be found in Appendix B and full results on each of the individual environments can be found in Appendix F.

5.1 Artificial staleness

To investigate our decoupled policy objectives, we introduced artificial staleness. By this we mean that once data has been sampled through interacting with the environment, it is not immediately used for optimization, but is instead placed in a buffer to be used a fixed number of steps later. Despite being artificial, similar staleness is often encountered in asynchronous training setups, where it is known to cause problems for on-policy algorithms like PPO [OpenAI et al., 2019]. We measure staleness in iterations, with one iteration being a single alternation between sampling and optimization.

With artificial staleness, the original PPO objectives are underspecified, since there are two natural choices for $\pi_{\theta_{\text{old}}}$: the policy immediately preceding the current iteration, denoted $\pi_{\theta_{\text{recent}}}$, and the behavior policy $\pi_{\theta_{\text{behav}}}$. However, the decoupled objectives allow us to take the proximal policy $\pi_{\theta_{\text{prox}}}$ to be the recent policy, while continuing to use the behavior policy for importance sampling.

The effective sample size, sometimes called the span, of an EWMA with decay rate β is equal to $\frac{2}{1-\beta} - 1$.\footnote{The effective sample size, sometimes called the span, of an EWMA with decay rate β is equal to $\frac{2}{1-\beta} - 1$.}
(a) Using the recent policy for importance sampling introduces bias that makes training highly unstable for even small amounts of staleness.

(b) The decoupled objective allows the correct importance sampling ratio to be used while maintaining the age of the proximal policy, preventing performance from degrading much until the data is very stale.

(c) Using the behavior policy to control the size of policy updates holds back learning unnecessarily for small amounts of staleness, but the additional stability is helpful for very stale data.

Figure 1: PPO with artificial staleness, averaged over all 16 Procgen environments. One iteration corresponds to 65,536 environment steps with our hyperparameters. Mean and standard deviation over 4 seeds shown.

This allows the KL penalty (or clipping) to have a consistent effect in terms of controlling how fast the policy changes, while avoiding harmful bias from incorrect importance sampling.

In our experiments, we compare the decoupled objective to both choices for the original objective. Our results are shown in Figure 1. With both choices for the original objective, even a small amount of staleness hurts performance. However, with the decoupled objective, performance is robust to a surprising amount of staleness, with minimal degradation until a staleness of around 8 iterations (over 500,000 environment steps). This demonstrates that the decoupling the proximal policy from the behavior policy can be beneficial.

5.2 Batch size-invariance

We tested our method of achieving batch size-invariance for PPG-EWMA described in Section 4. Since the optimization batch size is required to be sufficiently small, we started from our default batch size, which uses 256 parallel copies of the environment, and reduced it by factors of 4 until we were running just a single parallel copy of the environment.

Our results are shown in Figures 2 and 3. We were able to achieve a high degree of batch size-invariance, with a difference in final mean normalized return between the largest and smallest batch sizes of 0.052. Moreover, there was a single outlier environment, Heist, without which this difference is reduced to 0.019. We conducted further experiments to try to explain this outlier, which we discuss in Appendix D, but we were not successful.

We conducted ablations in which all but one of the adjustments was removed, the results of which are also shown in Figures 2 and 3. The Adam step size adjustment is the most important at every batch size, and training becomes highly unstable at the smallest batch sizes without this. The advantage normalization adjustment does not matter at the largest batch sizes, but matters a lot at the smallest batch sizes in some environments, which are the ones with particularly noisy advantage standard deviation estimates (see Figure 13 in Appendix F.2). The adjustment to the EWMA matters a little at every batch size, which reflects the fact that PPG is relatively robust to changes to the KL penalty. We did not run an ablation for the adjustment to the PPG hyperparameter N_{τ}, but can infer from Cobbe et al. [2020] Figure 5] that it comes immediately after the Adam step size adjustment in importance.
Figure 2: PPG-EWMA at different batch sizes, with hyperparameters adjusted to achieve batch size-invariance, averaged over all 16 Procgen environments. For reference, we also show PPG (at the default batch size) with the KL penalty coefficient (β in the L_{KLPEN} policy objective) reduced to $1/256$, which serves as an approximate lower bound on PPG’s performance with a KL penalty that is too weak. On the right we show ablations with all but one of the adjustments. Mean and standard deviation over 3 seeds shown.

Figure 3: For the results shown in Figure 2 we measure the degree of batch size-invariance for each individual environment by calculating the difference in normalized return between the largest and smallest batch sizes, averaged over the last 4 million timesteps (the length of a single PPG phase). We use a square root scale to make small differences more visible. Mean and standard error over 3 seeds shown.

Environments from left to right: CoinRun, StarPilot, CaveFlyer, Dodgeball, FruitBot, Chaser, Miner, Jumper, Leaper, Maze, BigFish, Heist, Climber, Plunder, Ninja, BossFight.
To check the statistical significance of the effects produced by our ablations, we conducted hypothesis tests, which we describe in Appendix E. Our null hypothesis was that the ablation had no effect on the difference in final normalized return at different batch sizes in any of the environments. For the comparison between the largest and smallest batch sizes, we rejected the null hypothesis for all of the ablations at the 0.1% level.

5.3 EWMA comparison

Finally, we tested the outright benefit of the EWMA modification by doing a head-to-head comparison of PPO against PPO-EWMA and of PPG against PPG-EWMA. It is important to note that the EWMA introduces an additional hyperparameter β_{prox}, but that this was tuned only on the first 8 of the 16 Procgen environments (and only on PPG), and so the algorithms are “complete” on the last 8 environments in the sense of Jordan et al. [2020]. Our results are shown in Figure 4.

We found the benefit of the EWMA to be small but remarkably consistent across environments and algorithms, outperforming the baseline on all of the last 8 environments for both PPO and PPG. We believe that this is the result of the EWMA reducing the variance of the proximal policy. Further evidence that the variance of the proximal policy matters is discussed in Appendix G.

Note that this benefit comes at the cost of additional memory to store the weights of the EWMA network, and an additional forward pass of the EWMA network for each policy gradient step. With our hyperparameters, this increases the computational cost of PPO by 30% and of PPG by 2.3%, not including the cost of stepping the environment.

6 Discussion

6.1 PPO as a natural policy gradient method

Our experiments provide strong empirical support that decoupling the proximal policy from the behavior policy can be beneficial: it can be used to make more efficient use of stale data, to achieve

These costs are calculated as follows. PPO has 1 forward-only and 3 forward-backward passes per environment step, to which PPO-EWMA adds 3 forward-only passes. PPG has 1 forward-only and 7 forward-backward passes of both networks per environment step, to which PPG-EWMA adds 1 forward-only pass of the policy network. A forward-backward pass has 3 times the cost of a forward-only pass.

In practice, including the time taken to step the environment, the EWMA increased wall-clock time by 19% for PPO and by 3% for PPG, but our PPG-EWMA implementation included an additional unnecessary forward pass of an EWMA of the value network.
batch size-invariance, and to slightly improve sample efficiency outright. This implies that the usual justification for PPO’s surrogate objectives, that they approximate trust region methods, is subtly flawed. Trust region methods keep the policy close to the behavior policy, but it does not matter how far from the behavior policy we move specifically, only that we stay close to some recent policy, or in other words, that we do not move too fast. Instead, we speculate that PPO is better viewed as a natural policy gradient method [Kakade, 2001]. These methods select updates that efficiently improve performance relative to how much the policy is changed.

This conflicts with the results of Schulman et al. [2015a], which found constraining updates relative to the behavior policy to be beneficial. With the benefit of hindsight, we believe that at that time, constraint methods had hyperparameters that were easier to tune, but that with the advent of PPO’s clipped objective and various normalization schemes, this tends to no longer be the case.

6.2 Practical advice for policy optimization at small batch sizes

Batch size is an important hyperparameter in reinforcement learning, since it controls gradient variance, which can be high in challenging environments. But it is often constrained by computational resources such as GPU memory. The benefit of batch size-invariance is that it allows hyperparameters to be tuned at one batch size, and then adjusted to work at a different batch size, which can be selected based on computational constraints.

However, when working in a new domain, we may be constrained to use a small batch size, without having first been able to tune hyperparameters at a larger batch size. We therefore attempt to distill our findings into practical advice for getting policy optimization to work well in a new domain at small batch sizes. Our advice, much of which is already folklore, is as follows:

• By far the most important hyperparameter to tune is the learning rate (or Adam step size). Once it has been tuned for a certain batch size, it can be adjusted formulaically for use at other batch sizes using the rules given in Section 3, as long as the batch size remains small.
• Consider setting the number of policy epochs (E in PPO or \(E_\pi \) in PPG) to 1, at least initially. This is the easiest way to maintain stability even if not enough ratios are being clipped. Furthermore, multiple policy epochs are less likely to be beneficial when the iteration batch size is small.
• If using clipping, monitor the fraction of ratios clipped. If it is much less than 1%, then it is probably beneficial to increase the iteration batch size or to use PPO-EWMA with a high \(\beta_{prox} \). If it is much more than 10% with 1 policy epoch or 20% with multiple policy epochs, then this is often a sign that the learning rate is too high.
• If using advantage normalization, monitor the advantage standard deviation estimates. If estimates oscillate by a factor of 10 or more, then it is probably beneficial to perform normalization using data from more iterations.

7 Related work

7.1 Policy optimization

Policy gradient methods have a long history, going at least as far back as Williams [1992], and were introduced in their modern formulation by Sutton et al. [1999]. Trust regions were introduced into policy optimization by Schulman et al. [2015a], who already noted the similarity with natural policy gradient methods [Kakade, 2001]. The trust region approach was simplified by the use of surrogate objectives in PPO, which was introduced by Schulman et al. [2017]. Other key ingredients of PPO include an actor-critic setup similar to that of Mnih et al. [2016], and generalized advantage estimation, which was introduced by Schulman et al. [2015b].

PPO’s surrogate objectives can also be viewed through the lens of mirror descent, as explained by Neu et al. [2017]. This perspective also makes it clear that decoupling the proximal policy from the

\[\text{The iteration batch size can be increased without changing the sampling or optimization batch size by simultaneously increasing the number of timesteps per rollout (T) and the number of minibatches per epoch. However, T also affects the amount of bootstrapping performed, and so the GAE bootstrapping parameter (\(\lambda \)) may also need to be adjusted to compensate.} \]
behavior policy is a possibility. Indeed, a similar decoupled objective is proposed in concurrent work of [Tomar et al., 2020, Section 5.1] that is motivated by this perspective.

7.2 Batch size-invariance

There has been much previous work on batch size-invariance. The underlying idea of modeling SGD as numerically integrating a stochastic differential equation (SDE) is long-established, going at least as far back as [Kushner and Yin, 2003]. More recently, [Mandt et al., 2017] and [Hardin, 2017] observed that changing the learning rate in proportion the batch size leaves the SDE unchanged, and therefore that SGD is batch size-invariant at small batch sizes. Meanwhile, [Goyal et al., 2017] empirically validated this invariance on ImageNet. [Smith and Le, 2017] and [Smith et al., 2017] provided further empirical validation for this, as well as for rules describing how the optimal learning rate changes with momentum and training set size.

The term critical batch size for the batch size beyond which SGD is no longer batch size-invariant was introduced by [Ma et al., 2018]. Since then a number of works have studied how the critical batch size varies between problems, mostly with the motivation of improving training efficiency at large batch sizes (in contrast to our work, which focuses on maintaining performance at small batch sizes). [Shalun et al., 2018] studied the effect of architectures, datasets and different forms of momentum on the critical batch size, and introduced the term perfect scaling for the regime of batch size-invariance. [Golmant et al., 2018] also studied the effect of dataset complexity and size on the critical batch size. [McCandlish et al., 2018] measured the critical batch size in a range of domains, and showed that it can be predicted using a measure of the noise-to-signal ratio of the gradient known as the gradient noise scale. Finally, [Zhang et al., 2019] studied the effect of curvature on the critical batch size using a noisy quadratic model, and showed that preconditioning can be used to increase the critical batch size.

8 Conclusion

Policy optimization algorithms such as PPO typically control the size of policy updates using a recent policy we call the proximal policy. We have shown that this policy can be safely decoupled from the behavior policy, which is used to collect experience. We introduced PPO-EWMA and PPG-EWMA, variants of PPO and PPG in which the proximal policy is an exponentially-weighted moving average of the current policy. These variants allow stale data to be used more efficiently, and are slightly more sample efficient outright. Finally, we showed how to make these algorithms batch size-invariant, meaning that when the batch size is changed, we can preserve behavior, as a function of the number of examples processed, by changing other hyperparameters (as long as the batch size is not too large). We discussed our findings, which have both theoretical and practical implications for policy optimization.

9 Acknowledgments

We thank David Farhi, Chris Hardin and Holly Mandel for helpful discussions and comments, and anonymous reviewers for helpful and detailed feedback.

References

Checklist

1. For all authors...
 (a) Do the main claims made in the abstract and introduction accurately reflect the paper’s contributions and scope? [Yes]
 (b) Did you describe the limitations of your work? [Yes] There are careful ablations and a discussion of the additional computational cost in Section 5.
 (c) Did you discuss any potential negative societal impacts of your work? [No] The main impact of the work is via an improved understanding of policy optimization in general, and the experiments are all on toy environments.
 (d) Have you read the ethics review guidelines and ensured that your paper conforms to them? [Yes]

2. If you are including theoretical results...
 (a) Did you state the full set of assumptions of all theoretical results? [N/A]
 (b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
 (a) Did you include the code, data, and instructions needed to reproduce the main experimental results (either in the supplemental material or as a URL)? [Yes]
 (b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)? [Yes]
 (c) Did you report error bars (e.g., with respect to the random seed after running experiments multiple times)? [Yes]
 (d) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs, internal cluster, or cloud provider)? [No] The additional computational cost compared to existing methods is clearly described in Section 5 from which the total computation cost of the experiments can be calculated. The type of resources used is proprietary information.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
 (a) If your work uses existing assets, did you cite the creators? [Yes]
 (b) Did you mention the license of the assets? [Yes]
 (c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
 (d) Did you discuss whether and how consent was obtained from people whose data you are using/curating? [N/A]
 (e) Did you discuss whether the data you are using/curating contains personally identifiable information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
 (a) Did you include the full text of instructions given to participants and screenshots, if applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent on participant compensation? [N/A]