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Abstract

There exists an unequivocal distinction between the sound produced by a static
source and that produced by a moving one, especially when the source moves
towards or away from the microphone. In this paper, we propose to use this
connection between audio and visual dynamics for solving two challenging tasks
simultaneously, namely: (i) separating audio sources from a mixture using visual
cues, and (ii) predicting the 3D visual motion of a sounding source using its sepa-
rated audio. Towards this end, we present Audio Separator and Motion Predictor
(ASMP) – a deep learning framework that leverages the 3D structure of the scene
and the motion of sound sources for better audio source separation. At the heart
of ASMP is a 2.5D scene graph capturing various objects in the video and their
pseudo-3D spatial proximities. This graph is constructed by registering together
2.5D monocular depth predictions from the 2D video frames and associating the
2.5D scene regions with the outputs of an object detector applied on those frames.
The ASMP task is then mathematically modeled as the joint problem of: (i) recur-
sively segmenting the 2.5D scene graph into several sub-graphs, each associated
with a constituent sound in the input audio mixture (which is then separated) and (ii)
predicting the 3D motions of the corresponding sound sources from the separated
audio. To empirically evaluate ASMP, we present experiments on two challenging
audio-visual datasets, viz. Audio Separation in the Wild (ASIW) and Audio Visual
Event (AVE). Our results demonstrate that ASMP achieves a clear improvement in
source separation quality, outperforming prior works on both datasets, while also
estimating the direction of motion of the sound sources better than other methods.

1 Introduction
Events around us are often audio-visual in nature and our senses have evolved to leverage this
multimodal synergy to better reason about the world. For example, the sight of a kid laughing aloud
while sliding down a slide allows us to associate the laughing sound with the kid and get a sense
of his/her direction of motion, even when a myriad of other sounds are present in the scene. In this
paper, we propose to leverage this synergy between sight and sound for solving two challenging tasks
simultaneously, viz.: (i) separating audio sources from a mixture using visual cues, and (ii) the novel
task of predicting the 3D visual motion of the sounding source using its corresponding separated
audio.

Typical approaches to visually-guided audio source separation use weakly- or self- supervised models
trained to separate a mixture of acoustic sources into its constituents by conditioning on appropriate
visual regions [8, 13, 55, 56]. Such approaches impose constraints on the space of the separated audio
(e.g., cyclic consistency, object identifiability, etc.) to derive gradients for training the underlying
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neural models. A few of these methods additionally seek to ground the separated audio with the
appearance of the sounding object [8, 13, 46]. Chatterjee et al. [8], construct a 2D scene graph on
the video frames to capture the visual context of the audio source for better separation; their key
intuition being that certain sounding objects (e.g., a guitar) cannot produce the sound by itself, but
must have a suitable spatial context around them (e.g., a person). However, all the above approaches
ignore one key aspect of the physical world – that it is three dimensional and this 3D structure
influences the sound being heard. For example, if a person playing a guitar is spatially distant from
the microphone, then the audio mixture to be separated is unlikely to have the sound of that guitar.
Further, the 3D scene structure also allows for incorporating the motion of sounding objects. Imagine
the whistling of a train moving towards you. There is an inevitable relationship between the evolution
of the sound of the train being heard and its 3D motion, which can help distinctly separate its sound
from other whistling trains or background clamour and vice-versa. Thus, if the audio of this train is
well-separated via visual-guidance, then the separated audio must also be able to predict the direction
of the train’s motion. Leveraging these insights, we present Audio Separator and Motion Predictor
(ASMP) – an innovative graph neural network for video-guided audio source separation from an
acoustic mixture that can also predict the direction of motion of the sound source.

Inspired by Cherian et al. [9], our ASMP framework begins by computing a dense 2.5D representation
of the frames of a video where 2.5D refers to the 2D visual context of the frames enriched with the
pseudo-depth for that frame produced using a 2D-to-3D monocular depth prediction method [39].
Next, we succinctly capture the semantic context of this 2.5D visual scene by means of a novel
2.5D scene graph representation. The nodes of this scene graph capture the various objects in the
scene (projected onto the pseudo-3D scene via the depth map), while the graph edges characterize
the approximate 3D spatial distances between the objects. Note that our graph does not explicitly
capture any spatio-temporal dynamics of the scene objects, instead is constructed on singleton frames.
To achieve audio source separation, we propose a recurrent graph neural network that is trained to
segment this 2.5D scene graph into sub-graph embeddings; each of which is trained to be associated
with a potentially unique sounding object or interaction and is used to induce separation of that
sound source from the audio mixture. During training, we enforce this uniqueness via imposing
orthogonality constraints between the generated sub-graph embeddings. To make ASMP associate
the evolution of sound with the 3D motions of their sources, we propose to include an auxiliary task
that demands the prediction of the 3D direction of motion of a sounding object from its separated
audio, where the ground truth 3D motion is estimated from the 2.5D scene graph using optical flow.

A natural question one may have at this point is: how can a method predict the 3D motion from
monaural audio using a 2.5D scene graph constructed on a single video frame? The key insights
come from two observations: (i) there are often implicit object motion cues present in singleton
video frames, which may be embedded within the scene graph node features (e.g., a graph node
corresponding to a train may have the inductive priors suggesting the train is moving in the direction
it faces), and (ii) when the audio is separated via visual-guidance, these implicit features modulate
the audio separation masks, thereby incorporating motion cues into the separated audio spectrograms.
Thus, when trained end-to-end for the joint task of sound separation and motion prediction, the model
leverages these implicit cues to minimize the learning objective.

To demonstrate the efficacy of ASMP on the dual tasks of sound source separation and motion
direction prediction, we present experiments on two challenging datasets, namely (i) Audio Separation
in the Wild (ASIW) [8] and (ii) Audio Visual Event (AVE) [47]. Both of these datasets feature
videos of sounding objects and sounding interactions in the wild. Our results clearly show that
ASMP outperforms competing prior methods on both these datasets as well as on both the tasks,
underscoring the importance of incorporating 3D spatial structure and the benefits of learning audio-
visual dynamics.

Below, we summarize the key contributions of the paper:

• We introduce a novel 3D geometry-aware scene graph representation [20] for visually-
guided audio source separation, called ASMP.

• We introduce a novel task of predicting 3D motion direction of a sound source in the scene
from the the temporal evolution of the sound it makes, aided by appropriate visual context,
and use it to improve audio separation.

• ASMP demonstrates state-of-the-art audio source separation and motion prediction perfor-
mances on two challenging datasets for this task, viz. ASIW and AVE.
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Figure 1: A detailed illustration of our proposed ASMP model.

2 Related Works

Below, we brie�y review some of the important prior works closely related to our approach.

Visually-guided Audio Source Separationis the task of separating a mixture of audio signals into
its constituent sources by discovering the association between the separated sound sources and their
visual appearances in the physical world. Typical methods for solving this task �nd a wide range
of real-world applications, such as separating sounds of musical instruments [13, 8, 11, 55, 56],
separating speech signals [1, 10, 33], and separating on-screen sounds from off-screen ones for
generic objects [36, 48]. A learning pipeline often used to train such methods conditions a sound-
separation network (such as a U-net [41]) with an appropriate visual object representation, to induce
a source separation on a mixed audio input, obtained by mixing the audio streams of two different
videos. In recent years, research in this area has moved from using global visual features of motion
and appearance [55] towards extracting very �ne-grained visual conditioning information to induce
more effective separations [13, 46]. Additional re�nement steps have also been explored [8] to ward
off potential false separation triggers. However, none of these approaches factor in the 3D geometry
of the scene captured by the video – an important gap that we attempt to �ll using ASMP.

Localizing Sound in Video Frameshas been attempted in several recent methods by learning to
ground the sound source in the visual space, e.g., identifying the pixels of the sound source [4, 17,
21, 42, 46]. While, these approaches strive to learn the association between the visual appearance
and acoustic signatures of sound sources, they do not apply such methods to audio source separation –
a task that is the focus of this work.

Sound Synthesis from Videosconstitutes another category of important techniques in the audio-
visual realm [37, 57] that has become popular lately. Towards this end, several approaches have
recently been proposed for the task of generating both monaural and binaural audio starting from
videos [12, 34, 53, 27]. However, differently, we seek to solve the task of sound source separation
and motion prediction in the visual space.

Application of Scene Graphs to Videoshas resulted in massive strides in video understanding
tasks. Scene graphs, while traditionally used for capturing the static content of images [20, 28] have
lately been used for several video understanding tasks. For instance, Jiet al. [19] applied them for
action recognition, Genget al. [14] for visual dialog, and Chatterjeeet al. [8] for visually-guided
sound-source separation. However, these scene graphs are usually 2D, while we attempt to explicitly
incorporate the 3D scene geometry into the scene graphs. While, Cherian et al. [9] proposes (2.5+1)D
scene graphs for video question answering, our task of audio source separation and motion prediction
brings in several novel components beyond their setup.

Audio Separation Using Direction of Arrival has been an important topic of recent interest in the
audio research community [52, 31, 35, 44], where the direction of arrival of sound to a microphone
array is explicitly used for improved sound source separation. While, our approach is inspired by
their key �ndings, we attempt to explore this in the audio-visual domain.
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Figure 2: A step-wise illustration of the pseudo-3D scene graph construction process on an example
frame from an ASIW video. We show the original (reference) frame, its predicted monocular 3D
depth map, its optical �ow estimate with an adjacent frame, and a pseudo-3D scene graph for the
frame. The highlighted part of the graph (blue edges) is the sub-graph associated with the sound of
the horse's motion, while the black-arrow denotes the motion direction of the horse in pseudo-3D
space. Note that the motion direction is not used in our graph embeddings, instead provides ground
truth guidance when minimizing our losses.

3 Proposed Method
3.1 Task Setup and Method Overview

Let V denote an unlabeled video, andm(t) =
P N

i =1 ai (t) be its accompanying discrete-time audio
arising from a linear mixture ofN acoustic sourcesai (t). The main goal ofvisually-guided audio
source separationis to use cues derived fromV to induce a separation ofm(t) into its constituent
acoustic sourcesai (t), for i 2 f 1; 2; : : : ; N g. For effectively capturing the audio-visual semantic
alignment, we represent the videoV as a scene graphG = ( V; E) with nodesV = f n1; n2; : : : ; nK g
denoting the objects inV andE capturing the set of edgeseij characterizing the spatial proximity
of a pair of nodes(ni ; nj ). The key idea in our proposed Audio Separator and Motion Predictor
(ASMP) framework is to map each of the acoustic sourcesai (t) to a sub-graph ofG. We realize this
mapping by auto-regressively partitioning the graphGinto mutually-orthogonal neural embeddings
and using these embeddings to condition anAcoustic Separatorsub-network tasked with extracting
a sound sourceai (t) from the mixturem(t). A key ingredient in our model is equipping the audio
separator to also predict the direction of motion of the sounding object. We incorporate this ability by
including a direction prediction training loss. Figure 1 provides an overview of our model and the
details follow.

3.2 Estimating Ground Truth Sound Source Motion
One novel aspect of ASMP is that it can predict the motion direction of a source from its sound,
which in turn is derived from an embedding of a sub-graph ofG. However, the ground truth for
this task is not directly available from the 2D frames of a given video. In the following, we detail
the pre-processing steps for estimating this ground truth, and present an overview of these steps
in Figure 2. We denote a motion displacement vector, asd i for the sourceai (t), which will be
subsequently used as an auxiliary cue to train the audio source separator.

Computing Pseudo-Depth Maps: Constructing a 3D scene from 2D images is a classic problem
explored in computer vision for which a variety of solutions exist [2, 15]. However, many of these
methods make strong assumptions, such as: (i) the scene being static, (ii) existence of suf�cient
overlap between the frames, or (iii) knowledge of the intrinsic parameters of the camera, none of
which might hold for the type of videos that are typically used in our task. To this end, we propose
to build upon the recent progress made in monocular 3D reconstruction realm towards mapping
each video frameFf of V into a 2.5D pseudo-depth image [54]. In particular, we use the MiDAS
algorithm [39] because of its ease-of-use and accuracy of depth predictions.

Rectifying Frames for Camera Motion: Since we do not assume that the frames inV have been
captured by a static camera, we next align them to a common 3D reference frameFr . To this end,
we apply the classicLucas-Kanadetracker [30] across the frames. As there may be objects moving
out of the scene or shot-switches in the video, we found that tracking thestatic objectsin the video
typically does not sustain its full length. Thus, we group the frames into �xed-size windows, each
with a maximum of̀ continuous frames. A video can therefore, be considered as a collection of
W windows, with each window producing its own motion displacement vector. This consequently
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