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Abstract

Chaotic systems are notoriously challenging to predict because of their sensitivity to
perturbations and errors due to time stepping. Despite this unpredictable behavior,
for many dissipative systems the statistics of the long term trajectories are governed
by an invariant measure supported on a set, known as the global attractor; for many
problems this set is finite dimensional, even if the state space is infinite dimensional.
For Markovian systems, the statistical properties of long-term trajectories are
uniquely determined by the solution operator that maps the evolution of the system
over arbitrary positive time increments. In this work, we propose a machine
learning framework to learn the underlying solution operator for dissipative chaotic
systems, showing that the resulting learned operator accurately captures short-time
trajectories and long-time statistical behavior. Using this framework, we are able
to predict various statistics of the invariant measure for the turbulent Kolmogorov
Flow dynamics with Reynolds numbers up to 5000.

1 Introduction

Machine learning methods for chaotic systems. Chaotic systems are characterized by strong
instabilities. Small perturbations to the system, such as the initialization, lead to errors which
accumulate during time-evolution, due to positive Lyapunov exponents. Such instability makes
chaotic systems challenging, both for mathematical analysis and numerical simulation. Because of
the intrinsic instability, it is infeasible for any method to capture the exact trajectory of a chaotic
system for long periods. Therefore, prior works mainly focus on fitting recurrent neural networks
(RNN) on extremely short trajectories or learning a step-wise projection from a randomly generated
evolution using reservoir computing (RC) [1–5]. Another approach to this problem is to work in the
space of probability densities propagated by, or invariant under, the dynamics [6, 7], the Frobenius-
Perron approach; a second, related, approach is to consider the adjoint of this picture and study
the propagation of functionals on the state space of the system, the Koopman operator approach
[8, 9]. However, even when the state space is finite dimensional, the Frobenius-Perron and Koopman
approaches require approximation of a linear operator on a function space; when the state space
is infinite-dimensional approximation of this operator is particularly challenging. These previous
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attempts are able to push the limits of faithful prediction to moderate periods on low dimensional
ordinary differential equations (ODEs), e.g. the Lorenz-63 system, or on one-dimensional partial
differential equations (PDEs), e.g. the Kuramoto-Sivashinsky (KS) equation. However, they are less
effective at modeling more complicated turbulent systems such as the Navier-Stokes equation (NS),
especially over long time periods. Indeed, because of positive Lyapunov exponents, we cannot expect
predictions of long-time trajectories of such chaotic systems to be successful. Instead, we take a new
perspective: we capture statistical properties of long trajectories by accurately learning the solution
operator, mapping initial condition to solution at a short time later.

Invariants in chaos. Despite their instability, many chaotic systems exhibit certain reproducible
statistical properties, such as the auto-correlation and, for PDEs, the energy spectrum. Such properties
remain the same for different realizations of the initial condition [10]. This is provably the case
for the Lorenz-63 model [11, 12] and empirically holds for many dissipative PDEs, such as the KS
equation and the two-dimensional Navier-Stokes equation (Kolmogorov flows) [13]. Dissipativity is
a physical property of many natural systems. Dissipativity may be encoded mathematically as the
existence of a compact set into which all bounded sets of initial conditions evolve in a finite time,
and therafter remain inside; the global attractor captures all possible long time behaviour of the
system by mapping this compact set forward in time [13, 14]. There is strong empirical evidence that
many dissipative systems are ergodic, i.e., there exists an invariant measure which is supported on the
global attractor. For autonomous systems, our focus here, the solution operator for the dynamical
system maps the initial condition to the solution at any positive time. By fixing an arbitrary positive
time and composing this map with itself many times, predictions can be made far into the future.
This compositional property follows from the Markov semigroup property of the solution operator
[13, 14]. It is natural to ask that approximations of the solution operator inherit dissipativity of the
true solution operator, and that invariant sets and the invariant measure, which characterize the global
attractor, are well-approximated; this problem is well-studied in classical numerical analysis [15, 16]
and here we initiate the study of inheriting dissipativity for machine-learned solution operators. By
learning a solution operator, we are able to quickly and accurately generate an approximate attractor
and estimate its invariant measure for a variety of chaotic systems that are of interest to the physics
and applied mathematics communities [17–23]. Prior work in learning complex dynamics from
data [24–27] has labeled long-term stability a desirable feature (e.g., [28, 29] learning the attractors
of dynamical systems), but all lack a principled data-driven modeling paradigm to enforce it. In
this paper we work within a precise mathematical setting encompassing a wide variety of practical
problems [13], and we demonstrate two principled approaches to enforce dissipativity. One of these
leads to provably dissipative models, something not previously achieved in the literature for our
definition of dissipativity. 2

Neural operators. To learn the solution operators for PDEs, one must model the time-evolution
of functions in infinite-dimensional function spaces. This is especially challenging when we need
to generate long trajectories since even a small error accumulates over multiple compositions of
the learned operator, potentially causing an exponential blow-up or a collapse due to the space’s
high dimensionality. Because we study the evolution of functions in time, we propose to use neural
operators [30, 31], a recently developed operator learning method. Neural operators are deep learning
models that are maps between function spaces. Neural operators generalize conventional neural
networks which are maps between finite-dimensional spaces and subsume neural networks when
limited to fixed grids. The input functions to neural operators can be represented in any discretization,
and the output functions can be evaluated at any point in the domain. Neural operator remedies
the mesh-dependent nature of finite-dimensional neural network models such as RNNs, CNNs, and
RC. Neural operators are guaranteed to universally approximate any operator in a mesh independent
manner [31], and hence, can capture the solution operator of chaotic systems. This approximation
guarantee and the absorption of trajectories by the global attractor makes it possible to accurately
follow it over long time horizons, allowing access to the invariant measure of chaotic systems.

Our contributions. In this work, we formulate a machine learning framework for chaotic systems
exploiting their dissipativity and Markovian properties. We propose the Markov neural operator
(MNO) and train it given only one-step evolution data from a chaotic system. By composing the

2There are other, more restrictive, definitions of dissipativity; we work with the widely adopted definition
from [13, 14].
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Figure 1: Dynamic evolution of the Markov neural operator for Kolmogorov flow systems
Starting from initial conditions near the attractor, with and without dissipativity regularization. The baseline
model has no dissipativity regularization while the dissipative model has the regularization enforced during

training. Baseline model blows up, whereas the dissipative model returns to the attractor. The dissipative model
is trained using the Fourier neural operator architecture in the manner shown in Figure 2.

learned operator over a long horizon, we accurately approximate the global attractor of the system [32].
Our architecture is outlined in Figure 2. In order to assess its performance, we study the statistics of
the associated invariant measure such as the Fourier spectrum, the spectrum of the proper orthogonal
decomposition (POD), the point-wise distribution, the auto-correlation, and other domain-specific
statistics such as the turbulence kinetic energy and the dissipation rate. Furthermore we study the
behavior of our leaned operator over long horizons and ensure that it does not blow up or collapse but
rather accurately follows the global attractor. In this work:

• We theoretically prove that, under suitable conditions, the MNO can approximate the underlying
solution operator of chaotic PDEs, while conventional neural networks lack such strong guarantees.

• We impose dissipativity by augmenting the data on an outer shell to enforce that the dynamic
evolution stays close to the attractor. As an additional safeguard, we impose a hard dissipativity
constraint on MNO predictions far from the attractor and the data augmentation shell. We show
this is crucial for learning in a chaotic regime as demonstrated by Figure 1. The resulting system
remains stable against large perturbations.

• We study the choice of time steps for training the MNO, demonstrating that the error follows a
valley-shaped phenomenon (cf. [33–35]). This gives rise to a recipe for choosing the optimal time
step for accurate learning.

• We show that standard mean square error (MSE) type losses for training are not adequate, and the
models often fail to capture the higher frequency information induced from the derivatives. We
investigate various Sobolev losses in operator learning. We show that using Sobolev norms for
training captures higher-order derivatives and moments, as well as high frequency details [36, 37].
This is similar in spirit to pre-multiplying the spectrum by the wavenumber, an approach commonly
used in the study of fluid systems [38].

• We investigate multiple existing deep learning architectures, including U-Net [39], long short-term
memory convolution neural networks (LSTM-CNN) [40], and gated recurrent units (GRU) [41], in
place of the neural operator to learn the solution operator. We show MNO provides an order of
magnitude lower error on all loss functions studied. Furthermore, we show that MNO outperforms
the aforementioned neural network architectures on all statistics studied.

In summary, we propose a principled approach to the learning dissipative chaotic systems. Dissipativ-
ity is enforced through data augmentation and through post-processing of the learned model. The
methodology allows for treatment of infinite dimensional dynamical systems (PDEs) and leads to
methods with short term trajectory accuracy and desirable long-term statistical properties.

2 Problem setting

We consider potentially infinite dimensional dynamical systems where the phase space U is a Banach
space and, in particular, a function space on a Lipschitz domain D ⇢ Rd (for finite dimensional
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Figure 2: Markov neural operator (MNO): learn global dynamics from local data
Learning the MNO from the local time-evolution data with the Sobolev loss and dissipativity regularization.

u(t) is t’th time step of the chaotic system. Sobolev norms of various orders are used to compute the step-wise
loss. Dissipativity regularization is computed by drawing a random sample u(t) from the dissipativity shell to

make sure that in expectation next time step prediction bu(t+ 1) dissipates in norm.

systems, U will be a Euclidean space). We are interested in the initial-value problem
du

dt
(t) = F (u(t)), u(0) = u0, t 2 (0,1) (1)

for initial conditions u0 2 U where F is usually a non-linear operator. We will assume, given some
appropriate boundary conditions on @D when applicable, the solution u(t) 2 U exists and is unique
for all times t 2 (0,1). When making the spatial dependence explicit, if it is present, we will
write u(x, t) to indicate the evaluation u(t)|x for any x 2 D. We define the family of operators
St : U ! U as mapping u0 7! u(t) for any t � 0, and note that, since (1) is autonomous, St satisfies
the Markov property i.e. St(Ss(u0)) = u(s+ t) for any s, t � 0. We adopt the viewpoint of casting
time-dependent PDEs into function space ODEs (1), as this leads to the semigroup approach to
evolutionary PDEs which underlies our learning methodology.

One approach to this problem is to learn F itself (e.g., [42–45]). However, in infinite dimensions,
F is an unbounded operator and learning unbounded operators is considerably more challenging
than learning bounded operators; this is proven in [46] for linear operators. We avoid these issues by
instead learning the solution operator St for some fixed t > 0; this map is bounded as an operator
on U . Furthermore, large time statistical behaviour can be obtained more efficiently by using the
solution operator and not resolving dynamics at timescales smaller than time t.

Dissipativity. Systems for which there exists some fixed, bounded, positively-invariant set E such
that for any bounded B ⇢ U , there is some time t⇤ = t⇤(B) beyond which the dynamics of any
trajectory starting in B enters and remains in E are known as dissipative systems [13, 14]. The set
E is known as the absorbing set of the system. For such systems, the global attractor A, defined
subsequently, is characterized as the !-limit set of E. In particular, for any initial condition u0 2 U ,
the trajectory u(t) approaches A as t ! 1. In this work, we consider dissipative dynamical systems
where there exist some ↵ � 0 and � > 0 such that

1

2

d

dt
||u||2= hu, F (u)i  ↵� �||u||2 (2)

for all u 2 U . It can be shown that systems which satisfy this inequality are dissipative [14] with
the absorbing set E, an open ball of radius

p
↵/� + " for any " > 0. There are several well-known

examples of dynamical systems that satisfy the above inequality. In this paper we consider the
finite-dimensional Lorenz-63 system and the infinite-dimensional cases of the Kuramoto-Sivashinsky
and 2D incompressible Navier-Stokes equations, in the form of Kolmogorov flows [13].

Global Attractors. A compact, invariant set A is called a global attractor if, for any bounded set
B ⇢ U and any ✏ > 0 there exists a time t⇤ = t⇤(✏, B) such that St(B) is contained within an ✏-
neighborhood of A for all t � t⇤. Formally it is the !-limit set of any absorbing set; this characterizes
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it uniquely [13, 14] under assumption (2). Although unique, the !-limit set of a single initial condition
may differ across initial conditions [14]. In this paper we concentrate on the ergodic setting where the
same !-limit set is seen for almost all initial conditions with respect to the invariant measure. Many
PDEs arising in physics such as reaction-diffusion equations (dynamics of biochemical systems) or
the Kuramoto-Sivashinky and Navier-Stokes equation (fluid mechanics) are dissipative and possess
a global attractor which is often finite-dimensional [13]. Therefore, numerically characterizing the
attractor is an important problem in scientific computing with many potential applications.

Data distribution. For many applications, an exact form for the possible initial conditions to (1)
is not available; it is therefore convenient to use a stochastic model to describe the initial states. To
that end, let µ0 be a probability measure on U and assume that all possible initial conditions to (1)
come as samples from µ0 i.e. u0 ⇠ µ0. Then any possible state of the dynamic (1) after some time
t > 0 can be thought of as being distributed according to the pushforward measure µt := S]

tµ0 i.e.
u(t) ⇠ µt. Therefore as the dynamic evolves, so does the type of likely functions that result. This
further complicates the problem of long time predictions since training data may only be obtained
up to finite time horizons hence the model will need the ability to predict not only on data that is
out-of-sample but also out-of-distribution.

Ergodic systems. To alleviate some of the previously presented challenges, we consider ergodic
systems. Roughly speaking, a system is ergodic if there exists an invariant measure µ which is
unchanged by pushforward under St and time averages of functionals on state space U converge
to averages against µ. For dissipative systems the invariant measure is supported on the global
attractor A and together the pair (A, µ) capture the large time dynamics and their statistics. Proving
ergodicity is hard for deterministic systems. Rigorous proofs have been developed for the Lorenz-63
model [12]; empirical evidence of ergodicity may be seen much more widely, including for the
Kuramoto-Sivashinsky and Navier-Stokes equations studied in this paper. For stochastic differential
equations ergodicity is easier to establish; see [47] for details.

Ergodicity mitigates learning a model that is able to predict out-of-distribution since both the input
and the output of Ŝh, an approximation to Sh, will approximately be distributed according to µ.
Furthermore, we may use Ŝh to learn about µ since sampling it simply corresponds to running the
dynamic forward. Indeed, we need only generate data on a finite time horizon in order to learn Ŝh,
and, once learned, we may use it to sample µ indefinitely by repeatedly composing Ŝh with itself.
Having samples of µ then allows us to compute statistics which characterize the long term behavior of
the system and therefore the global attractor A. This strategy avoids the issue of accumulating errors
in long term trajectory predictions since we are only interested in the property that Ŝh(u(t)) ⇠ µ.

3 Learning the Markov neural operator in chaotic dynamics

We propose the Markov neural operator (MNO), a method for learning the underlying solution
operators of autonomous, dissipative, chaotic dynamical systems. In particular, we approximate the
operator mapping the solution from the current to the next step Ŝh : u(t) 7! u(t+h). We approximate
the solution operator Sh, an element of the underlying continuous time semigroup {St : t 2 [0,1)},
using a neural operator as in Figure 2; in the finite dimensional case we use a feedforward neural
network. See Appendix B.1 for background on the solution operator and semigroup.

Sobolev norm as loss We incorporate Sobolev norms in the training process to better capture
invariant statistics of the learned operator. Given the ground truth operator Sh and the learned
operator Ŝh and f = Ŝh(u)� Sh(u), we compute the step-wise loss in the Sobolev norm,

kfkk,p =

 
kX

i=0

kf (i)kpp

! 1
p

. (3)

In particular, we use p = 2, where the Sobolev norm can be easily computed in Fourier space:

kfk2k,2 =
1X

n=�1
(1 + n2 + · · ·+ n2k)

���f̂(n)
���
2
, (4)

where f̂ is the Fourier series of f . In practice, we use k = 0, 1, 2 for the training.
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Long-term predictions. Having access to the map Ŝh, its semigroup properties allow for approxi-
mating long time trajectories of (1) by repeatedly composing Ŝh with its own output. Therefore, for
any n 2 N, we compute u(nh) as follows,

u(nh) ⇡ Ŝn
h (u0) := (Ŝh � · · · � Ŝh)| {z }

n times

(u0). (5)

The above semigroup formulation can be applied with various choices of the backbone model for Ŝh.
In general, we prefer models that can be evaluated quickly and have approximation guarantees so the
per-step error can be controlled. Therefore, we choose the standard feed-forward neural network [48]
for ODE systems, and the Fourier neural operator [49] for infinite dimensional PDE systems.

For the the neural operator parametric class, we prove the following theorem regarding the MNO.
The result states that our construction can approximate trajectories of infinite-dimensional dynamical
systems arbitrary well. The proof is given in Appendix B.2.

Theorem 1. Let K ⇢ U be a compact set and assume that, for some h > 0, the solution operator

Sh : U ! U associated to the dynamic (1) is locally Lipschitz. Then, for any n 2 N and ✏ > 0 there

exists a neural operator Ŝh : U ! U such that

sup
u02K

sup
k2{1,...,n}

ku(kh)� Ŝk
h(u0)kU < ✏.

Theorem 1 indicates that if the backbone model is rich enough, it can approximate many chaotic
systems for arbitrarily long periods. For finite-dimensional systems, the same theorem holds with
feed-forward neural networks instead of neural operators. We note that standard neural networks such
as RNNs and CNNs do not possess such approximation theorems in the infinite-dimensional setting.

Invariant statistics. A useful application of the solution operators is to estimate statistics of the
invariant measure of a chaotic system. Assume the target system is ergodic and there exists an
invariant measure µ as discussed in Section 2. An invariant statistic is defined as

TG :=

Z

U
G(u) dµ(u) = lim

T!1

1

T

Z T

0
G(u(t)) dt (6)

for any functional G : U ! Rd. Examples include the L2 norm, any spectral coefficients, and
the spatial correlation, as well as problem-specific statistics such as the turbulence kinetic energy
and dissipation rates in fluid flow problems. Given the property (5) and using the ergodicity from
(6), the approximate model Ŝh can be used to estimate any invariant statistic simply by computing
TG ⇡ 1

n

Pn
k=1 G(Sk

h(u0)) where nh = T and T > 0 large enough.

Encouraging dissipativity via regularization. In practice, training data for dissipative systems
is typically drawn from trajectories close to the global attractor, so a priori there is no guarantee of
a learned model’s behavior far from the attractor. Thus, if we seek to learn the global attractor and
invariant statistics of a dynamical system, it is crucial that we encourage learning dissipativity. To
learn Ŝh : u(t) 7! u(t + h) we propose the following loss function, found by supplementing the
Sobolev loss (3) with a dissipativity-inducing regularization term:

Z

U
kŜh(u)� Sh(u)k2k,2 dµ(u)

| {z }
step-wise Sobolev loss

+ ↵

Z

U
kŜh(u)� �uk2U d⌫(u)

| {z }
dissipativity regularization

. (7)

Here µ is the underlying distribution of the training data, ↵ is a loss weighting hyperparameter, and
0 < � < 1 is some constant factor for scaling down (i.e., enforcing dissipativity) inputs u drawn
from a probability measure ⌫. We choose ⌫ to be a uniform probability distribution supported on
some shell with a fixed inner and outer radii from the origin in U ; these are chosen so that the support
of ⌫ is disjoint from the attractor. Our dissipative regularization term scales down u by constant �,
but in principle alternative dissipative cost functionals can be used.
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(a) No dissipativity (b) Diss. regularization (c) Diss. post-processing

Figure 3: Dissipativity regularization on the Lorenz 63 system – flow maps.
Red points are training data on the attractor. The dissipativity regularization in (b) is imposed by augmenting the

data on the blue shell. (c) Post-processing with ↵ = 100 (the orange circle) and � = 0.1 as in eq. (9).

Enforcing dissipativity via post-processing. While the previous dissipativity regularization en-
forces a dissipative map in practice, it does not readily yield to theoretical guarantees of dissipativity.
For an additional safeguard against model instability, we enforce a hard dissipativity constraint far
from the attractor and from the shell where ⌫ is supported, resulting in provably dissipative dynamics.

In detail, we post-process the model: whenever the dynamic moves out of an a priori defined stable
region, we switch to the second model  that pushes the dynamic back. The new model combines
the learned model Ŝh and the safety model  , via a threshold function ⇢ :

Ŝ0
h(u) = ⇢(kuk)Ŝh + (1� ⇢(kuk)) (u), (8)

where  is some dissipative map and ⇢ is a partition of unity. For simplicity we define

 (u) = �u ⇢(kuk) = 1

1 + e�(kuk�↵)
, (9)

where ↵ is the effective transition radius between Ŝh and  and � controls the transition rate. Note
that this choice of  is consistent with the regularization term in the loss (7).

By its construction, the post-processed model is dissipative. However, its dynamics (in particular
the unlearnable transition between Ŝh and  ) are not as smooth as the dissipative regularization
model, which learn the whole dynamic together, as shown in Figure 3. Combining regularization and
post-processing results in a dissipative model with both smooth dynamics and theoretical guarantees.

4 Experiments

We evaluate our approach on the finite-dimensional, chaotic Lorenz-63 system as well as the chaotic
1D Kuramoto-Sivashinsky and 2D Navier-Stokes equations. In all cases we show that encouraging
dissipativity is crucial for capturing the global attractor and evaluating statistics of the invariant
measure. To the best of our knowledge, we showcase the first machine learning method able to predict
the statistical behavior of the incompressible Navier-Stokes equation in a strongly chaotic regime.

4.1 Lorenz-63 system

To motivate and justify our framework for learning chaotic systems in the infinite-dimensional
setting, we first apply our framework on the simple yet still highly chaotic Lorenz-63 ODE system, a
widely-studied [50] simplified model for atmospheric dynamics given by

u̇x = ↵(uy � ux), u̇y = �↵ux � uy � uxuz, u̇z = uxuy � buz � b(r + ↵). (10)

We use the canonical parameters (↵, b, r) = (10, 8/3, 28) [51]. Since the solution operator of
the Lorenz-63 system is finite-dimensional, we learn it by training a feedforward neural network
on a single trajectory with h = 0.05s on the Lorenz attractor. Figure 3 shows that dissipativity
regularization produces predictions that isotropically point towards the attractor. Observe that the our
network is also dissipative outside the regularization shell.
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(a) (b) (c)

Figure 4: Choice of time step (a), Fourier spectrum (b), and spatial correlation (c) for KS equations.
(a) Both learning solution operator and learning identity residual induce smaller per step error for smaller h.

When learned models are composed to generate longer trajectories, we observe that learning residual is
advantageous. (b) Fourier spectrum of the predicted attractor. All models capture Fourier modes with magnitude
larger than O(1), while MNO is more accurate on the tail. (c) Spatial correlation of the attractor, averaged in

time. MNO is more accurate on near-range correlation, but all models miss long-range correlation.

We empirically find that dissipativity can be encouraged without significantly affecting the model’s
step-wise relative L2 error and the learned statistical properties of the attractor. We also find that
varying the dissipativity hyperparameters (loss weight ↵, scaling factor �, and shell radius) does not
significantly affect the step-wise or dissipative error. Details in Appendix A.1.

4.2 Kuramoto-Sivashinsky equation

We consider the following one-dimensional KS equation,

@u

@t
= �u

@u

@x
� @2u

@x2
� @4u

@x4
, on [0, L]⇥ (0,1),

u(·, 0) = u0, on [0, L],

where the spatial domain [0, L] is equipped with periodic boundary conditions. We study the impact
the time step h has on learning. Our study shows that when the time steps are too large, the correlation
is chaotic and hard to capture. But counter-intuitively, when the time steps are too small, the evolution
is also hard to capture. In this case, the model’s input and output are very close, and the identity map
will be a local minimum. We thus use the MNO to also learn the time-derivative or residual. Figure 4a
shows the results for varying h and when MNO is used to learn either the identity residual or the
solution operator. We observe that the residual model has a better per-step error and accumulated
error at smaller h. When the time step is large, there is no difference in modeling the residual.

As shown in Figures 4b and 4c, we compare the performance of the MNO model against LSTM
and GRU that we use to model the evolution operator of the KS equation with h = 1s. We observe
that MNO model accurately recovers the Fourier spectrum of KS equation. For all other statistics
(see Appendix A.2) all models perform similarly, except on the velocity distribution where MNO
performs best. We emphasize that some of these statistics are very challenging to capture and most
machine learning approaches in the literature thus far fail to do so (see Appendix A.2 for details).

4.3 Kolmogorov Flow

We consider two-dimensional Kolmogorov flow (a form of the Navier-Stokes equations) for a viscous,
incompressible fluid,

@u

@t
= �u ·ru�rp+

1

Re
�u+ sin(ny)x̂, r · u = 0, on [0, 2⇡]2 ⇥ (0,1) (11)

with initial condition u(·, 0) = u0 where u denotes the velocity, p the pressure, and Re > 0 is the
Reynolds number. We encourage dissipativity during training with the criterion described in eq. (7),
with � = 0.5 and ⌫ being a uniform probability distribution supported on a shell around the origin.
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(a)
(b)

(c) (d)

Figure 5: The learned attractor of Kolmogorov flow (Re = 500) and choice of Sobolev loss for KF.
(a-c) The 10000 time steps trajectory generated by MNO projected onto the first two principal components.

Each point corresponds to a snapshot on the attractor. The vorticity field for two points is shown. (d) Velocity
error for models trained on stream function, velocity, and vorticity using Sobolev loss of different orders.

Figure 6: Simulation of Kolmogorov flow (Re = 5000) with the dissipative MNO model.
The first column corresponds to the initial condition and is sampled from a Gaussian random field. Around

t = 10 to t = 20, we see the energy injected from the source term sin (4y) (12), and also the energy transfers
from higher frequencies to the lower frequencies. The dotted line is the Kolmogorov energy cascade rate.

We test the effect of encouraging dissipativity in the turbulent (and blow-up prone) Re = 500 setting,
where we observe that a non-dissipative model blows up when composed with itself multiple times if
the initial condition is perturbed slightly from the attractor (Figure 1), even though the model achieves
relatively low L2 error. In contrast, we empirically observe that the dissipative MNO does not blow
up and its composed predictions returns to the attractor even when the initial condition is perturbed.

Simulation on turbulent Re = 5000 case. The proposed dissipative MNO model can stably learn
complex chaotic dynamics at high Reynolds numbers. As shown in Figure 6, the model captures the
energy spectrum that converges to the Kolmogorov energy cascade rate of k�5/3. The learned model
is dissipative with the dissipative regularization, without compromising the accuracy as shown in
Table 5. Even given a O(104)-scaled perturbation, the dynamic quickly returns to the attractor of the
system. In contrast, the model without dissipative regularization will stay outside the attractor given
even a O(10)-scale perturbation.

Accuracy with respect to various norms. We study performance of MNO along with other
predictive architectures, U-Net [39] and LSTM-CNN [40], on modeling the vorticity w in the
relatively non-turbulent Re = 40 case 3. The MNO achieves one order of magnitude better accuracy
compared to this architectures. As shown in Table 3, we train each model using the balanced
L2(= H0), H1, and H2 losses, defined as the sum of the relative L2 loss grouped by each order of
derivative. We measure the error with respect to the standard (unbalanced) norms. The MNO with
H2 loss consistently achieves the smallest error on vorticity for all of the L2, H1, and H2 norms.
However, the L2 loss achieves the smallest error on the turbulence kinetic energy (TKE), while the
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H1 loss achieves the smallest error on the dissipation ✏. Vorticity fields for NS equation (Re = 40)
are shown in Figure 11. The figure indicates that the predicted trajectories (b) (c) (d) share the same
behaviors as in the ground truth (a), indicating that the MNO model is stable.

Estimating the attractor and invariant statistics. We compose MNO 10000 times to obtain the
global attractor, and we compute the PCA (POD) basis of these 10000 snapshots and project them
onto the first two components. As shown in Figure 5a, we obtain a cycle-shaped attractor. The true
attractor has dimension on the order of O(100) [13]. If the attractor is a high-dimensional sphere,
then most of its mass concentrates around the equator. Therefore, when projected to low-dimension,
the attractor will have a ring shape. We see that most points are located on the ring, while few points
are located in the center. The points in the center have high dissipation, implying they are intermittent
states. In Figure 5b we add the time axis. While the trajectory jumps around the cycle, we observe
there is a rough period of 2000s. We perform the same PCA on the training data, showing the same
behavior. Furthermore, in Figure 12, we present invariant statistics for the NS equation (Re = 40),
computed from a large number of samples from our approximation of the invariant measure. We find
that the MNO consistently outperforms all other models in accurately capturing these statistics.

Derivative orders. Roughly speaking, vorticity is the derivative of velocity; velocity is the derivative
of the stream function. Therefore we can denote the order of derivative of vorticity, velocity, and
stream function as 2, 1, and 0 respectively. Combining vorticity, velocity, and stream function, with
L2, H1, and H2 loss, we have in total the order of derivatives ranging from 0 to 4. We observe, in
general, it is best practice to keep the order of derivatives in the model at a number slightly higher
than that of the target quantity. For example, as shown in Figure 5d, when querying the velocity
(first-order quantity), it is best to use second-order (modeling velocity plus H1 loss or modeling
vorticity plus L2 loss). This is further illustrated in Table 4 for the Re = 500 case. In general, using
a higher order of derivatives as the loss will increase the power of the model and capture the invariant
statistics more accurately. However, a higher-order of derivative means higher irregularity. It in turn
requires a higher resolution for the model to resolve and for computing the discrete Fourier transform.
This trade-off again suggests it is best to pick a Sobolev norm not too low or too high.

5 Conclusion

In this work, we propose a machine learning framework that trains from local data and enforces
dissipative dynamics. Experiments also show MNO predicts the attractor which shares the same
distribution and invariant statistics as the true function space trajectories. The simulations achieved
by the MNO have the potential to further our understanding of many physical phenomena and the
mathematical models that underlie them.

Furthermore, the MNO shows great potential for modeling partially observed systems or studying
systems that exhibit bifurcations, both of which are of great interest for engineering applications. The
study of non-ergodic dissipative systems and their basins of attraction is also an important direction
for future study.

10



Acknowledgements

Z. Li gratefully acknowledges the financial support from the Kortschak Scholars, PIMCO Fellows,
and Amazon AI4Science Fellows programs. M. Liu-Schiaffini is supported by the Stephen Adelman
Memorial Endowment. A. Anandkumar is supported in part by Bren endowed chair. K. Bhattacharya,
N. B. Kovachki, B. Liu, A. M. Stuart gratefully acknowledge the financial support of the Army
Research Laboratory through the Cooperative Agreement Number W911NF-12-0022. A. M. Stuart
is also grateful to the US Department of Defense for support as a Vannevar Bush Faculty Fellow.
Research was sponsored by the Army Research Laboratory and was accomplished under Cooperative
Agreement Number W911NF-12-2-0022. A part of this work took place when K. Azizzadenesheli
was at Purdue University. The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies, either expressed or implied,
of the Army Research Laboratory or the U.S. Government. The U.S. Government is authorized to
reproduce and distribute reprints for Government purposes notwithstanding any copyright notation
herein.

References

[1] Pantelis R Vlachas, Wonmin Byeon, Zhong Y Wan, Themistoklis P Sapsis, and Petros Koumout-
sakos. Data-driven forecasting of high-dimensional chaotic systems with long short-term
memory networks. Proceedings of the Royal Society A: Mathematical, Physical and Engineer-

ing Sciences, 474(2213):20170844, 2018.

[2] Jaideep Pathak, Brian Hunt, Michelle Girvan, Zhixin Lu, and Edward Ott. Model-free prediction
of large spatiotemporally chaotic systems from data: A reservoir computing approach. Physical

review letters, 120(2):024102, 2018.

[3] Pantelis R Vlachas, Jaideep Pathak, Brian R Hunt, Themistoklis P Sapsis, Michelle Girvan,
Edward Ott, and Petros Koumoutsakos. Backpropagation algorithms and reservoir computing
in recurrent neural networks for the forecasting of complex spatiotemporal dynamics. Neural

Networks, 2020.

[4] Huawei Fan, Junjie Jiang, Chun Zhang, Xingang Wang, and Ying-Cheng Lai. Long-term
prediction of chaotic systems with machine learning. Physical Review Research, 2(1):012080,
2020.

[5] Jaideep Pathak, Zhixin Lu, Brian R Hunt, Michelle Girvan, and Edward Ott. Using machine
learning to replicate chaotic attractors and calculate lyapunov exponents from data. Chaos: An

Interdisciplinary Journal of Nonlinear Science, 27(12):121102, 2017.

[6] Michael Dellnitz and Oliver Junge. On the approximation of complicated dynamical behavior.
SIAM Journal on Numerical Analysis, 36(2):491–515, 1999.

[7] Peter Deuflhard, Michael Dellnitz, Oliver Junge, and Christof Schütte. Computation of essen-
tial molecular dynamics by subdivision techniques. In Computational molecular dynamics:

challenges, methods, ideas, pages 98–115. Springer, 1999.

[8] Romeo Alexander and Dimitrios Giannakis. Operator-theoretic framework for forecasting non-
linear time series with kernel analog techniques. Physica D: Nonlinear Phenomena, 409:132520,
2020.

[9] Eurika Kaiser, J Nathan Kutz, and Steven L Brunton. Data-driven discovery of koopman
eigenfunctions for control. Machine Learning: Science and Technology, 2(3):035023, 2021.

[10] James Gleick. Chaos: Making a new science. Open Road Media, 2011.

[11] Warwick Tucker. The lorenz attractor exists. Comptes Rendus de l’Académie des Sciences -

Series I - Mathematics, 328(12):1197–1202, 1999.

[12] Mark Holland and Ian Melbourne. Central limit theorems and invariance principles for Lorenz
attractors. Journal of the London Mathematical Society, 76(2):345–364, 10 2007.

11



[13] Roger Temam. Infinite-dimensional dynamical systems in mechanics and physics, volume 68.
Springer Science & Business Media, 2012.

[14] A. Stuart and A.R. Humphries. Dynamical Systems and Numerical Analysis. Cambridge
Monographs on Applie. Cambridge University Press, 1998.

[15] AR Humphries and AM Stuart. Runge–kutta methods for dissipative and gradient dynamical
systems. SIAM journal on numerical analysis, 31(5):1452–1485, 1994.

[16] Andrew M Stuart. Numerical analysis of dynamical systems. Acta numerica, 3:467–572, 1994.

[17] Kai Fukami, Koji Fukagata, and Kunihiko Taira. Machine-learning-based spatio-temporal super
resolution reconstruction of turbulent flows. Journal of Fluid Mechanics, 909, 2021.

[18] José I Cardesa, Alberto Vela-Martín, and Javier Jiménez. The turbulent cascade in five dimen-
sions. Science, 357(6353):782–784, 2017.

[19] Gary J Chandler and Rich R Kerswell. Invariant recurrent solutions embedded in a turbulent
two-dimensional kolmogorov flow. Journal of Fluid Mechanics, 722:554–595, 2013.

[20] Péter Koltai and Stephan Weiss. Diffusion maps embedding and transition matrix analysis of
the large-scale flow structure in turbulent rayleigh–bénard convection. Nonlinearity, 33(4):1723,
2020.

[21] Jason J Bramburger, J Nathan Kutz, and Steven L Brunton. Data-driven stabilization of periodic
orbits. IEEE Access, 9:43504–43521, 2021.

[22] Jacob Page, Michael P Brenner, and Rich R Kerswell. Revealing the state space of turbulence
using machine learning. Physical Review Fluids, 6(3):034402, 2021.

[23] Victor Churchill and Dongbin Xiu. Deep learning of chaotic systems from partially-observed
data. arXiv preprint arXiv:2205.08384, 2022.

[24] Ashesh Chattopadhyay, Jaideep Pathak, Ebrahim Nabizadeh, Wahid Bhimji, and Pedram
Hassanzadeh. Long-term stability and generalization of observationally-constrained stochastic
data-driven models for geophysical turbulence. arXiv preprint arXiv:2205.04601, 2022.

[25] Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopadhyay,
Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli, et al.
Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural
operators. arXiv preprint arXiv:2202.11214, 2022.

[26] Ashesh Chattopadhyay, Mustafa Mustafa, Pedram Hassanzadeh, and Karthik Kashinath. Deep
spatial transformers for autoregressive data-driven forecasting of geophysical turbulence. In
Proceedings of the 10th International Conference on Climate Informatics, pages 106–112, 2020.

[27] Jonathan A Weyn, Dale R Durran, and Rich Caruana. Improving data-driven global weather
prediction using deep convolutional neural networks on a cubed sphere. Journal of Advances in

Modeling Earth Systems, 12(9):e2020MS002109, 2020.

[28] Dominik Schmidt, Georgia Koppe, Zahra Monfared, Max Beutelspacher, and Daniel Durstewitz.
Identifying nonlinear dynamical systems with multiple time scales and long-range dependencies.
arXiv preprint arXiv:1910.03471, 2019.

[29] Manuel Brenner, Florian Hess, Jonas M Mikhaeil, Leonard F Bereska, Zahra Monfared, Po-Chen
Kuo, and Daniel Durstewitz. Tractable dendritic rnns for reconstructing nonlinear dynamical
systems. In International Conference on Machine Learning, pages 2292–2320. PMLR, 2022.

[30] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,
Andrew Stuart, and Anima Anandkumar. Neural operator: Graph kernel network for partial
differential equations. arXiv preprint arXiv:2003.03485, 2020.

[31] Nikola B. Kovachki, Zongyi Li, Liu Burigede, Kamyar Azizzadenesheli, Kaushik Bhattacharya,
Andrew M. Stuart, and Anima Anandkumar. Neural operator: Learning maps between function
spaces. In Preparation, 2021.

12



[32] Georgy Anatolevich Sviridyuk. On the general theory of operator semigroups. Russian

Mathematical Surveys, 49(4):45–74, 1994.

[33] Yuying Liu, J Nathan Kutz, and Steven L Brunton. Hierarchical deep learning of multi-
scale differential equation time-steppers. Philosophical Transactions of the Royal Society A,
380(2229):20210200, 2022.

[34] Ashesh Chattopadhyay, Mustafa Mustafa, Pedram Hassanzadeh, Eviatar Bach, and Karthik
Kashinath. Towards physics-inspired data-driven weather forecasting: integrating data assimila-
tion with a deep spatial-transformer-based u-net in a case study with era5. Geoscientific Model

Development, 15(5):2221–2237, 2022.

[35] Matthew E Levine and Andrew M Stuart. A framework for machine learning of model error in
dynamical systems. arXiv preprint arXiv:2107.06658, 2021. To appear in Communications of

the AMS.

[36] Wojciech Marian Czarnecki, Simon Osindero, Max Jaderberg, Grzegorz Świrszcz, and Razvan
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