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Abstract

Open-Set Domain Adaptation (OSDA) assumes that a target domain contains un-
known classes, which are not discovered in a source domain. Existing domain
adversarial learning methods are not suitable for OSDA because distribution match-
ing with unknown classes leads to negative transfer. Previous OSDA methods have
focused on matching the source and the target distribution by only utilizing known
classes. However, this known-only matching may fail to learn the target-unknown
feature space. Therefore, we propose Unknown-Aware Domain Adversarial Learn-
ing (UADAL), which aligns the source and the target-known distribution while
simultaneously segregating the target-unknown distribution in the feature align-
ment procedure. We provide theoretical analyses on the optimized state of the
proposed unknown-aware feature alignment, so we can guarantee both alignment
and segregation theoretically. Empirically, we evaluate UADAL on the benchmark
datasets, which shows that UADAL outperforms other methods with better feature
alignments by reporting state-of-the-art performances†.

1 Introduction

Unsupervised Domain Adaptation (UDA) means leveraging knowledge from a labeled source domain
to an unlabeled target domain [4, 3, 2, 14, 8]. This adaptation implicitly assumes the source and the
target data distributions, where each distribution is likely to be drawn from different distributions,
i.e., domain shift (see Figure 1a). Researchers have approached the modeling of two distributions by
statistical matching [20, 27, 15, 16], or domain adversarial learning [7, 28, 18]. Among them, domain
adversarial learning has been successful in matching between the source and the target distributions
via feature alignment, so the model can accomplish the domain-invariant representations.

There is another dynamic aspect of the source and the target distribution. In a realistic scenario, these
distributions may expand a class set, which is called unknown classes. This expansion creates a field
of Open-Set Domain Adaptation (OSDA) [23, 13]. Existing adversarial learning methods of UDA
have limitations to solve OSDA because matching the source and the target distribution with the
unknown classes may lead to the negative transfer [6] due to the class set mismatch (see Figure 1b).

Previous OSDA methods focused on matching between the source and the target domain only
embedded in the known class set via domain adversarial learning [23, 13]. However, this known-
only feature alignment may fail to learn the target-unknown feature space because of no alignment
∗now at Google (mingiji@google.com)
†The code will be publicly available on https://github.com/JoonHo-Jang/UADAL.
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(a) Domain Shift (b) DANN [8] (c) STA [13] (d) UADAL (ours)

Figure 1: The feature distributions from the source and the target domain, with the decision boundaries. The
blue/orange/gray arrows represent the alignment signal on the source/target-known/target-unknown domain.

signal from the target-unknown instances. Therefore, a classifier is not able to learn a clear decision
boundary for unknown classes because the target-unknown instances are not segregated enough in
the aligned feature space (see Figure 1c). On the other hand, some OSDA methods propose to learn
intrinsic target structures by utilizing self-supervised learning without distribution matching [24, 12].
However, this weakens the model performance under large domain shifts. Therefore, in order to
robustly solve OSDA, distribution matching via the domain adversarial learning is required, and the
class set mismatch should be resolved to prevent the negative transfer, simultaneously.

This paper proposes a new domain adversarial learning for OSDA, called Unknown-Aware Domain
Adversarial Learning (UADAL). Specifically, we aim at enforcing the target-unknown features
to move apart from the source and the target-known features, while aligning the source and the
target-known features. We call these alignments as the segregation of the target-unknown features
(gray-colored arrow in Figure 1d). Although this distribution segregation is an essential part of OSDA,
the segregation has been only implicitly modeled because of its identification on the target-unknown
instances. UADAL is the first explicit mechanism to simultaneously align and segregate the three sets
(source, target-known, and target-unknown instances) via the domain adversarial learning. Therefore,
the proposed unknown-aware feature alignment enables a classifier to learn a clear decision boundary
on both known and unknown class in the feature space.

UADAL consists of three novel mechanisms. First, we propose a new domain discrimination loss to
engage the target-unknown information. Second, we formulate a sequential optimization to enable the
unknown-aware feature alignment, which is suitable for OSDA. We demonstrate that the optimized
state of the proposed alignment is theoretically guaranteed. Third, we also suggest a posterior
inference to effectively recognize target-known/unknown information without any thresholding.

2 Preliminary

2.1 Open-Set Domain Adaptation

This section provides a formal definition of OSDA. The fundamental properties are two folds: 1) the
different data distributions of a source domain, ps(x, y), and a target domain, pt(x, y); and 2) the ad-
ditional classes of the target domain, which were not observed in the source domain. Specifically, we
define the source and the target datasets as χs = {(xis, yis)}

ns
i=1 and χt = {(xit, yit)}

nt
i=1, respectively.

yit is not available at training under the UDA setting. Additionally, we designate Cs to be the source
class set (a.k.a. a shared-known class), and Ct to be the target class set, i.e., yit ∈ Ct. OSDA dictates
Cs ⊂ Ct [23]. Ct \ Cs is called unknown classes. In spite that there can be multiple unknown classes,
we consolidate Ct \ Cs as yunk to be a single unknown class, due to no knowledge on Ct \ Cs.
The learning objectives for OSDA become both 1) the optimal class classification in χt if a target
instance belongs to Cs, and 2) the optimal unknown classification if a target instance belongs to Ct \Cs.
This objective is formulated as follows, with a classifier f and the cross-entropy loss function Lce,

min
f

Ept(x,y)[1yt∈CsLce(f(xt), yt) + 1yt∈{Ct\Cs}Lce(f(xt), yunk)]. (1)

2.2 Adversarial Domain Adaptation

We first step back from OSDA to Closed-set DA (CDA) with Ct \ Cs = φ, where the domain
adversarial learning is widely used. Domain-Adversarial Neural Network (DANN) [7] proposes,

min
f,G

max
D
{Eps(x,y)[Lce(f(G(xs)), ys)]− Ld}. (2)
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(a) The overall structure of UADAL (b) The optimization procedure of UADAL

Figure 2: Overview of the proposed Unknown-Aware Domain Adversarial Learning (UADAL) approach.

This objective assumes G(x) to be a feature extractor that learns the domain-invariant features,
enabled by the minimax game with a domain discriminator D, with respect to Ld, as below.

Ld = Eps(x) [− logDs(G(x))] + Ept(x)[− logDt(G(x))] (3)

The adversarial framework adapts G(x) toward the indistinguishable feature distributions between
the source and the target domain by the minimax game on D(G(x)) = [Ds(G(x)), Dt(G(x))]. Here,
D is set up to have a two-dimensional output to indicate either source or target domain, denoted as
Ds and Dt, respectively. Given these binarized outputs of D, this formulation is not appropriate to
differentiate the target-known and the target-unknown features in OSDA. DANN enforces to include
the target-unknown features in the distribution matching, which leads to performance degradation by
negative transfer [6]. Figure 1b represents this undesired alignment of unknown classes.

Separate To Adapt (STA) [13] proposes a weighted domain adversarial learning, to resolve the
negative transfer by utilizing a weighting scheme. Therefore, STA modifies Ld as follows,

LSTA
d = Eps(x) [− logDs(G(x))] + Ept(x)[−wx logDt(G(x))], (4)

where wx represents a probability of an instance x belonging to the shared-known classes. LSTA
d

enables the domain adversarial learning to align the features from the source and the most likely
target-known instances with the high weights. However, the feature extractor, G, is not able to
move apart the target-unknown instances due to lower weights, i.e., no alignment signals (see Figure
1c). STA modeled this known-only feature alignment by assuming the unknown feature would be
implicitly learned through the estimation on wx. Besides learning wx, the target-unknown instances
cannot contribute to the training of STA because their loss contribution will be limited by lower wx,
in the second term of Eq. (4). Therefore, STA does not take information from the target-unknowns,
and later Section 4.3 empirically shows that the target-unknown segregation of STA is limited.

2.3 Comparison to Recent OSDA Research

In terms of the domain adversarial learning, in addition to STA, OSBP [23] utilizes a classifier to
predict the target instances to the pre-determined threshold, and trains the feature extractor to deceive
the classifier for aligning to known classes or rejecting as unknown class. However, their recognition
on unknown class only depends on the threshold value, without considering the data instances. PGL
[19] introduces progressive graph-based learning to regularize the class-specific manifold, while
jointly optimizing the feature alignment via domain adversarial learning. However, their adversarial
loss includes all instances of the target domain, which is critically weakened by the negative transfer.

On the other hand, self-supervised learning approaches have been proposed recently, in order to exploit
the intrinsic structure of the target domain [5, 24, 12]. However, these approaches do not have any
feature alignments between the source and the target domain, which leads to performance degradation
under significant domain shifts. There is also a notable work, OSLPP [31] optimizing projection
matrix toward a common subspace to class-wisely align the source and the target domain. However,
the optimization requires pair-wise distance calculation, which results in a growing complexity of
O(n2) by the n data instances. It could be limited to the large-scale domain. We provide detailed
comparisons and comprehensive literature reviews in Appendix A.
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3 Methodology

3.1 Overview of UADAL

Figure 2a illustrates the neural network compositions and the information flow. Our model consists of
four networks: 1) a feature extractor, G; 2) a domain discriminator, D; 3) an open-set recognizer, E;
and 4) a class classifier network, C. The networks G, D, E, and C are parameterized by θg, θd, θe,
and θc, respectively. First, we propose a new domain discrimination loss, and we formulate the
sequential optimization problem, followed by theoretical analyses. In order to recognize target-
unknown information, we introduce a posterior inference method, followed by open-set classification.

3.2 Sequential Optimization Problem for Unknown-Aware Feature Alignment

Model Structure We assume that we identify three domain types, which are 1) the source (s), 2) the
target-known (tk), and 3) and target-unknown (tu). As the previous works such as STA and DANN
utilize a two-way domain discriminator with (Ds, Dt), they can treat only s and tk (or t). However, a
domain discriminator in OSDA should be able to handle tu information for segregation. Therefore,
we designed the discriminator dimension to be three (Ds, Dtk, Dtu), as follows,

D(G(x)) = [Ds(G(x)), Dtk(G(x)), Dtu(G(x))]. (5)

Given these three dimensions of D, we propose new domain discrimination losses, Lsd and Ltd, as
Lsd(θg, θd) = Eps(x) [− logDs(G(x))] , (6)

Ltd(θg, θd) = Ept(x)[ −wx logDtk(G(x))− (1− wx) logDtu(G(x))], (7)

where wx := p(known|x), named as open-set recognition, is the probability of a target instance, x,
belonging to a shared-known class. We introduce the estimation of this probability, wx, in the section
3.4 later. From Ltd in Eq. (7), our modified D becomes to be able to discriminate tk and tu, explicitly.

Our new unknown awareness of D allows us to segregate the target-unknown features via the domain
adversarial learning framework. Firstly, we decompose Ltd(θg, θd) into Ltkd (θg, θd) and Ltud (θg, θd),

Ltd(θg, θd) = Ltkd (θg, θd) + Ltud (θg, θd), (8)

Ltkd (θg, θd) := λtkEptk(x) [− logDtk(G(x))] , (9)

Ltud (θg, θd) := λtuEptu(x) [− logDtu(G(x))] , (10)

where ptk(x) := pt(x|known), ptu(x) := pt(x|unknown), λtk := p(known), and λtu :=
p(unknown). The derivation of Eq. (8) is based on pt(x) = λtkptk(x) + λtuptu(x), which comes
from the law of total probability (Details in Appendix B.1.1). Therefore, this decomposition of Ltd
into Ltud and Ltkd enables the different treatments on tk and tu feasible. The three-way discriminator
and its utilization in Eq. (9)-(10) becomes the unique contribution from UADAL.

Optimization Our goal of this unknown-aware domain discrimination is to align the features from the
source and the target-known instances while simultaneously segregating the target-unknown features.
To achieve this goal, we propose a new sequential optimization problem w.r.t. G and D. Based on
the losses, Lsd(θg, θd), Ltkd (θg, θd), and Ltud (θg, θd), we formulate the optimization problem as,

min
θd
LD(θg, θd) = Lsd(θg, θd) + Ltkd (θg, θd) + Ltud (θg, θd), (11)

max
θg
LG(θg, θd) = Lsd(θg, θd) + Ltkd (θg, θd)− Ltud (θg, θd). (12)

This alternating objective by Eq. (11) and Eq. (12) is equivalent to the adversarial domain adaptation
models [7, 13] to learn the domain-invariant features. Unlike the previous works, however, Eq.
(11) represents that we train the domain discriminator, D, to classify an instance as either source,
target-known, or target-unknown domain. In terms of the feature extractor, G, we propose Eq. (12)
to maximize the domain discrimination loss for the source and the target-known domain while
minimizing the loss for the target-unknown domain. From the different signals on Ltkd and Ltud , we
only treat the adversarial effects on Lsd and Ltkd . Meanwhile, minimizing Ltud provides for the network
G to learn the discriminative features on tu. Eventually, G and D align the source and target-known
features and segregate the target-unknown features from the source and the target-known features
(the optimization details in Figure 2b). We provide the theoretic analysis of the optimized state of the
proposed feature alignment in the next subsection, which is unexplored in the OSDA field.
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3.3 Theoretic Analysis of Sequential Optimization

This section provides a theoretic discussion on the proposed feature alignment by our sequential
optimization, w.r.t. Eq. (11)-(12). Since our ultimate goal is training G to learn unknown-aware
feature alignments, we treat G as a leader and D as a follower in the game theory. We first optimize
Eq. (11) to find D∗ with a fixed G. The optimal D∗ given the fixed G results in the below output :

D∗(z) =
[ ps(z)

2pavg(z)
,
λtkptk(z)

2pavg(z)
,
λtuptu(z)

2pavg(z)

]
, (13)

where pavg(z) = (ps(z) + λtkptk(z) + λtuptu(z))/2 (Details in Appendix B.1.2). Here, z ∈ Z
stands for the feature space from G, i.e., pd(z) = {G(x; θg)|x ∼ pd(x)} where d is s, tk, or tu.
Given D∗ with the optimal parameter θ∗d, we optimize G in Eq. (12). Here, we show that the
optimization w.r.t. G is equivalent to the weighted summation of KL Divergences, by Theorem 3.1.
Theorem 3.1. (Proof in Appendix B.1.3) Let θ∗d be the optimal parameter of D by optimizing Eq.
(11). Then, −LG(θg, θ∗d) can be expressed as, with a constant C0,

−LG(θg, θ∗d) = DKL(ps‖pavg) + λtkDKL(ptk‖pavg)− λtuDKL(ptu‖pavg) + C0. (14)

We note that ps, ptk, and ptu are the feature distribution of each domain, mapped by G, respectively.
Therefore, we need to minimize Eq. (14) to find the optimal G∗. Having observed Theorem 3.1,
Eq. (14) requires ptu to have a higher deviation from the average distribution, pavg , while matching
towards ps ≈ pavg and ptk ≈ pavg . From this optimization procedure, we obtain the domain-invariant
features over the source and the target-known domain, while segregating the target-unknowns, which
is formalized as ps ≈ ptk and ptu ↔ {ptk, ps}. We show that minimizing Eq. (14) does not lead to
the negative infinity by the third term, regardless of the other KL Divergences, by Proposition 3.2.
Proposition 3.2. (Proof in Appendix B.1.4) DKL(ptu‖pavg) is bounded to log 2− log λtu.

This boundness guarantees that the first two KL Divergence terms maintain their influence on
optimizing the parameter θg of G stably while segregating the target-unknown features. Furthermore,
we show Proposition 3.3 to characterize the feature alignment between ps and ptk under Eq. (14).
Proposition 3.3. (Proof in Appendix B.1.5) Assume that supp(ps)∩ supp(ptu) = ∅ and supp(ptk)∩
supp(ptu) = ∅, where supp(p) := {z ∈ Z|p(z) > 0} is the support set of p. Then, the minimization
w.r.t. G, by Eq. (14), is equivalent to the minimization of the summation on two f -divergences:

Df1(ps||ptk) + λtkDf2(ptk||ps),

where f1(u) = u log u
(1−α)u+α and f2(u) = u log u

αu+(1−α) , with α = λtk

1+λtk
. Therefore, the

minimum of Eq. (14) is achieved if and only if ps = ptk.

Therefore, under the assumption, Proposition 3.3 theoretically guarantees that the source and the
target-known feature distributions are aligned, which represents ps = ptk. From these analyses, we
can theoretically guarantee both alignment and segregation from the proposed optimization.

3.4 Open-Set Recognition via Posterior Inference

This section starts from estimating wx = p(known|x) for a target instance, x. First, we utilize the
labeled source dataset, χs, to train the feature extractor G and the open-set recognizer E, as below,

Lse(θg, θe) =
1

ns

∑
(xs,ys)∈χs

Lce(E(G(xs)), ys), (15)

where E(G(x)) ∈ R|Cs| contains the softmax activation. We note that the open-set recognizer, E, is
a classifier to learn the decision boundary over Cs by the source domain.

Given the decision boundary by E, our assumption for open-set recognition includes two statements:
for the target instances, 1) the higher entropy is caused by an uncertain classification case, and 2)
the unknown class may induce the higher entropy because there are no prior training instances in the
unknown classes. Based on two assumptions, the open-set recognizer, E, will provide higher entropy
for the target-unknown instances than the target-known instances. Therefore, we consider the entropy
value as the open-set recognition indicator. We verified our assumptions empirically in Figure 8a.
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While we notice the entropy value from a single instance as the indicator between known and unknown,
the open-set recognition should be holistically modeled over the target domain. Therefore, we model
the mixture of two Beta distributions on the normalized target entropy values as below,

p(`x) = λtkp(`x|known) + λtup(`x|unknown), (16)

where the definition of λtk and λtu is the same as in the previous subsection. `x is the entropy value
for the target instance, x, i.e., `x = H(E(G(x))) with the entropy function H . The Beta distribution
is a perfect fit for this case of the closed interval support of [0, 1], which is the normalized range of
the entropy. Thus, we introduce the estimator ŵx of wx by Posterior Inference, from fitting the Beta
mixture model through the Expectation-Maximization (EM) algorithm (Details in Appendix B.2.1),

ŵx := p(known|`x) =
λtkp(`x|known)

λtkp(`x|known) + λtup(`x|unknown)
, (17)

where the denominator is from Eq. (16). Since the fitting process incorporates all target information,
the entire dataset is utilized to set a more informative weighting without any thresholds. Here, λtk
and λtu are also explicitly estimated by the EM algorithm since they are not given (see Eq. (19) in
Appendix B.2.1), whereas a threshold hyperparameter is used by the previous researches [19, 31].

3.5 Open-Set Classification

Given the proposed feature alignments, we train a classifier, C, to correctly classify the target instance
over Cs or to reject as unknown. Note that the classifier, C, is the extended classifier with the
dimension of |Cs|+ 1 to include the unknown class. Firstly, we construct the source classification
loss on χs. Secondly, for the target domain, we need to learn the decision boundary for the unknown
class. Based on the proposed open-set recognition, ŵx, we train the classifier, C, as follows:

Lcls(θg, θc) =
1

ns

∑
(xs,ys)∈χs

Lce(C(G(xs)), ys) +
1

nt′

∑
xt∈χt

(1− ŵx)Lce(C(G(xt)), yunk), (18)

where nt′ is a normalizing constant, and yunk is the one-hot vector for the unknown class. Further-
more, we incorporate entropy minimization loss for enforcing the unlabeled target instances to be
recognized effectively [9, 13, 5], with the entropy loss function, LH ,

Ltent(θg, θc) =
1

nt

∑
xt∈χt

LH(C(G(xt))). (19)

3.6 Conditional UADAL

Domain adversarial learning may fail to capture a class-wise discriminative pattern in the features
when the data distributions are complex [17]. Therefore, we also experimented with the conditional
UADAL (cUADAL) with the discriminative information between classes. Inspired by [17], we
replace the input information of the domain discriminator, D, from G(x) to [G(x), C(x)] in Eq. (6)-
(7). cUADAL has the conditions on the prediction of the extended classifier, C, which is including the
unknown dimension. Therefore, cUADAL provides more discriminative information than UADAL.

3.7 Training Procedure

We introduce how to update the networks, E, G, D, and C, based on the proposed losses. Before we
start the training, we briefly fit the parameters of the posterior inference to obtain ŵx. This starting
stage trains E and G on the source domain with a few iterations to catch the two modalities of the
target entropy values, inspired by the previous work [1], as below,

(θ̂e, θ̂g) = argminθg,θe L
s
e(θg, θe). (20)

After the initial setup of ŵx, we train D, C, E, and G, alternatively. This alternation is composed of
two phases: (i) learning D; and (ii) learning G, C, and E networks. The first phase of the alternative
iterations starts from learning the domain discriminator, D, by the optimization on LD in Eq. (11),

θ̂d = argminθd LD(θg, θd). (21)
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Backbone (#)/ Office-31 Office-Home
Model A-W A-D D-W W-D D-A W-A Avg. P-R P-C P-A A-P A-R A-C R-A R-P R-C C-R C-A C-P Avg.

E
ffi

ci
en

tN
et

-B
0

(5
.3

M
) DANN 63.2 72.7 92.6 94.8 63.7 57.2 74.0±0.3 35.7 16.5 18.2 34.1 46.3 22.9 40.7 47.8 28.2 12.4 7.5 13.4 27.0±0.3

CDAN 65.5 73.6 92.4 94.6 64.8 57.9 74.8±0.2 37.9 18.1 20.4 35.6 47.0 24.6 44.1 49.8 30.1 13.5 8.9 15.0 28.8±0.6
STA 58.3 62.2 81.6 79.6 69.8 67.4 69.8±1.2 59.4 43.6 51.9 53.8 60.6 49.5 58.8 53.5 49.9 53.4 49.5 49.4 52.8±0.2

OSBP 82.9 87.0 33.8 96.7 27.3 69.9 66.3±2.1 65.0 46.0 58.6 64.2 71.0 54.0 58.3 62.5 50.3 63.7 50.7 55.6 58.3±1.6
ROS 69.7 80.1 94.7 99.6 73.0 59.2 79.4±0.3 66.9 44.9 53.7 62.5 69.5 50.0 62.0 67.0 52.0 61.2 50.5 54.7 57.9±0.1

DANCE 68.1 68.8 91.3 85.0 68.5 63.3 74.2±4.0 17.2 47.5 7.2 26.6 19.6 36.6 2.2 19.8 10.9 6.4 4.3 19.0 18.1±2.9
DCC 87.2 69.1 89.4 94.4 63.5 76.1 79.9±2.9 72.2 41.0 56.5 66.4 75.7 52.8 55.9 71.5 49.9 60.4 48.1 60.8 59.3±1.5

UADAL 87.5 88.3 97.4 96.9 74.1 68.9 85.5±0.5 75.0 50.0 62.9 66.4 74.1 52.7 71.5 72.6 53.6 65.3 60.8 63.7 64.1±0.1
cUADAL 86.5 89.1 97.3 98.0 72.5 71.0 85.7±0.7 74.7 54.4 64.2 66.3 73.9 50.8 71.4 73.0 52.4 65.3 61.0 63.3 64.2±0.1

D
en

se
N

et
-1

21
(7

.9
M

) DANN 71.9 72.0 90.2 85.3 73.8 72.3 77.6±0.5 68.8 35.4 48.7 62.6 71.9 45.3 62.8 68.7 45.9 62.2 47.0 54.7 56.2±0.3
CDAN 69.5 69.8 86.8 84.5 73.8 72.5 76.2±0.2 68.9 39.2 51.9 62.6 71.8 47.1 63.6 68.0 48.7 62.8 49.3 55.2 57.4±0.3
STA 77.0 68.6 84.0 77.2 76.6 75.1 76.4±1.5 65.6 46.1 58.4 55.8 64.3 50.4 62.6 58.6 51.1 61.0 56.0 55.9 57.1±0.1

OSBP 81.9 83.0 88.9 96.6 73.1 74.9 83.1±2.2 71.9 46.0 60.3 67.1 72.3 54.5 65.9 71.7 53.7 66.8 59.3 64.1 62.8±0.1
ROS 67.0 67.8 97.4 99.4 77.1 71.8 80.1±1.3 73.0 49.6 59.2 67.8 75.5 52.8 66.4 74.6 54.3 64.8 53.0 57.8 62.4±0.1

DANCE 69.9 67.8 84.0 82.8 79.9 81.1 77.6±0.3 51.8 51.0 59.7 63.9 58.2 58.2 43.4 48.9 55.0 41.3 54.6 60.6 53.9±0.5
DCC 83.9 80.8 88.4 93.1 79.7 80.4 84.4±1.3 75.1 46.6 58.0 70.8 78.6 56.6 63.4 75.5 55.8 71.3 55.0 63.3 64.2±0.2

UADAL 86.0 82.3 96.7 99.2 77.9 74.2 86.0±0.6 75.7 45.5 61.5 70.0 76.9 57.3 71.5 76.1 60.4 70.0 60.1 67.2 66.0 ±0.2
cUADAL 85.1 83.6 96.4 99.6 77.5 75.9 86.4±0.6 75.6 48.9 61.7 70.0 76.7 57.8 71.9 76.7 59.1 69.6 60.1 67.5 66.3±0.3

R
es

N
et

-5
0

(2
5.

5M
) DANN 68.1 71.5 86.7 82.5 73.7 72.6 75.9±0.5 69.8 44.6 56.3 65.2 71.0 51.2 65.4 68.4 50.9 66.7 57.6 60.9 60.7±0.2

CDAN 64.9 66.8 84.3 80.5 72.7 71.0 73.4±1.3 69.7 47.2 58.6 65.1 70.7 52.9 66.0 67.6 52.7 67.1 58.2 61.7 61.4±0.3
STA∗ 75.9 75.0 69.8 75.2 73.2 66.1 72.5±0.8 69.5 53.2 61.9 54.0 68.3 55.8 67.1 64.5 54.5 66.8 57.4 60.4 61.1±0.3

OSBP∗ 82.7 82.4 97.2 91.1 75.1 73.7 83.7±0.4 73.9 53.2 63.2 65.2 72.9 55.1 66.7 72.3 54.5 70.6 64.3 64.7 64.7±0.2
PGL∗ 74.6 72.8 76.5 72.2 69.5 70.1 72.6±1.5 41.6 46.6 47.2 45.6 55.8 29.3 11.4 52.5 0.0 45.6 10.0 36.8 35.2
ROS∗ 82.1 82.4 96.0 99.7 77.9 77.2 85.9±0.2 74.4 56.3 60.6 69.3 76.5 60.1 68.8 75.7 60.4 68.6 58.9 65.2 66.2±0.3

DANCE 66.9 70.7 80.0 84.8 65.8 70.2 73.1±1.0 41.2 55.7 54.2 49.8 39.4 53.1 27.5 44.0 48.3 30.2 40.9 45.9 44.2±0.6
DCC∗ 87.1 85.5 91.2 87.1 85.5 84.4 86.8 64.0 52.8 59.5 67.4 80.6 52.9 56.0 62.7 76.9 67.0 49.8 66.6 64.2

OSLPP∗ 89.0 91.5 92.3 93.6 79.3 78.7 87.4 74.0 59.3 63.6 72.8 74.3 61.0 67.2 74.4 59.0 70.4 60.9 66.9 67.0
UADAL 89.1 86.0 97.8 99.5 79.7 76.5 88.1±0.2 76.9 56.6 63.0 70.8 77.4 63.2 72.1 76.8 60.6 73.4 64.2 69.5 68.7±0.2
cUADAL 90.1 87.9 98.2 99.4 80.5 75.1 88.5±0.3 76.8 54.6 62.9 71.6 77.5 63.6 72.6 76.7 59.9 72.6 65.0 68.3 68.5±0.1

Table 1: HOS score (%) on Office-31 & Office-Home using EfficientNet-B0 (5.3M), DenseNet-121 (7.9M),
and ResNet-50 (25.5M) as backbone network, where (#) represents the number of the parameters. A-W in a
column means that A is the source domain and W is the target domain. Avg. is the averaged HOS over all tasks
in each dataset. (bold: best performer, underline: second-best performer, ∗: officially reported performances.)
The detailed experimental results including the other metrics such as OS∗ and UNK are in Appendix C.2.9

Based on the updated θ̂d, the parameter, θg , is associated with both optimization loss and classification
loss. Therefore, for the second phase, the parameters, θg and θc, are optimized as below,

(θ̂g, θ̂c) = argminθg,θc Lcls(θg, θc) + L
t
ent(θg, θc)− LG(θg, θ̂d). (22)

We also keep updating θe by Eq. (20), which leads to a better fitting of the posterior inference on the
aligned features (empirically shown in Figure 9b). Algorithm 1 in Appendix B.3.1 enumerates the
detailed training procedures of UADAL. Computational Complexity is asymptotically the same as
existing domain adversarial learning methods, which linearly grow by the number of instances O(n).
The additional complexity may come from the posterior inference requiring O(nk); k is a constant
number of EM iterations (the detailed analysis on the computations in Appendix B.3.2 and C.2.8).

4 Experiments

4.1 Experimental Settings

Datasets We utilized several benchmark datasets. Office-31 [22] consists of three domains: Amazon
(A), Webcam (W), and DSLR (D) with 31 classes. Office-Home [30] is a more challenging dataset
with four different domains: Artistic (A), Clipart (C), Product (P), and Real-World (R), containing 65
classes. VisDA [21] is a large-scale dataset from synthetic images to real one, with 12 classes. In
terms of the class settings, we follow the experimental protocols by [23].

Baselines We compared UADAL and cUADAL with several baselines by choosing the recent works
in CDA, OSDA, and Universal DA (UniDA). For CDA, we choose DANN [7] and CDAN [17] to
show that the existing domain adversarial learning for CDA is not suitable for OSDA. For OSDA, we
compare UADAL to OSBP [23], STA [13], PGL [19], ROS [5], and OSLPP [31]. For UniDA, we
conduct the OSDA setting in DANCE [24] and DCC [12].

Implementation We commonly utilize three alternative pre-trained backbones: 1) ResNet-50 [10],
2) DenseNet-121 [11], and 3) EfficientNet-B0 [26] to show the robustness on backbone network
choices, while using VGGNet [25] on VisDA for a fair comparison. (Details in Appendix C.1).

Metric We utilize HOS, which is a harmonic mean of OS∗, and UNK [5]. OS∗ is a class-wise averaged
accuracy over known classes, and UNK is an accuracy only for the unknown class. HOS is suitable
for OSDA because it is higher when performing well in both known and unknown classifications.
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Method EfficientNet-B0 DenseNet-121 ResNet-50 VGGNet
OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS

STA 49.3 56.4 52.5 53.1 76.7 62.7 56.9 75.8 65.0 63.9∗ 84.2∗ 72.7∗
OSBP 48.8 70.4 57.6 48.7 65.7 55.9 50.0 77.2 60.7 59.2∗ 85.1∗ 69.8∗
PGL 56.9 26.1 35.8 - - - 70.3 33.4 45.3 82.8∗ 68.1∗ 74.7∗
ROS 36.7 72.0 48.7 42.7 81.1 55.9 45.8 64.8 53.7 - - -

DANCE 38.9 63.2 48.1 59.8 67.3 62.3 61.3 72.9 66.5 - - -
DCC 38.3 54.2 44.8 16.7 76.9 27.2 13.4 88.0 23.3 68.0∗ 73.6∗ 70.7∗

OSLPP - - - - - - - - - - - -
UADAL 47.0 76.8 58.3 56.2 81.5 66.5 58.0 86.2 69.4 63.1 93.3 75.3
cUADAL 47.2 76.5 58.4 57.9 84.1 68.6 58.5 87.6 70.1 64.3 92.6 75.9

Table 2: Results on VisDA dataset. (bold/underline/∗: Refer to the Table 1)

Office-31 with ResNet-50
Weight Core HOS Avg.

STA STA 72.5±0.8
UADAL 85.5±0.9

ROS ROS 85.9±0.2
UADAL 86.7±0.2

UADAL UADAL 88.1±0.2

Table 3: Ablation Studies
for Different Weighting / Core
Schemes on STA and ROS.

4.2 Experimental Results

Quantitative Analysis Table 1 reports the quantitative performances of UADAL, cUADAL, and
baselines applied to Office-31 and Office-Home, with three backbone networks. UADAL and
cUADAL show statistically significant improvements compared to all existing baselines in both
Office-31 and Office-Home. Moreover, there is a large improvement by UADAL from baselines in
EfficientNet-B0 and DenseNet-121, even with fewer parameters. In terms of the table on ResNet-
50, for a fair comparison, UADAL outperforms the most competitive model, OSLPP (HOS=67.0).
Compared to the domain adversarial learning methods, such as STA and OSBP, UADAL significantly
outperforms in all cases. UADAL also performs better than other self-supervised learning methods
such as ROS and DCC. These performance increments are commonly observed in all three backbone
structures and in two benchmark datasets, which represents the effectiveness of the proposed model.

Table 2 shows the experimental results on VisDA, which is known to have a large domain shift
from a synthetic to a real domain. It demonstrates that UADAL and cUADAL outperform the other
baselines ‡ under the significant domain shift. Moreover, the baselines with the feature alignments
by the domain adversarial learning, such as STA, OSBP, and PGL, outperform the self-supervised
learning models, ROS, DANCE, and DCC, in most cases. Therefore, these results support that
OSDA essentially needs the feature alignments when there are significant domain shifts. The detailed
discussions about the low accuracies of some baselines are in Appendix C.2.2. In addition, we
observe that cUADAL mostly performs better than UADAL, which shows that cUADAL provides
more discriminative information both on known and unknown by the prediction of the classifier C.

(a) DANN (b) STA (c) cUADAL

Figure 3: t-SNE Visualization on D→W of Office-31.
(Blue/Red/Green: Target-Known/-Unknown/Source)

Figure 4: PAD value on
tk/tu feature distributions.

Figure 5: Openness on
Office-31 (ResNet-50).

Qualitative Analysis Figure 3 represents the t-SNE visualizations [29] of the learned features by
ResNet-50 (the details in Appendix C.2.3). We observe that the target-unknown (red) features from
the baselines are not segregated from the source (green) and the target-known (blue) features. On
the contrary, UADAL aligns the features from the source and the target-known instances accurately
with clear segregation of the target-unknown features. In order to investigate the learned feature
distributions quantitatively, Figure 4 provides Proxy A-Distance (PAD) between the feature distri-
butions from STA, ROS, and UADAL. PAD is an empirical measure of distance between domain
distributions [8] (Details in Appendix C.2.4), and a higher PAD means clear discrimination between
two distributions. Thus, we calculate PAD between the target-known (tk) and the target-unknown
(tu) feature distributions from the feature extractor, G. We found that PAD from UADAL is much
higher than STA and ROS. It shows that UADAL explicitly segregates the unknown features.

In order to provide more insights and explanations compared to STA, we provide an analysis of the
correlation between the evaluation metric and the distance measure of the feature distributions. We
utilize UNK, and HOS as evaluation metrics, and PAD between tk and tu as the distance measure.
Figure 6 shows the scatter plots of (UNK & PAD) and (HOS & PAD). The grey arrows mean the
corresponding tasks by UADAL and STA. As shown in the figure, HOS and UNK have a positive
correlation with the distance between the target-unknown (tu) and the target-known (tk). In simple
‡OSLPP is infeasible to a large dataset, such as VisDA dataset (Detailed discussions in Appendix C.2.1).
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Figure 6: Correlation analysis between the PAD value and each of UNK (left) and HOS (right), in Office-31
dataset (with ResNet-50). The arrow represents the same task, such as A→W, for UADAL and STA.

words, better segregation enables better HOS and UNK. Specifically, from STA to UADAL on the
same task, the distances (PAD on tk/tu) are increased, and the corresponding performances, UNK and
HOS, are also increased. It means that UADAL effectively segregates the target feature distributions,
and then leads to better performance for OSDA. In other words, the proposed unknown-aware feature
alignment is important to solve the OSDA problem. From this analysis, our explicit segregation of tu
is a key difference from the previous methods. Therefore, we claimed that this explicit segregation of
UADAL is the essential part of OSDA, and leads to better performances.

Robust on Openness We conduct the openness experiment to show the robustness of the varying
number of the known classes. Figure 5 represents that UADAL performs better than the baselines
over all cases. Our open-set recognition does not need to set any thresholds since we utilize the loss
information of the target domain, holistically. Therefore, UADAL is robust to the degree of openness.

4.3 Ablation Studies

Effectiveness of Unknown-Aware Feature Alignment We conducted ablation studies to in-
vestigate whether the unknown-aware feature alignment is essential for the OSDA problem.

Figure 7: Convergence of
Sequential Optimization.

Table 3 represents the experimental results where the feature alignment
procedure of STA or ROS is replaced by UADAL, maintaining their
weighting schemes, in Office-31 with ResNet-50. In terms of each weight-
ing, the UADAL core leads to better performances in both STA and ROS
cases. Surprisingly, when we replace STA’s known-only matching with
the unknown-aware feature alignment of UADAL, the performance in-
creases dramatically. It means that the implicit separation of STA at the
classification level is limited to segregating the target-unknown features.
Therefore, explicit segregation by UADAL is an essential part to solve the OSDA problem. Moreover,
Figure 7 shows the empirical convergence of the proposed sequential optimization as PAD value
between ps and ptk and between ps and ptu over training, i.e., ps ≈ ptk and ptu ↔ {ptk, ps}.

(a) Early stage of training (b) End stage of training

Figure 8: (a) The histogram of the source and target entropy with the
fitted posterior inference model, at the Early / End stage of training,
where the subfigure in (a) shows the histogram of ŵx at this stage.

(a) Binary Acc. (b) Ablation Studies

Figure 9: (a) Binary accuracy on tk/tu
by thresholding ŵx. (b) Ablations for
posterior inference with thresholding.

Superiorities of Open-set Recognition: (Effective Recognition) Figure 8a represents the histogram
of the source/target entropy values from E after the early stage of training by Eq. (20) (sensitivity
analysis on the varying number of iterations for the early stage in Appendix C.2.5). Therefore, it
demonstrates that our assumption on two modalities of the entropy values holds, robustly. Further-
more, the subfigure in Figure 8a shows the histogram of the ŵx by the posterior inference. It shows
that our open-set recognition, ŵx, provides a more clear separation for the target-known (blue) and
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the target-unknown (red) instances than the entropy values. Figure 8b represents the histogram of
the entropy at the end of the training, which is further split than Figure 8a. This clear separation
implicitly supports that the proposed feature alignment accomplishes both alignment and segregation.

(Informativeness) Furthermore, we conduct a binary classification task by thresholding the weights,
ŵx, whether it predicts tk or tu correctly. Figure 9a represents the accuracies over the threshold values
when applying the posterior inference or the normalized entropy values themselves, in Office-31.
It shows that the posterior inference discriminates tk and tu more correctly than using the entropy
value itself. Additionally, the posterior inference has similar accuracies over the threshold values
(0.2, 0.5, and 0.8), which also indicates a clear separation. Therefore, we conclude that the posterior
inference provides a more informative weighting procedure than the entropy value itself.

(Comparison to Thresholding) Figure 9b shows that UADAL with the posterior inference outper-
forms all cases of thresholding the entropy values. It means that the posterior inference is free to set
thresholds. Moreover, the results demonstrate that UADAL with the posterior inference outperforms
the case of using the normalized entropy value, and its frequent updating (solid line) leads to a better
performance than only initial updating (dashed line). It is consistent with the analysis from Figure 8b.

Figure 10: Ablation study of applying sampling on the target domain
with Office-31 (left) and Office-Home (right) w.r.t. the averaged scores.

Dataset Ent. OS* UNK HOS

Office-31 X 85.4 90.0 87.5
O 84.8 82.1 88.1

Office-Home X 61.9 75.2 67.6
O 62.6 78.0 68.7

Table 4: Ablation on Entropy Minimiza-
tion (Ent.) Loss from Eq. (19) on the
Office-31 and Office-Home. The values
in the table are the averaged score over
the tasks in each dataset. The detailed
results are in Table 2 in Appendix C.2.7.

(Efficiency) In terms of computation, the posterior inference increases the complexity because we
need to fit the mixture model, where the computational complexity is O(nk) with the number of
samples, n, and the number of fitting iterations, k (n � k). As an alternative, we fit the mixture
model only by sampling the target instance. Figure 10 represents the wall-clock time increased by
the fitting process and the performances over the sampling ratio (%) for the target domain. Since
the computational complexity is linearly increased by the number of samples, the wall-clock time
is also linearly increased by increasing the sampling ratio. Interestingly, we observed that even
when the sampling ratio is small, i.e. 10%, the performances do not decrease, on both Office-31 and
Office-Home datasets. The qualitative analysis of this sampling is provided in Appendix C.2.8.

Entropy Minimization Loss In order to show the effect of the entropy minimization by Eq. (19),
we conduct the ablation study on the Office-31 and Office-Home. Table 4 shows that the entropy
minimization leads to better performance. However, UADAL without the loss still performs better
than the other baselines (compared with Table 1). It represents that UADAL learns the feature space
appropriately as we intended to suit Open-Set Domain Adaptation. The properly learned feature
space leads to effectively classifying the target instances without entropy minimization.

5 Conclusion

We propose Unknown-Aware Domain Adversarial Learning (UADAL), which is the first approach
to explicitly design the segregation of the unknown features in the domain adversarial learning for
OSDA. We design a new domain discrimination loss and formulate the sequential optimization for the
unknown-aware feature alignment. Empirically, UADAL outperforms all baselines on all benchmark
datasets with various backbone networks, by reporting state-of-the-art performances.
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