
Wasserstein Logistic Regression with Mixed Features

Aras Selvi Mohammad Reza Belbasi Martin B. Haugh Wolfram Wiesemann
Imperial College Business School, Imperial College London, United Kingdom

{a.selvi19, r.belbasi21, m.haugh, ww}@imperial.ac.uk

Abstract

Recent work has leveraged the popular distributionally robust optimization
paradigm to combat overfitting in classical logistic regression. While the resulting
classification scheme displays a promising performance in numerical experiments,
it is inherently limited to numerical features. In this paper, we show that distri-
butionally robust logistic regression with mixed (i.e., numerical and categorical)
features, despite amounting to an optimization problem of exponential size, ad-
mits a polynomial-time solution scheme. We subsequently develop a practically
efficient column-and-constraint approach that solves the problem as a sequence of
polynomial-time solvable exponential conic programs. Our model retains many
of the desirable theoretical features of previous works, but—in contrast to the
literature—it does not admit an equivalent representation as a regularized logistic
regression, that is, it represents a genuinely novel variant of logistic regression.
We show that our method outperforms both the unregularized and the regularized
logistic regression on categorical as well as mixed-feature benchmark instances.

1 Introduction

Consider a data set (xi, yi)Ni=1 with feature vectors xi and associated binary labels yi ∈ {−1, 1}.
Classical logistic regression assumes that the labels depend probabilistically on the features via

Prob(y | x) =
[
1 + exp(−y · [β0 + β⊤x])

]−1
,

where the parameters (β0,β) ∈ R1+n are estimated from the empirical risk minimization problem

minimize
(β0,β)

1

N

N∑
i=1

lβ(x
i, yi)

subject to (β0,β) ∈ Rn+1

with the log-loss function lβ(x, y) := log
(
1 + exp

(
−y · [β0 + β⊤x]

))
. Its compelling performance

across many domains, the availability of mature and computationally efficient algorithms as well as
its interpretability have all contributed to the widespread adoption of logistic regression [6, 18, 27].

Similar to other machine learning models, logistic regression is prone to overfitting, especially when
the number of training samples is small relative to the number of considered features. Moreover,
logistic regression can be sensitive to erroneous feature and label values as well as distribution shifts
under which the training and test sets stem from different distributions. In recent years, distributionally
robust (DR) optimization [3, 4] has been proposed to simultaneously address these challenges. To
this end, the DR optimization paradigm models a machine learning task as a zero-sum game between
the decision maker, who seeks to obtain the most accurate model (e.g., the parameter vector β
in a logistic regression), and a fictitious adversary who observes the decision maker’s model and
subsequently selects the worst data-generating distribution in the vicinity of the empirical distribution
formed from the available training data. In this context, the similarity of distributions is commonly
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measured in terms of moment bounds [9, 39], ϕ-divergences such as the Kullback-Leibler divergence
[19, 22] or the Wasserstein distance [15, 25]. It has been observed that in many cases, the resulting
DR machine learning models are equivalent to regularized versions of the same models, in which
case distributionally robustness provides a new perspective on regularizers that are often selected ad
hoc [21, 41]. Most importantly, DR machine learning models often admit computationally efficient
reformulations as finite-dimensional convex optimization problems that can be solved in polynomial
time with off-the-shelf solvers.

In this work we study a DR variant of the logistic regression where the distance between the
empirical distribution and the unknown true data-generating distribution is measured by the popular
Wasserstein (also known as Kantorovich-Rubinstein or earth mover’s) distance [15, 25]. This problem
has been first studied by [31], who show that the resulting DR logistic regression problem admits
an equivalent reformulation as a polynomial-size convex optimization problem if all features are
numerical. Applying similar techniques to the mixed-feature logistic regression problem, which
appears to be most prevalent in practice, would result in an exponential-size convex optimization
problem whose naïve solution with the methods of [31] does not scale to interesting problem sizes
(cf. Section 4). Our contributions may be summarized as follows.

(i) On the theoretical side, we show that the complexity of DR mixed-feature regression
crucially relies on the selected loss function. In particular, for the log-loss function employed
in logistic regression, the problem—despite its natural representation as an exponential-size
convex optimization problem—admits a polynomial-time solution scheme. We also show
that in stark contrast to earlier variants of the problem, our mixed-feature regression does
not admit an equivalent representation as a regularized problem. This provides compelling
evidence that the DR logistic regression problem with mixed features is fundamentally
different to the DR problem with only numerical features.

(ii) On the computational side, we propose a column-and-constraint scheme that solves the DR
mixed-feature logistic regression as a sequence of polynomial-time solvable exponential
conic programs. We show that the key step of our procedure, the identification of the most
violated constraint, can be implemented efficiently for a broad range of metrics, despite its
natural representation as a combinatorial optimization problem. Indeed, identifying the most
violated constraint by brute force is out of the question, while the standard approach [43] of
solving the most violated constraint problem would have an unacceptably high runtime.

(iii) On the numerical side, we show that our column-and-constraint scheme drastically reduces
computation times over a naïve monolithic implementation of the regression problem. We
also show that our model performs favorably on standard categorical and mixed-feature
benchmark instances when compared against classical and regularized logistic regression.

The literature on DR machine learning under the Wasserstein distance is vast and rapidly growing.
Recent works have considered, among others, the use of Wasserstein DR models in multi-label
learning [14], generative adversarial networks [2, 8] and the generation of adversarial examples [40],
density estimation [38] and learning Gaussian mixture models [20], graph-based semi-supervised
learning [35], supervised dimensionality reduction [13] and reinforcement learning [1]. DR has also
been found to help alleviate problems with overfitting [24, 21], label uncertainty [21] and distribution
shifts [37, 36]. We refer to [21] for a recent review of the literature. Our work is most closely related
to [31], and we compare our findings with the results of that work in Section 2.

We proceed as follows. Section 2 defines and analyzes the mixed-feature DR logistic regression
problem, which is solved in Section 3 via column-and-constraint generation. We report numerical
results in Section 4. Auxiliary material and all proofs are relegated to the appendix.

Notation. We define B = {0, 1} and [N ] = {1, . . . , N} for N ∈ N. The set of all probability
distributions supported on a set Ξ is denoted by P0(Ξ), while the Dirac distribution placing unit
probability mass on x ∈ Rn is denoted by δx ∈ P0(Rn). The indicator function 1[E ] attains the value
1 (0) whenever the expression E is (not) satisfied. Finally, we use Roman d to denote differentials
and to distinguish them from the d used to denote distances.
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2 Mixed-Feature DR Logistic Regression

Section 2.1 derives an exponential-size convex programming formulation of the DR logistic regression
problem that serves as the basis of our analysis. Section 2.2 compares our formulation with a naïve
model that treats categorical features as continuous ones. Section 2.3, finally, shows that our
formulation, despite its exponential size, can be solved in polynomial time due to the benign structure
of the log-loss function. It also establishes that in stark contrast to the literature, our formulation does
not reduce to a regularized non-robust logistic regression, that is, it constitutes a genuinely novel
variant of the logistic regression problem.

Our formulation enjoys strong finite-sample and asymptotic performance guarantees from the litera-
ture. Moreover, despite its exponential size, our model always accommodates worst-case distributions
that exhibit a desirable sparsity pattern. We relegate these results to Appendix A.

2.1 Formulation as an Exponential-Size Convex Program

From now on, we consider a mixed-feature data set {ξi := (xi, zi, yi)}i∈[N ] with n numerical
features xi = (xi

1, . . . , x
i
n) ∈ Rn, m categorical features zi = (zi

1, . . . ,z
i
m) ∈ C(k1)× . . .×C(km)

and a binary label yi ∈ {−1,+1}. Here, C(s) = {z ∈ Bs−1 :
∑

j∈[s−1] zj ≤ 1} for s ∈ N \ {1}
represents the one-hot encoding of a categorical feature with s possible values; in particular, C(2) = B
encodes a binary feature. We denote by C = C(k1)× . . .×C(km) and Ξ = Rn×C×{−1,+1} the
support of the categorical features as well as the data set, respectively, and we let k = k1+. . .+km−m
be the number of slopes used for the categorical features.

If we had access to the true data-generating distribution P0 ∈ P0(Ξ), we would solve the (non-robust)
logistic regression problem

minimize
β

EP0 [lβ(x, z, y)]

subject to β = (β0,βN,βC) ∈ R1+n+k,

where EP0 denotes the expectation under P0, and where the log-loss function lβ now takes the form

lβ(x, z, y) := log
(
1 + exp

[
−y ·

(
β0 + βN

⊤x+ βC
⊤z

)])
to account for the presence of categorical features. Since the distribution P0 is unknown in practice, the
empirical risk minimization problem replaces P0 with the empirical distribution P̂N := 1

N

∑N
i=1 δξi

that places equal probability mass on all observations {ξi}i∈[N ]. Standard arguments show that
when these observations are i.i.d., the empirical risk minimization problem recovers the logistic
regression under P0 as N −→ ∞. In practice, however, data tends to be scarce, and the empirical
risk minimization problem exhibits an ‘optimism bias’ that is also known as overfitting [6, 18, 27],
the error maximization effect of optimization [10, 23] or the optimizer’s curse [34].

DR logistic regression combats the aforementioned overfitting phenomenon by solving the semi-
infinite optimization problem

minimize
β

sup
Q∈Bϵ(P̂N )

EQ [lβ(x, z, y)]

subject to β = (β0,βN,βC) ∈ R1+n+k,

(1)

where the ambiguity set Bϵ(P̂N ) contains all distributions Q in a (soon to be defined) vicinity of the
empirical distribution P̂N , and where the expectation is taken with respect to Q. Problem (1) can be
interpreted as a zero-sum game between the decision maker, who chooses a logistic regression model
parameterized by β, and a fictitious adversary that observes β and subsequently chooses the ‘worst’
distribution (in terms of the incurred log-loss) from Bϵ(P̂N ). Contrary to the classical non-robust
logistic regression, problem (1) guarantees to overestimate the log-loss incurred by β under the
unknown true distribution P0 as long as P0 is contained in Bϵ(P̂N ). On the other hand, problem (1)
recovers the empirical risk minimization problem when the ambiguity set Bϵ(P̂N ) approaches a
singleton set that only contains the empirical distribution P̂N . Note that problem (1) is convex as
the convexity of the logistic regression objective EQ [lβ(x, z, y)] is preserved under the supremum
operator. That said, the problem typically constitutes a semi-infinite program as it comprises finitely
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many decision variables but—if the embedded supremum in the objective is brought to the constraints
via an epigraph reformulation—infinitely many constraints whenever the ambiguity set harbors
infinitely many distributions. As such, it is not obvious how the problem can be solved efficiently.

In this paper, we choose as ambiguity set the Wasserstein ball Bϵ(P̂N ) := {Q ∈ P0(Ξ) :

W(Q, P̂N ) ≤ ϵ} of radius ϵ > 0 that is centered at the empirical distribution P̂N .
Definition 1 (Wasserstein Distance). The type-1 Wasserstein (Kantorovich-Rubinstein, or earth
mover’s) distance between two distributions P ∈ P0(Ξ) and Q ∈ P0(Ξ) is defined as

W(Q,P) := inf
Π∈P0(Ξ2)

{∫
Ξ2

d(ξ, ξ′)Π(dξ,dξ′) : Π(dξ,Ξ) = Q(dξ), Π(Ξ,dξ′) = P(dξ′)
}
, (2)

where ξ = (x, z, y) ∈ Ξ and ξ′ = (x′, z′, y′) ∈ Ξ, while d(ξ, ξ′) is the ground metric on Ξ.

The Wasserstein distance can be interpreted as the minimum cost of moving Q to P when d(ξ, ξ′) is
the cost of moving a unit mass from ξ to ξ′. The Wasserstein radius ϵ thus imposes a budget on the
transportation cost that the adversary can spend on perturbing the empirical distribution P̂N .

We next define the ground metric d that we use throughout the paper.
Definition 2 (Ground Metric). We measure the distance between two data-points ξ = (x, z, y) ∈ Ξ
and ξ′ = (x′, z′, y′) ∈ Ξ with z = (z1, . . . ,zm) and z′ = (z′

1, . . . ,z
′
m) as

d(ξ, ξ′) := ∥x− x′∥+ dC(z,z
′) + κ · 1[y ̸= y′], (3a)

where ∥·∥ is any rational norm on Rn, κ > 0 and the metric dC on C satisfies

dC(z,z
′) :=

( ∑
i∈[m]

1[zi ̸= z′
i]
)1/p

for some p > 0. (3b)

Intuitively, the ground metric d measures the distance of the numerical features x and x′ by the norm
distance ∥x− x′∥, whereas the distance of the categorical features z and z′ is measured by (a power
of) the number of discrepancies between z and z′. Likewise, any discrepancy between the labels y
and y′ is accounted for by a constant κ, which allows for scaling between the features and the labels.

We first extend the convex optimization model of [31] for the DR continuous-feature logistic regres-
sion to an exponential conic model that accommodates for categorical features.
Theorem 1 (Exponential Conic Representation). The DR logistic regression problem (1) admits the
equivalent reformulation

minimize
β,λ,s,u±,v±

λϵ+
1

N

∑
i∈[N ]

si

subject to u+
i,z + v+i,z ≤ 1

(u+
i,z, 1,−si − λdC(z, z

i)) ∈ Kexp

(v+i,z, 1,−yiβN
⊤xi − yiβC

⊤z − yiβ0 − si − λdC(z, z
i)) ∈ Kexp

∀i ∈ [N ], ∀z ∈ C

u−
i,z + v−i,z ≤ 1

(u−
i,z, 1,−si − λdC(z, z

i)− λκ) ∈ Kexp

(v−i,z, 1, y
iβN

⊤xi + yiβC
⊤z + yiβ0 − si − λdC(z, z

i)− λκ) ∈ Kexp

∀i ∈ [N ], ∀z ∈ C

||βN||∗ ≤ λ

β = (β0,βN,βC) ∈ R1+n+k, λ ≥ 0, s ∈ RN

(u+
i,z, v

+
i,z, u

−
i,z, v

−
i,z) ∈ R4, i ∈ [N ] and z ∈ C

(4)
as a finite-dimensional exponential conic program, where Kexp denotes the exponential cone

Kexp := cl ({(a, b, c) : a ≥ b · exp(c/b), a > 0, b > 0}) ⊂ R3.

The si’s and λ that appear in (4) are dual variables that arise from dual of the inner (i.e., sup) problem
in (1). For each z ∈ C and i ∈ [N ], (u+

i,z, v
+
i,z, u

−
i,z, v

−
i,z) is a vector of auxiliary variables that we use

to model softplus constraints that arise from our intermediate analysis of problem (1) (Appendix E).
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Figure 1: Left: Estimates of β for the standard logistic regression, our mixed-feature as well as the
continuous-feature model as a function of the size N of the data set. All results are reported as
averages over 2,000 statistically independent runs. Right: Comparison of the empirical distribution
as well as the worst-case distributions for β = 1 under the two DR models for N = 250 samples.
The probabilities are plotted on a log-scale to make small values visible.

Problem (4) is finite-dimensional and convex. Moreover, since exponential conic programs admit a
self-concordant barrier function, they can be solved in polynomial time relative to their input size
[28]. Due to the presence of categorical features in our regression problem, however, problem (4)
comprises exponentially many variables and constraints, and a naïve solution of (4) would therefore
require an exponential amount of time. The exponential size of problem (4) renders our formulation
fundamentally different from the model of [31], and it significantly complicates the solution.

2.2 Comparison with Continuous-Feature DR Logistic Regression

Our formulation (4) of the mixed-feature DR logistic regression (1) accounts for categorical features
z ∈ C at the expense of an exponential number of variables and constraints. It is therefore tempting
to treat the categorical features as continuous ones and directly apply the continuous-feature-only
reformulation of the DR logistic regression (1) proposed by [31]. In the following, we argue that
such a reformulation would hedge against nonsensical worst-case distributions that in turn lead to
overly conservative regression models. To see this, consider a stylized setting where the data set
(zi, yi)i∈[N ] comprises a single binary feature zi ∈ {−1,+1} that impacts the label yi ∈ {−1,+1}
via the logistic model

Prob(y | z) = [1 + exp(−y · βz)]−1

with β = 1. (While we use zi ∈ {0, 1} in the other sections of the paper, the analysis and results of
this subsection and Appendix B assumed zi ∈ {−1,+1} as this made comparisons with [31] easier.)
We attempt to recover this logistic model in two ways:

1. Mixed-feature model. We employ our DR logistic regression (1) with a single categorical
feature, using p = 1 and κ = 1 in the ground metric (cf. Definition 2).

2. Continuous-feature model. We employ a variant of problem (1) that treats the categorical
feature zi as a continuous one. We choose as ground metric

d(ξ, ξ′) :=
1

2
|z − z′|+ 1[y ̸= y′].

We therefore use the feature distances 1[z ̸= z′] in the mixed-feature case and
1

2
|z − z′| in the

continuous-feature case. Note they both attain the value 0 (1) for equal (different) feature values.

Figure 1 (left) compares the mean values (dashed lines) as well as the 15% and 85% quantiles (shaded
regions) of β for the standard logistic regression, our mixed-feature as well as the continuous-feature
model as a function of the size N of the data set. For both DR models, we employed the same
Wasserstein radius ϵ ∝ 1/

√
N , which is motivated by the finite sample guarantee presented in the

next section (cf. Theorem 6). The figure shows that the continuous-feature model excessively shrinks
its estimates of β, thus leading to overly conservative results. In fact, the true parameter value β = 1
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consistently lies outside the confidence region of the continuous-feature model, independent of the
sample size N . This is due to the fact that the continuous-feature model accounts for nonsensical
worst-case distributions under which the categorical feature can take values outside its domain
{−1,+1}, see Figure 1 (right). In fact, the continuous-feature model places non-zero probability
on an extreme scenario under which the binary feature z ∈ {−1,+1} attains the value 15, 312. (In
Appendix B we explain why this value of 15, 312 arises.) Our mixed-feature model, on the other
hand, restricts the worst-case distribution to the domain of the categorical feature and thus hedges
against realistic distributions only.

We note that in practice, the radius ϵ of the Wasserstein ball will be chosen via cross-validation
(cf. Section 4), in which case our mixed-feature model reliably outperforms the classical logistic
regression on standard benchmark instances. While one may argue that the impact of nonsensical
worst-case distributions in the continuous-feature model is alleviated by the cross-validated radii,
Figure 1 offers strong theoretical and practical reasons against the use of a continuous-feature model
for categorical or mixed-feature problems: The continuous-feature model hedges against a clumsily
perturbed worst-case distribution that introduces a pronounced bias in the estimation. We also note
that another possible approach would be to use the continuous-feature model but to restrict the support
of binary features to [−1, 1]. Unfortunately, for the log-loss function no tractable reformulation
with support constraints appears to be known; see [32] . Moreover, Section 4 will show that the
mixed-feature model, despite its exponential size, can be solved quickly and reliably with our novel
column-and-constraint approach from Section 3.

2.3 Complexity Analysis

We first show that despite its exponential size, the DR logistic regression problem (1) admits a
polynomial-time solution. Key to this perhaps surprising finding is the shape of the loss function:
while problem (1) is strongly NP-hard (and thus unlikely to admit a polynomial-time solution scheme)
for generic loss functions, it can be solved in polynomial time for the log-loss function lβ employed
in logistic regression.

Theorem 2 (Complexity of the DR Logistic Regression (1)).

(i) For generic loss functions lβ, problem (1) is strongly NP-hard even if n = 0 and N = 1.

(ii) For the loss function lβ(x, z, y) = log
(
1 + exp

[
−y ·

(
β0 + βN

⊤x+ βC
⊤z

)])
and the

ground metric of Definition 2, problem (1) can be solved to δ-accuracy in polynomial time.

Recall that an optimization problem is solved to δ-accuracy if a δ-suboptimal solution is identified that
satisfies all constraints modulo a violation of at most δ. The consideration of δ-accurate solutions is
standard in the numerical solution of nonlinear programs where an optimal solution may be irrational.

A by now well-known result shows that when m = 0 (no categorical features), the DR logistic
regression problem (1) reduces to a classical logistic regression with an additional regularization
term ∥βx∥∗ in the objective function when the output label weight κ in Definition 2 approaches ∞
[31, 32]. We next show that this reduction to a classical regularized logistic regression no longer
holds in our problem setting when categorical features are present.

Theorem 3 (Absence of a Reformulation as a Regularized Problem). Even when the output label
weight κ approaches ∞ in the DR logistic regression (1), problem (1) does not admit an equivalent
reformulation

minimize
β

EP̂N
[lβ(x, z, y)] +R(β)

subject to β = (β0,βN,βC) ∈ R1+n+k,

as a classical regularized logistic regression for any regularizer R : R1+n+k → R.

Note that Theorem 3 does not only preclude the existence of a specific regularizer, but it excludes the
existence of any regularizer, no matter how complex its dependence on β might be. We are not aware
of any prior results of this form in the literature. Some insight for the result in Theorem 3 may be
found via the special case we consider in its proof in Appendix E and in Remark 2 that follows it.
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Algorithm 1 Column-and-Constraint Generation Scheme for Problem (4).

Set LB0 = −∞ and UB0 = +∞
Choose (possibly empty) subsets W+,W− ⊆ [N ]× C
while LBt ̸= UBt do

Let θ⋆ be the optimal value and (β, λ, s,u±,v±) be a minimizer of problem (4) where:
• the first constraint set is only enforced for all (i, z) ∈ W+;
• the second constraint set is only enforced for all (i, z) ∈ W−;
• we only include those (u+

i,z, v
+
i,z) for which (i, z) ∈ W+;

• we only include those (u−
i,z, v

−
i,z) for which (i, z) ∈ W−.

Identify a most violated index (i+, z+) of the first constraint set in (4) and add it to W+

Identify a most violated index (i−, z−) of the second constraint set in (4) and add it to W−

Let ϑ+ and ϑ− be the violations of (i+, z+) and (i−, z−), respectively
Update LBt = θ⋆ and UBt = min{UBt−1, θ

⋆ + log(1 + max{ϑ+, ϑ−})}
Update t = t+ 1

end while

Algorithm 2 Identification of Most Violated Constraints in the Reduced Problem (4).

for j ∈ {1, . . . ,m} do
Find a feature value z⋆

j that minimizes yi · βC,j
⊤zj across all zj ∈ C(kj) \ {zi

j}
end for
Let π : [m] → [m] be an ordering such that

yi · βC,π(j)
⊤(z⋆

π(j) − zi
π(j)) ≤ yi · βC,π(j′)

⊤(z⋆
π(j′) − zi

π(j′)) ∀1 ≤ j ≤ j′ ≤ m

Set W = ∅
for δ ∈ {0, 1, . . . ,m} do

Update W = W ∪ {z}, where zj = z⋆
j if π(j) ≤ δ and zj = zi

j otherwise
end for
Determine the most violated constraint from the candidate set W

3 Column-and-Constraint Solution Scheme

Our DR logistic regression problem (4) comprises exponentially many variables and constraints,
which renders its solution as a monolithic exponential conic program challenging. Instead, Algo-
rithm 1 employs a column-and-constraint generation scheme, e.g., [43], that alternates between (i) the
solution of relaxations of problem (4) that omit most of its variables and constraints and (ii) adding
those variables and constraints that promise to maximally tighten the relaxations.

Theorem 4. Algorithm 1 solves problem (4) in finitely many iterations. Moreover, LBt and UBt

constitute monotone sequences of lower and upper bounds on the optimal value of problem (4).

A key step in Algorithm 1 is the identification of most violated indices (i, z) ∈ [N ]×C of the first and
second constraint set in the reduced DR regression problem (4) for a fixed solution (β, λ, s,u±,v±).
For the first constraint set in (4), the identification of such indices requires for each data point i ∈ [N ]
the solution of the combinatorial problem

maximize
z

min
u+,v+

{
u+ + v+ :

[
(u+, 1,−si − λdC(z, z

i)) ∈ Kexp

(v+, 1,−yiβN
⊤xi − yiβC

⊤z − yiβ0 − si − λdC(z, z
i)) ∈ Kexp

]}
subject to z ∈ C,

(5)
where an optimal value greater than 1 corresponds to a violated constraint; an analogous problem can
be defined for the second constraint set in (4). Despite its combinatorial nature, the above problem
can be solved efficiently by means of Algorithm 2.

Theorem 5. Algorithm 2 identifies a most violated constraint for a given data-point i ∈ [N ] in time
O(k + n+m2).
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Figure 2: Runtime comparison between our column-and-constraint scheme and a naïve solution of
problem (4) as a monolithic exponential conic program. Left: Runtimes for m = 10 binary features
as a function of the number N of data points. Middle: Runtimes for N = 50 as a function of m.
Right: Runtimes of our column-and-constraint scheme only for varying combinations of m and N . In
all graphs, shaded regions correspond to 10%-90% confidence regions and bold lines report median
values over 50 statistically independent runs. Note the log-scale in the plots.

Algorithm 2 first determines for each categorical feature zj , j = 1, . . . ,m, the feature value z⋆
j ∈

C(kj) \ {zi
j} that, ceteris paribus, contributes to a maximal constraint violation in time O(k). The

subsequent step sorts the different features j = 1, . . . ,m in descending order of their contribution to
constraint violations in time O(m logm). The last step of Algorithm 2, finally, constructs the most
violated constraint z across those in which δ = 0, . . . ,m categorical feature values deviate from zi

and subsequently picks the most violated constraint of these in time O(n+m2). We note that the
overall complexity of O(k+ n+m2) can be reduced to O(k+ n+m logm) by a clever use of data
structures in the final step; for ease of exposition, we omit the details. Finally, since Algorithm 2 is
applied to each data point i ∈ [N ], the overall complexity increases by a factor of N . We provide
additional intuition behind Algorithm 2 immediately before the proof of Theorem 5 in Appendix E.

4 Numerical Results

Section 4.1 first compares the runtimes of our column-and-constraint scheme from Section 3 with
those of solving the DR logistic regression problem (4) naïvely as a monolithic exponential conic
program. We subsequently compare the classification performance of problem (1) with those of a
classical unregularized and regularized logistic regression on standard benchmark instances with
categorical features (Section 4.2) and mixed features (Appendix C).

All algorithms were implemented in Julia [5] (MIT license) and executed on Intel Xeon 2.66GHz
processors with 8GB memory in single-core mode. We use MOSEK 9.3 [26] (commercial) to solve
all exponential conic programs through JuMP [12] (MPL2 License). (We note the open source solvers
Ipopt and CVXOpt could be used instead of MOSEK.) All source codes and detailed results are
available on GitHub (https://github.com/selvi-aras/WassersteinLR).

4.1 Runtime Comparison with Monolithic Formulation

We first compare the computation times of our column-and-constraint scheme from Section 3 with
those of solving the DR logistic regression problem (4) naïvely as a monolithic exponential conic
program. To this end, we randomly generate synthetic logistic regression instances with varying
numbers N of data points and m of binary features. While Figure 2 (left) shows that both approaches
scale similarly in the number N of data points, Figure 2 (middle) reveals that the solution of the
monolithic formulation scales exponentially in the number m of binary features. In contrast, our
column-and-constraint scheme scales gracefully in both the number N of data points and the number
m of binary features (cf. Figure 2, right). A similar behavior can be observed with more general,
non-binary categorical features; we omit the results due to space constraints.

4.2 Performance on Categorical-Feature Instances

We next compare the classification performance (in terms of the out-of-sample classification error) of
our unregularized (‘DRO’) and Lasso-regularized (‘r-DRO’) DR logistic regression problem (1) with
those of a classical unregularized (‘LR’) as well as Lasso-regularized (‘r-LR’), mass transportation-
regularized (MT) [31, 32], and robust Wasserstein profile inference-regularized (PI) [7] logistic
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Data Set N k m LR DRO (κ = 1) DRO (κ = m) r-LR r-DRO (κ = 1) r-DRO (κ = m) MT (κ = 1) MT (κ = m) PI (α = 0.05)

breast-cancer 277 42 9 29.56% 29.15% 28.55%†‡ 29.05% 29.16% 28.82% 29.44% 29.40% 29.33%
spect 267 22 22 18.81% 17.72% 17.51% 17.79% 18.38% 15.83%†‡ 18.49% 18.74% 20.60%
monks-3 554 11 6 2.07% 2.08% 2.10% 2.14% 2.19% 2.13% 2.15% 2.15% 37.87%
tic-tac-toe 958 18 9 1.92% 1.69% 1.67%† 1.68% 1.68% 1.69% 1.72% 1.81% 30.02%
kr-vs-kp 3,196 37 36 2.64% 2.66% 2.64% 2.69% 2.66% 2.66% 2.77% 2.74% 12.85%
balance-scale⋆ 625 16 4 0.85% 0.82% 0.72% 0.73% 0.71% 0.64%†‡ 0.72% 0.69% 36.10%
hayes-roth⋆ 160 11 4 17.00% 16.31% 16.09%†‡ 18.66% 18.19% 17.78% 17.50% 16.38% 37.59%
lymphography⋆ 148 42 18 21.17% 17.83% 16.72%†‡ 17.38% 17.52% 17.03% 19.41% 17.83% 20.00%
car⋆ 1,728 15 6 4.73% 4.73% 4.73% 4.99% 4.76% 4.87% 4.73% 4.77% 15.37%
splices⋆ 3,189 229 60 6.80% 5.92%†‡ 6.66% 6.22% 5.99% 6.02% 6.57% 6.87% 11.08%
house-votes-84 435 32 16 6.60% 4.43% 5.37% 4.54% 4.41% 5.16% 4.78% 5.54% 4.26%†
hiv 6,590 152 8 5.94% 5.93% 5.92% 5.90%† 5.90%† 5.90%† 6.04% 6.03% 20.45%
primacy-tumor⋆ 339 25 17 13.93% 13.66% 13.76% 14.51% 14.06% 14.19% 13.87% 13.85% 19.18%
audiology⋆ 226 92 69 14.18% 14.03% 14.40% 3.11% 2.80%†‡ 3.91% 12.64% 7.49% 15.49%

Table 1: Classification errors of unregularized as well as Lasso-, mass transportation-, and profile
inference-regularized variants of the classical logistic regression and our DR regression on UCI
benchmark instances with categorical features only. The smallest error within each model group
(unregularized vs. regularized) is highlighted in italics, whereas the smallest error overall (across
all groups) is printed in bold. The dagger (†) and double dagger (‡) symbols next to the best model
denote statistically significant improvements over LR and the second best model, respectively.

regression on the 14 most popular UCI data sets that only contain categorical features having more
than 30 rows [11] (varying licenses). Instances with multiple output labels are indicated with a star;
we convert them into instances with binary output labels by distinguishing between the majority class
vs. all other classes. The instances vary in the number N of data points, the number m of categorical
features as well as, accordingly, the number k of slopes considered in the one-hot encoding of the
categorical features (cf. Section 2.1). All results are reported as means over 100 random training
set-test set splits (80%:20%). The radius ϵ ∈ {0, 10−5, . . . , 10−4, . . . , 1} of the Wasserstein ball
as well as the Lasso penalty γ ∈ {0, 1

2 · 10−5, . . . , 1
2 · 10−4, . . . , 1

2} are selected via 5-fold cross-
validation. We consider two variants of our DR logistic regression that employ a different output label
weight (κ = 1 vs. κ = m) in the ground metric (cf. Definition 2). The results are reported in Table 1.
(Run-times and are provided in Appendix D where we also describe how statistical significance was
assessed.) The table shows that for the unregularized model, the classical logistic regression achieves
the lowest classification error in 21% of the instances, whereas our DR logistic regression achieve
the lowest classification error in 36% and 79% of the instances for κ = 1, m, respectively. (The
double-counting of ties means these percentages do not sum to 100%.) For the regularized model,
the results change to 14% (classical logistic regression) vs. 57% (each of our models). Within the
numerical-feature Wasserstein DRO benchmarks, PI achieves the lowest classification error in 14%
of the instances, whereas MT achieves in 42% and 57% of the instances for κ = 1, m, respectively.
Globally, one of our methods is the winning approach in 12 out of 14 datasets (in the remaining 2
they are the second best approach without statistically significant inferiority). In 9 of the datasets
our methods win strictly (without a tie), and in 7 of these datasets the improvements are statistically
significant over all other approaches.

5 Conclusions

We proposed a new DR mixed-feature logistic regression model where the proximity between
the empirical distribution and the unknown true data-generating distribution is measured by the
popular Wasserstein distance. Despite its exponential-size formulation, we prove that the underlying
optimization problem can be solved in polynomial time, and we develop a practically efficient
column-and-constraint generation scheme for its solution. The promising performance of our model
is demonstrated in numerical experiments on standard benchmark instances. We note that our column-
and-constraint scheme readily extends to other DR mixed-feature machine learning models such
as linear regression, support vector machines and decision trees. Applying our algorithm in those
settings is a promising direction for future research. A further interesting direction is the development
of tailored solution schemes rather than using off-the-shelf solvers for solving our DR mixed-feature
logistic regression problem.
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Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] The abstract explains (i) the motivation for using
Wasserstein DR optimization in machine learning, (ii) recent successes of this approach
in logistic regression with numerical features and (iii) the lack of work on the mixed-
feature setting; these explanations are further elaborated upon in Section 1. This section
also provides a high-level summary of our contributions, which are in line with the
developments in the remainder of the paper.

(b) Did you describe the limitations of your work? [Yes] Our numerical results have been
conducted in an objective and reproducible way (choosing the most popular UCI data
sets), and our experiments include data sets where the standard logistic regression
outperforms our approach.

(c) Did you discuss any potential negative societal impacts of your work? [N/A] Our work
extends a well-known machine learning method (DR logistic regression) to a new but
well-known setting (presence of categorical features). In light of the ethics review
guidelines, we therefore believe that our work does not have any direct implications on
society beyond the ones that are already known.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes] We have carefully reviewed the ethics guideline on the NeurIPS 2022
conference webpage. We believe that our paper conforms to these guidelines.

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] All of our

lemmas and theorems state the full set of assumptions, with exception of the blanket
assumptions that are assumed to hold throughout the paper and that are clearly marked
as such.

(b) Did you include complete proofs of all theoretical results? [Yes] All proofs are included
in the appendix of the paper.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] All code, data
and instructions for our experimental results are published on GitHub. To maintain
anonymity during the review process, we did not provide a link until the camera-ready
version.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] The most important choices are described in the numerical section,
while some of the details are relegated to the appendix.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] The runtime results provide confidence regions across
multiple random runs, and we report error bars for all other experiments in the appendix.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] Information about the employed
CPU is provided in the numerical results section; details about the high-performance
cluster that we used are relegated to the appendix. Note that all experiments are run in
single-core mode.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We are citing UCI for

the data sets, MOSEK for the solution of the optimization problems as well as Julia
(and JuMP) for the implementation of the algorithms.

(b) Did you mention the license of the assets? [Yes] We mention the licenses of UCI,
MOSEK and Julia in the numerical results section.

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
All code, data and instructions for our experimental results are published on GitHub.
To maintain anonymity during the review process, we did not provide a link until the
camera-ready version.

13



(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A] We are using the most popular UCI machine learning data sets,
for which to our best knowledge consent has already been given.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] We are using the most popular UCI machine
learning data sets, for which to our best knowledge this issue has already been resolved.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A] Our research does not have any crowdsourcing or human subject
components.

(b) Did you describe any potential participant risks, with links to Institutional Review Board
(IRB) approvals, if applicable? [N/A] Our research does not have any crowdsourcing
or human subject components.

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A] Our research does not have any crowdsourc-
ing or human subject components.
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