
When Do Flat Minima Optimizers Work?

Jean Kaddour∗
Centre for Artificial Intelligence

University College London

Linqing Liu∗

Centre for Artificial Intelligence
University College London

Ricardo Silva
Department of Statistical Science

University College London

Matt J. Kusner
Centre for Artificial Intelligence

University College London

Abstract

Recently, flat-minima optimizers, which seek to find parameters in low-loss neigh-
borhoods, have been shown to improve a neural network’s generalization perfor-
mance over stochastic and adaptive gradient-based optimizers. Two methods have
received significant attention due to their scalability: 1. Stochastic Weight Aver-
aging (SWA), and 2. Sharpness-Aware Minimization (SAM). However, there has
been limited investigation into their properties and no systematic benchmarking of
them across different domains. We fill this gap here by comparing the loss surfaces
of the models trained with each method and through broad benchmarking across
computer vision, natural language processing, and graph representation learning
tasks. We discover several surprising findings from these results, which we hope
will help researchers further improve deep learning optimizers, and practitioners
identify the right optimizer for their problem.

1 Introduction

Stochastic gradient descent (SGD) methods are central to neural network optimization [6]. Recently,
one class of algorithms has focused on biasing SGD methods towards so-called ‘flat’ minima, which
are located in large weight space regions with very similar low loss values [43]. Theoretical and
empirical studies [21, 77, 9, 55, 49, 5, 12] postulate that such flatter regions generalize better than
sharper minima, e.g., due to the flat minimizer’s robustness against loss function shifts between
train and test data, as illustrated in Fig. 1. Two popular flat-minima optimization approaches are: 1.
Stochastic Weight Averaging (SWA) [48], and 2. Sharpness-Aware Minimization (SAM) [22].

While both strategies aim to find flatter minima, they operate much differently. On the one hand, SWA
is based on the intuition that, near a flat minimum, gradients are smaller, leaving many iterates in that
flat region. Therefore, averaging iterates will produce a solution that is pulled towards these flatter
regions, see Fig. 1, top. On the other hand, SAM minimizes the maximum loss around a neighborhood
of the current iterate. This way, a region around the iterate is designed to have uniformly low loss;
see Fig. 1, bottom. Crucially, SAM requires an additional forward/backward pass for each parameter
update, making it more expensive than SWA.

Despite the successes [76, 3, 51, 12, 4] of SWA and SAM in some domains, we are unaware of a
systematic comparison between them that would help practitioners to choose the right optimizer
for their problem and researchers to develop better optimizers. The SWA [48] paper was published
in 2018, and the SAM [22] paper in 2021; however, the SAM paper, and its most noticeable
follow-ups [65, 12, 103], do not compare against SWA. Further, there is very limited overlap in
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terms of the model architecture and dataset used in the experiments among both papers, which are
likely further confounded by other differences in the training procedures (e.g. data augmentations,
hyper-parameters, etc.).
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Figure 1: The mechanics behind
SWA and SAM, whose solution
is denoted by + and �, respec-
tively. SWA produces a solution
� that is pulled towards flatter re-
gions, while SAM approximates
sharpness within the parameters’
neighborhood (arrows).

Contributions

1. In-depth comparison of minima found by SWA and
SAM: We visualize linear interpolations between differ-
ent models and quantify the minimizers’ flatnesses. This
analysis yields 4 insights, e.g., despite SAM finding flatter
solutions than SWA as quantified by Hessian eigenvalues,
they can be close to sharp directions, a phenomenon that has
been overlooked in the previous SAM literature. Averaging
SAM iterates leads to the flattest among all minima.

2. Rigorous comparison of SWA and SAM’s performance
over 42 tasks: We empirically compare the optimizers with
a rigorous model selection procedure on a broad range of
tasks across different domains (CV, NLP, and GRL), model
types (MLPs, CNNs, Transformers) and tasks (classifica-
tion, self-supervised learning, open-domain question answer-
ing, natural language understanding, and node/graph/link
property prediction). We discuss 9 findings, e.g., that both
dataset and architecture impact their effectiveness, that for
NLP tasks, SAM improves over SWA in most cases, and
that the converse holds for GRL tasks. When flat-minima
optimizers do not help, we notice clear discrepancies be-
tween the shapes of loss and accuracy curves. To assist
future work, we open-source the code for all pipelines and
hyper-parameters to reproduce the results.

2 Background and Related Work

2.1 Stochastic Gradient Descent (SGD)

The classic optimization framework of machine learning is empirical risk minimization

L (�) =
1

N

NX
i=1

‘ (xi;�) (1)

where � 2 Rd is a vector of parameters, fx1; : : : ;xNg is a training set of inputs xn 2 RD, and
‘(x;�) is a loss function quantifying the performance of parameters � on x. SGD samples a
minibatch S � f1; : : : ; Ng of size jSj � N from the training set and updates the parameters through

�SGD
t+1 = �t � �g (�t) ; where g (�) =

1

jBj
X
i∈B
r‘ (�;xi) ; (2)

for a length specified by �, the learning rate.

2.2 Stochastic Weight Averaging (SWA)

The idea of averaging weights dates back to accelerating the convergence speed of SGD [78, 51].
SWA’s motivation is based on the following observation about SGD’s behavior when training neural
networks: it often traverses regions of the weight space that correspond to high-performing models
but rarely reaches the central points of this optimal set. Averaging the parameter values over iterations
moves the solution closer to the centroid of this space of points.

The SWA update rule is the cumulative moving average

�SWA
t+1  

�SWA
t � l + �SGD

t

l + 1
; (3)
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Algorithm 1 Stochastic Weight Averaging [48]

Input: Loss function L, training budget in
number of iterations b, training dataset D :=
[ni=1fxig, mini-batch size jBj, averaging start
epoch E, averaging frequency �, (scheduled)
learning rate �, initial weights �0.
for k  1; : : : ; b do

Sample a mini-batch B from D
Compute gradient g  rL (�t)
Update parameters �t+1  �t � �g
if k � E and mod(k; �) = 0 then
�SWA
t+1 =

�
�SWA
t � l + �SWA

t+1

�
= (l + 1)

end if
end for
return �SWA

Algorithm 2 Sharpness-Aware Minimization [22]

Input: Loss function L, training budget in
number of iterations b, training dataset D :=
[ni=1fxig, mini-batch size jBj, neighborhood
radius �, (scheduled) learning rate �, initial
weights �0.
for k  1; : : : ; b do

Sample a mini-batch B from D
Compute worst-case perturbationb� �

rL(�)
krL(�)k2

Compute gradient g  rL
�
�SAM
t +b��

Update parameters �SAM
t+1  �SAM

t � �g
end for
return �SAM

where l is the number of distinct parameters averaged so far and t is the SGD iteration number.2

SWA has two hyper-parameters: the update frequency � and starting epoch E. When using a constant
learning rate, Izmailov et al. [48] suggests updating the parameters once after each epoch, i.e.,
� � N

|B| , and starting at E � 0:75T , where T is the training budget required to train the model until
convergence with conventional SGD training.

He et al. [39] argue that SWA may always improve generalization, regardless of the loss function’s
geometry. Kaddour [51] show that averaging a specific range of weights can speed up training
convergence. Cha et al. [8] argue that tuning � and E carefully is necessary to make it work
effectively in domain generalization (DG) tasks. Besides DG tasks, a list of tuned hyper-parameters
based on a fair model selection procedure across different architectures and tasks has been missing in
the literature. To the best of our knowledge, Cha et al. [8] is the only study that compares SWA and
SAM over the same experiments, but it focuses on domain generalization tasks which we, therefore,
leave out in this work.

2.3 Sharpness-Aware Minimization (SAM)

While SWA is implicitly biased towards flat minima, SAM explicitly approximates the flatness around
parameters � to guide the parameter update. It first computes the worst-case perturbation � that
maximizes the loss within a given neighborhood �, then minimizes the loss w.r.t. the perturbed
weights � + �. Formally, SAM finds � by solving the minimax problem:

min
θ

max
||ϵ||2≤�

L(� + �); (4)

where � � 0 is a hyperparameter.

To find the worst-case perturbation �∗ efficiently in practice, Foret et al. [22] approximates Eq. (4)
via a first-order Taylor expansion of L(� + �) w.r.t. � around 0, obtaining

�∗ � arg max
∥ϵ∥2≤�

�⊤rθL(�) � � � rθL(�)

krθL(�)k| {z }
=:ϵ̂

: (5)

In words, b� is simply the scaled gradient of the loss function w.r.t to the current parameters �. Givenb�, the altered gradient used to update the current �t (in place of g(�t)) is

rθ max
||ϵ||2≤�

L(� + �) � rθL(�)jθ+ϵ̂:

Due to Eq. (5), SAM’s computational overhead consists of an additional forward and backward pass
per parameter update step compared to SWA and non-flat optimizers.

2SWA parameters are constant between averaging steps.
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SAM's performance strongly depends on the neighborhood radius� . For example, Chen et al.
[12], Wu et al.[93] show that� should be set to values outside the originally considered ranges by
Foret et al.[22]. Analogously to Sec. 2.2, this lack of coherence among hyper-parameter tuning
protocols in the SAM literature makes it tricky to determine SAM's comparative effectiveness.

2.4 Other Flat-Minima Optimizers

There are several extensions of SWA [36, 8] and SAM [65, 103, 101]. For simplicity, we do not
consider them in this work. Besides SWA and SAM, other �at-minima optimizers include e.g., [9, 84].
However, due to their computational cost and/or lack of performance gains, we do not include them
in this work. Chaudhari et al.[9] requires[5; 20] forward and backward passes per parameter update.
Sankar et al.[84] similarly requires[5; 10] forward and backward passes to estimate the Hessian trace
and6 of 7 experiments yield minimal improvement of� 0:27%, see Table 1 in Sankar et al.[84]. In
contrast, SWA and SAM have been shown to increase performance by multiple percentage points in
some cases [8, 12] while requiring fewer computational resources.

3 How do minima found by SWA and SAM differ?

In this section, we investigate SWA and SAM solutions in two prototypical deep learning tasks,
where these optimizers improve over the baseline. Our goal is to understand better their geometric
properties (instead of their generalization performance, which is the focus of Sec. 4).

First, we investigate the behavior of the loss landscape along the line between non-�at and �at
solutions (Sec. 3.1). Previous studies successfully used such linear interpolations to gain novel
insights, e.g., for training dynamics [32, 25], regularization [69, 28], and network pruning [26].
Second, motivated by �ndings in Sec. 3.1, we average SAM iterates and visualize interpolations
between averaged and non-averaged solutions (Sec. 3.2). Interestingly, the averaged SAM solution
is less susceptible to asymmetric directions. Third, we compare quantitative measurements of all
solutions' �atnesses (Sec. 3.3). Here, we compute dominant Hessian eigenvalues, as commonly used
in the �at minima literature [9, 98, 12, 22]. Lastly, in Appendix A.1, we further compute CKA [61]
and cosine similarities between SWA/SAM's network output logits.

We choose the following two disparate learning settings: (i) a well-known image classi�cation task,
widely used for evaluation in �at-minima optimizer papers, and (ii) a novel, challenging Python code
summarization task, on which state-of-the-art models achieve only around16%F1 score on the test
set (which ishigher than its commonly achieved accuracy on the more challenging training set),
and that has not been explored yet in the �at-minima literature. Speci�cally, for (i), we investigate
the loss/accuracy surfaces of a WideResNet28-10 [99] model on CIFAR-100 [63] (baseline non-�at
optimizer: SGD with momentum (SGD-M)) [83]. For (ii), we use the theoretically-grounded Graph
Isomorphism Network [95] model on OGB-Code2 [45] (baseline optimizer: Adam [56]).

All optimizers start from the same initialization. We denote the minimizer produced by the non-�at
methods (SGD-M and Adam) by� NF and the �at ones by� SWA and� SAM.

3.1 What is between non-�at and �at solutions?

We start by comparing the similarity of �at and non-�at minimizers through linear interpolations.
This analysis allows us to understand if they are in the same basin and how close they are to a region
of sharply-increasing loss, where we expect loss/accuracy to differ widely between train and test.
Further, for each of our four observations, we recommend a future work direction.

To linearly interpolate between two sets of parameters� and� 0, we parameterize the line connecting
these two by choosing a scalar parameter� and de�ning the weighted average� (� ) = (1 � � )� + � � 0.
If there exists no high-loss barrier between two networks� ; � 0 along the linear interpolation, we
say that they are located in the samebasin, i.e., f � ; � 0g 2 
 . [75, 102]. A basin is an area in the
parameter space where the loss function has relatively low values. Due to NN non-linearities, the
linear combination of the weights of two accurate models does not necessarily de�ne an accurate
model. Hence, we generally expect high-loss barriers along the linear interpolation path.

While there are alternative distance measures that could be used to compare two networks, they
typically either (a) do not offer clear interpretations, as pointed out by Frankle et al.[26], or (b) yield
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trivial network connectivity results, such asnon-linearlow-loss paths, which can be found for any
two network minimizers [20, 27, 33, 23].

Figure 2: Training (blue) and test (red) losses (—) and accuracies () of linear interpolations
� (� ) = (1 � � )� + � � 0 (for � 2 [� 1; 1:5]) between SWA (+ ) and SAM (� ) solutions (� = 0 :0)
and non-�at baseline solutions (� ; � = 1 :0).

Obs. 1: f � SWA; � NFg 2 
 NF. � SWA and� NF are in the same basin, as can be seen in Figures 2a and
2e. Additionally,� NF is near the periphery of a sharp increase in loss, as can be seen when moving
in the direction from� SWA to � NF (i.e., � > 1). Conversely,� SWA �nds �at regions that change
slowly in the loss. This bias of SWA to �atter loss bene�cially transfers to the accuracy landscape
too: Figures 2b and 2f show the accuracy/F1 score rapidly dropping off approaching and beyond� NF.
Interestingly, in Figures 2e and 2f, we see that for Code2, for� < 0, there exist solutions with even
better training loss/accuracy but worse test loss/accuracy. However,� SWA

GIN is close to the test accuracy
maximizer along this interpolation. Future work may inspect why the cross entropy loss function
used for GIN/Code2 seems less well correlated with its accuracy compared to WRN/CIFAR100.

Obs. 2: � SAM 2 
 SAM 6= 
 NF. � SAM and� NF are not in the same basin: Figures 2c and 2g show that
there is a high loss barrier between them, respectively. Figures 2d and 2h show that� SAM and even
nearby points in parameter space achieve higher accuracies/F1 scores (i.e., generalize better) than
� NF and points around it. This is an interesting result because we expect different basins to produce
qualitatively different predictions, one of the motivations behind combining models, even if they
exhibit different performances [46, 67]. Grewal & Bui [34] successfully combine models yielded
by different optimizers, and we think future work should study ensembling SAM and non-SAM
solutions.

Obs. 3: SAM �nds a saddle point. Figure 2g shows� SAM
GIN being located in a sharp training loss

minimum whose loss is much higher than� NF. Yet, its test loss is slightly higher, and its F1 score
is better. We visualize 2D plots moving along random directions (not shown here due to space) to
con�rm that � SAM

GIN is a saddle point (Appendix A.2). A common pathology among curvature-based
methods is that they attract saddle points [16]. Since SAM takes some form of curvature into account,
too, we believe that future work should investigate SAM's propensity to �nd saddle points and
potential remedies.

Obs. 4: � SAM is closer to sharper directions than� SWA, as can be seen byL tr/te(� SAM(0:1)) �
2 � L tr/te(� SAM(� 0:1)), while L tr/te(� SWA(0:1)) � L tr/te(� SWA(� 0:1)), whereL (�)tr/te refers to both
training and test loss functions. A possible explanation for SAM being closer to sharp sides is that
while it �nds different basins than SGD/SWA by smoothing the loss surface (as illustrated in Fig. 1),
within a local basin, it may oscillate around the minimizer similarly as SGD. One cause for this can
be that
 SAM's hypersphere is larger than SAM's radius� . If that holds, then given a small enough
learning rate, we expect it to oscillate around� � 2 
 SAM (the smaller the learning rate, the less
likely it escapes the basin due to that stochasticity). Two possible remedies are: (1) adapt/schedule
� , or (2) average SAM iterates to bias its solution towards the �atter side. (1) has been explored by
[103, 101]. We try (2) in the next subsection. Future work may study SAM's basin escape time, e.g.,
using convolutions [58] or stochastic differential equations [102].
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