
Appendix

A Gradient Descent and Neural Tangent Kernel

Gradient Descent Since we consider the square loss and `2 regularization, the optimization problem
in Equation 2.2 becomes

min
W

nX

i=1

(fW ,a(xi)� yi)
2 + µ kW k22 . (A.1)

We consider the GD training of Equation A.1. Let

�(W) =
nX

i=1

(fW ,a(xi)� yi)
2 + µ kW k22

be the objective function in Equation A.1. The gradient of � with respect to wr can be written as [38]

@�(W)

@wr
=

2p
m
ar

nX

i=1

(ui � yi)Ir,ixi + 2µwr, r 2 [m],

where ui = fW ,a(xi) and Ir,i = I{w>
r xi � 0}. Then the GD update rule is

wr(k + 1) = wr(k)� ⇣
@�(W)

@wr

����
W=W (k)

,

where W (k) is the weight matrix at iteration k, and ⇣ is the learning rate. Define Ir,i(k) =
I{wr(k)>xi � 0}, Z(k) 2 Rmd⇥n as

Z(k) =
1p
m

0

B@
a1I1,1(k)x1 . . . a1I1,n(k)xn

...
. . .

...
amIm,1(k)x1 . . . amIm,n(k)xn

1

CA ,

H(k) = Z(k)>Z(k), and u(k) = (u1(k), ...,un(k))> with ui(k) = fW (k),a(xi). Then the GD
update rule with respect to W can be written as

vec(W (k + 1)) =vec(W (k))� 2⇣
�
Z(k)(u(k)� y) + µvec(W (k))

�
, (A.2)

where vec(W) = (w>
1 , · · · ,w>

m)> 2 Rmd⇥1 is the vectorized weight matrix and y = (y1, ..., yn)>.

Neural Tangent Kernel (NTK) It has been shown that the following NTK

h(s, t) =Ew⇠N(0,Id)

�
s
>
t I{w>

s � 0,w>
t � 0}

�
=

s
>
t(⇡ � arccos(s>t))

2⇡
(A.3)

plays an important role in the study of one-hidden-layer ReLU neural networks, where s, t are
d-dimensional vectors [56, 40]. Since h is positive definite on the unit sphere Sd�1 [39], by Mercer’s
theorem, it possesses a Mercer decomposition as h(s, t) =

P1
j=0 �j'j(s)'j(t), where �1 � �2 �

... � 0 are the eigenvalues, and {'j}1j=1 is an orthonormal basis. The asymptotic behavior of the
eigenvalues is described in the following lemma.

Lemma A.1 (Lemma 3.1 of [40]). Let �j be the eigenvalues of NTK h defined above. Then we have
�j ⇣ j�

d
d�1 .

Let N denote the reproducing kernel Hilbert space (RKHS) generated by h on Sd�1, equipped with
norm k·kN . As a corollary of Lemma A.1, it can be shown that the (L1) entropy number of a unit
ball in N , denoted by N (1), can be controlled. The relationship between the eigenvalues and entropy
numbers has been well studied; see [57].

Lemma A.2. The entropy number of N (1), denoted by H(N (1), �, k·kL1
), is bounded by

H(N (1), �, k·kL1
) . ��2(d�1)/d.

1

There are extensive works studying the generalization error bounds under NTK regime. For regression,
[45, 40] show the optimal convergence rates when using overparameterized one-hidden-layer neural
networks, where the square loss is used. [38] provides generalization error bounds and provable
learning scenarios for noiseless data. In the NTK regime, the neural network as a regressor is linked
with the nonparametric regression via NTK. There are also other works studying the generalization
performance of the neural network as a nonparametric regressor, out of the NTK regime; see [58, 59].
For classification, most of the existing results are established based on the separable data; see
[28, 30, 60] and references therein. In particular, [29] consider classification with noisy labels
(labels are randomly flipped) and propose to use the square loss with `2 regularization. Besides the
generalization error bounds, another important research direction is to bridge the gap between NTK
and finite-width overparameterized neural networks via GD training; see [56, 38, 61, 40], among
others.

B Overview of Reproducing Kernel Hilbert Space

We provide here a brief overview of reproducing kernel Hilbert space (RKHS).

Definition B.1 (Positive Definite Kernel). A function k : ⌦⇥ ⌦ 7! R is said to be a positive definite

kernel, if k(x, ex) = k(ex,x) for all x, ex 2 ⌦, and
nX

i=1

nX

j=1

�i�jk(xi,xj) > 0,

for all n 2 N, �1, . . . ,�n 2 R such that at least one �j 6= 0, and x1, . . . ,xn 2 ⌦.

For a positive definite kernel k, define a linear space

N 0
k :=

(
nX

i=1

�ik(·,xi) : n 2 N, �1, . . . ,�n 2 R, x1, . . . ,xn 2 ⌦

)
,

and equip this space with an inner product h·, ·iN 0
k

by
*

nX

i=1

�ik(·,xi),
enX

j=1

e�jk(·, exi)

+

N 0
k

:=
nX

i=1

enX

j=1

�i
e�jk(xi, exj).

The norm of g 2 N 0
k is defined by kgk2N 0

k
:= hg, giN 0

k
. Then the RKHS induced by k, denoted by

Nk(⌦), is defined as the closure of N 0
k (⌦) with respect to the norm k·kN 0

k (⌦).

For a subset ⌦0 ⇢ ⌦, define the restriction of Nk on ⌦0 as

Nk(⌦0) := {g : ⌦0 7! R : g = h|⌦0 for some h 2 Nk} ,
where g = h|⌦0 means g(x) = h(x) for all x 2 ⌦0. We equip Nk(⌦0) with norm

kgkNk(⌦0)
:= inf

{h2Nk:h|⌦0=g}
khkNk

.

Then, Nk(⌦0) is a RKHS with norm k·kNk(⌦0)
(see Aronszajn 62, page 351).

C Simplex Coordinates

In simplex label coding, the one-hot labels are replaced by the simplex vertices of a (K � 1)-simplex.
The vertices of a regular (K � 1)-simplex centered on the origin can be written as:

v0 =
1p
2K

· (1, . . . , 1)

and for 1 i K � 1,

vi =
1p
2
ei �

1

(K � 1)
p
2

✓
1 +

1p
K

◆
· (1, . . . , 1).

2

The pairwise angle between vertices is arccos(�1/(K � 1)) and as K ! 1, the angle converges to
90�.

The vertices of a (K � 1)-simplex can be viewed as maximally separated K points on a sphere. In
theory, the radius of the sphere doesn’t matter but in practice, we recommend scaling it for larger
number of classes, e.g., radius = K for K-class classification. We find that such scaling empirically
outperforms the default radius 1 in our experiments. More details can be found in Appendix G.2.

D Assumptions

In this work, we impose the following assumptions. In the rest of the Appendix, we use
poly(t1, t2, . . .) to denote some polynomial function with arguments t1, t2,

Assumption D.1. Let �min(H1) be the minimum eigenvalue of the symmetric matrix H
1, where

H
1 = (h(xi,xj))n⇥n (H1 is usually called the NTK matrix). Let �0 be the largest number such

that with probability at least 1 � �n, �min(H1) � �0, and �n ! 0 as n goes to infinity4. For
sufficiently large n, the regularization parameter µ ⇣ n

d�1
2d�1 , the learning rate ⇣ = o(n� 3d�1

2d�1), the
variance of initialization ⇠2 = O(1), the number of nodes in the hidden layer m � ⇠�2poly(n,��1

0),
and the iteration number k satisfies log (poly1(n, ⇠, 1/�0)) . ⇣µk . log (poly2(⇠, 1/n,

p
m)) .

Assumption D.2. The conditional probability in the non-separable case satisfies ⌘ 2 N .

Assumption D.3. The solution to Equation 2.2 satisfies
��fW (k),a

��
N C, where C is a constant

not depending on n.

Remark 5. Assumption D.3 can be replaced by an alternative assumption, that is, fW (k),a has a
bounded Lipschitz constant, and the constant does not depend on n.

Assumption D.4. The probability density function of the marginal distribution PX , denoted by p(x),
is continuous on ⌦, and there exists a positive constant c0 such that

p(x) c0, 8x 2 ⌦.

Assumption D.5. The probability density function of the marginal distribution p(x) is continuous
on ⌦, and there exist positive constants c1 c2 such that

c1 p(x) c2, 8x 2 ⌦.

Assumption D.1 is related to the neural network and GD training, where similar settings have been
adopted by [38, 40]. From the results in [38, 40], the width of the neural network depends on the
minimum eigenvalue of the NTK matrix �min(H1), where a smaller �min(H1) leads to a wider
neural network. Therefore, it is desired that �0 is as large as possible. However, the consistency
requires that the probability is tending to one; thus, we require �n ! 0 as n ! 1. As n becomes
larger, with probability tending to one, the distance of the two nearest points in n input points
converges to zero, thus making H

1 close to a degenerate matrix, and the minimum eigenvalue of
H

1 converges to zero. Therefore, inevitably, �0 ! 0 (but �min(H1) is strictly larger than 0 for
all n with probability one). The requirements of the regularization parameter, the learning rate, the
variance of initialization, the number of nodes in the hidden layer and the iteration number are all the
same as those in [40].

Assumption D.2 imposes conditions on the underlying true conditional probability in the non-

separable case. This assumption basically requires that the conditional probability is within the
function class generated by the GD-trained neural networks we consider (thus can be calibrated).
Given that the neural networks are highly flexible, we believe that most of the functions are within
the function class generated by the neural networks.

Assumption D.3 is a technical assumption, which requires that the solution to Equation 2.2 is well-
behaved, i.e., the solution is within a ball in N with a certain radius. Roughly speaking, Assumption
D.3 requires that the complexity of the neural network estimator generated by the GD training
is controlled. Since the step size is relatively small and the iteration number is not large (only

4Potential dependency of �0 on n is suppressed for notational simplicity.

3

log(poly(n, ⇠, ,��1
0)), we believe it is a mild assumption. It is worth noting that although fW(k),a is

close to the solution of Equation E.1 under the L2 metric, we cannot confirm whether this closeness
still holds under a stronger RKHS metric. Therefore, even if the RKHS norm of the solution of
Equation E.1 is bounded, whether the RKHS norm of fW(k),a is bounded remains unknown. Thus,
we make it as an assumption, and leave it as a future work. Nevertheless, we point out that Theorem
3.1 does not depend on Assumption D.3.

Assumption D.4 only requires the probability to be upper bounded from infinity, while Assumption
D.5 requires the probability to be upper bounded from infinity and lower bounded away from zero
on the support ⌦. They are standard assumptions used in the classical analysis of classification in
statistics; see [21, 22] for example. Clearly, uniform distribution satisfies Assumptions D.4 and D.5.
In [21], Assumption D.4 is called mild density assumption and Assumption D.5 is called strong
density assumption.

E Proofs of Main Results

This section includes the proofs of main results in the paper.

E.1 Proof of Theorem 3.1

We first introduce some lemmas that are used in the proof of Theorem 3.1.

Let l1(yi, f(xi)) = (1� yif(xi))2 = (yi � f(xi))2 be the square loss on a training point (xi, yi),
the l1-risk of f be Rl1(f) = EX,Y⇠P l1(Y, f(X)), and Rl1 = minf2N EX,Y⇠P l1(Y, f(X)). Let
L1(f,x, y) = µ kfk2N + l1(y, f(x)) and the L1-risk of f be RL1(f) = EX,Y⇠PL1(f,X, Y). Let
fn = argminf2N RL1(f).

Lemma E.1 is (a weaker version of) Theorem 5.6 of [23], which provides a bound on the deviation
between the empirical minimizer and true minimizer. Lemma E.2 is used to verify that one of the
conditions of Lemma E.1 is fulfilled. Lemma E.3 shows that under certain conditions, the solution to

min
f2N

1

n

nX

i=1

(yi � f(xi))
2 +

µ

n
kfk2N (E.1)

is closely related to the estimator given by the overparameterized neural networks fW (k),a. Lemma
E.3 can be obtained by merely repeating the proof of Theorem 5.2 of [40], since we require that the
probability density function p(x) of PX is upper bounded by a positive constant by Assumption D.4.
Therefore, the only difference is that we replace k·k2 (which corresponds to the uniform distribution)
to the L2 norm corresponding to the probability measure PX ; thus the proof is omitted. Note also
that the second statement of Lemma E.3 corresponds to the noiseless case.

Lemma E.1. Let Z = ⌦⇥ {�1, 1}. Let F be a convex set of bounded measurable functions from
Z to R and let L : F ⇥ Z ! [0,1) be a convex and continuous loss function. For a probability
measure P on Z, define

G := {L � f � L � fP,F : f 2 F},

where fP,F is a minimizer of EZ⇠PL(f, Z). Suppose that there are constants c � 0, 0 < ↵ 1,
� 0 and B > 0 such that EZ⇠P g2 c(EZ⇠P g)↵ + � and ||g||1 B for all g 2 G. Furthermore,
assume that G is separable with respect to k·k1 and that there are constants a � 1 and 0 < ↵ < 2
with

sup
T2Zn

H(B�1G, ✏, k·kL2(T)) a✏�� (E.2)

for all ✏ > 0, where H(B�1G, ✏, k·kL2(T)) is the entropy number of the set B�1G, and kfk2L2(T) =
1
n

Pn
i=1 f(xi, yi)2 is the empirical norm. Then there exists a constant c� > 0 depending only on �

such that for all n � 1 and all t � 1 we have

P(T 2 Zn : RL,P (fT,F) > RL,P (fP,F) + c�"(n, a,B, c, �, t)) e�t,

4

where

"(n, a,B, c, �, t)

=B2�/(4�2↵+↵p)c(2��)/(4�2↵+↵�)
⇣a
n

⌘2/(4�2↵+↵�)
+B�/2�(2��)/4

⇣a
n

⌘1/2

+B
⇣a
n

⌘2/(2+�)
+

r
�t

n
+

✓
ct

n

◆1/(2�↵)

+
Bt

n
, (E.3)

and fT,F is the minimizer with respect to the empirical measure.

Lemma E.2. Assume the conditions of Theorem 3.1 hold. Define C := 8||(2⌘ � 1)�1||,1 + 32,
where k·k,1 is the norm of Lorentz space L,1 [63]. Let µ > 0 and 0 < � n1/2µ�1/2, then for
all f 2 �N (1) we have

EX,Y⇠P (L1 � f � L1 � fn)2 C(K� + 1)2(EX,Y⇠P (L1 � f � L1 � fn)) + 2C(K� + 1)2a(µ),

where a(µ) is the approximation error function given by

a(µ) = inf
f2N

(n�1µ||f ||2N +Rl1(f)�Rl1).

Lemma E.3. Suppose Assumptions D.1 and D.4 hold. Then we have

EX⇠PX (fW (k),a(X)� bf(X))2 = OP(n
� d

2d�1),

where bf is the solution to Equation E.1. Furthermore, if there exists a function f 2 N that does not
depend on n and f(xi) = yi for all i = 1, ..., n, then we can set µ = o(1) and obtain

EX⇠PX (fW (k),a(X)� bf(X))2 = oP(1).

Remark 6. According to the proof in [40], the probability in oP(1) of Lemma E.3 only relates to the
width of the one-hidden-layer neural network, which can be arbitrarily small by enlarging the neural
network’s width.

Now we are ready to prove Theorem 3.1. Let L = L1 in Lemma E.1, which is clearly continuous.
Let bf be the solution to Equation E.1. The key idea in this proof is using bf to bridge two functions
2⌘ � 1 and fW (k),a.

Since bf is the solution to Equation E.1, it can be seen that

1

n

nX

i=1

(yi � bf(xi))
2 +

µ

n

��� bf
���
2

N
 1

n

nX

i=1

(yi � (2⌘(xi)� 1))2 +
µ

n
k2⌘(xi)� 1k2N

 2

n

nX

i=1

(y2i + (2⌘(xi)� 1)2) +
µ

n
k2⌘(xi)� 1k2N

C1, (E.4)

where the second inequality is by the Cauchy-Schwarz inequality, and the third inequality is because
y2i = 1 and ⌘(x) is bounded.

The reproducing property implies that

bf(x) = h bf, h(x, ·)iN
��� bf
���
N
kh(x, ·)kN =

��� bf
���
N

p
h(x,x), 8x 2 ⌦,

which yields
��� bf
���
L1

 C2

��� bf
���
N
.

Together with Equation E.4, we obtain
��� bf
���
L1

 C3

��� bf
���
N

 C4(µ/n)
�1/2. (E.5)

5

Thus, we can take B = C4(µ/n)�1/2 in Lemma E.1. The entropy condition can be verified via
Lemma A.2, which allows us to take � = 2(d� 1)/d. Equation E.5, together with Lemma E.2, also
suggests that we can take c = C(KB + 1)2, ↵ = 1, and � = 2C(KB + 1)2a(µ).

Next, we provide an upper bound on a(µ). The definition of a(µ) implies

a(µ) =n�1µ kfnk2N +Rl1(fn)�Rl1

=n�1µ kfnk2N + EX⇠PX (2⌘(X)� 1� fn(X))2

n�1µ k2⌘ � 1k2N , (E.6)

where we use the relationship Rl1,P (f)�Rl1,P = EX⇠PX (2⌘(X)� 1� f(X))2.

Plugging all the terms into Equation E.3, together with Lemma E.1, yields that

RL1,P (bf) = RL1,P (fn) +OP("(n, a,B, c, �)), (E.7)

where

"(n, a,B, c, �) =B
4

2+� n� 2
2+� +B(µ/n)

2��
4 n� 1

2 k2⌘ � 1k
2��
2

N +B2n�1

=B
4d

4d�2n� 2d
4d�2 +Bµ

1
2dn� 1

2�
1
2d k2⌘ � 1k

1
d
N +B2n�1. (E.8)

Since Rl1,P (f) � Rl1,P = EX⇠PX (2⌘(X) � 1 � f(X))2, we subtract Rl1,P on both sides of
Equation E.7 and get

EX⇠PX (2⌘(X)� 1� bf(X))2 + n�1µ
��� bf
���
2

N

=EX⇠PX (2⌘(X)� 1� fn(X))2 + n�1µ kfnk2N +OP("(n, a,B, c, �))

=OP(n
�1µ k2⌘ � 1k2N + "(n, a,B, c, �)), (E.9)

where the last equality (with big O notation) is by Equation E.6. Combining Equation E.9 and
Equation E.5 implies

��� bf
���
2

L1
 C2

3

��� bf
���
2

N
= OP(1 + nµ�1"(n, a,B, c, �)).

In the following, we will show that by taking µ ⇣ n
d�1
2d�1 ,

EX⇠PX (2⌘(X)� 1� bf(X))2 + n�1µ
��� bf
���
2

N
= OP(n

� d
2d�1 max(1, k2⌘ � 1k

2
d
N)) = OP(n

� d
2d�1).

(E.10)

If nµ�1"(n, a,B, c, �) . 1, then "(n, a,B, c, �) . µ/n, and Equation E.10 holds. Otherwise, we
can replace B2 by its upper bound OP(nµ�1"(n, a,B, c, �)) in Equation E.8 and obtain that

" = OP("
d

2d�1µ� d
2d�1 + "

1
2µ� d�1

2d n� 1
2d k2⌘ � 1k

1
d
N),

where we set " = "(n, a,B, c, �) for notational simplicity. Let us hereby denote I1 = "
d

2d�1µ� d
2d�1

and I2 = "
1
2µ� d�1

2d n� 1
2d k2⌘ � 1k

1
d
N , and consider the following two cases.

Case 1: I1 � I2, then we have

" = OP("
d

2d�1µ� d
2d�1).

Solving this equality leads to

" = OP(µ
� d

d�1). (E.11)

Plugging Equation E.11 into Equation E.9 and minimize the right-hand side of Equation E.9 with
respect to µ gives us µ ⇣ n

d�1
2d�1 ; thus Equation E.10 holds.

Case 2: I1 < I2, then we have

" = OP("
1
2µ� d�1

2d n� 1
2d k2⌘ � 1k

1
d
N),

6

which leads to

" = OP(µ
� d�1

d n� 1
d k2⌘ � 1k

2
d
N). (E.12)

Similarly, we plug Equation E.12 into Equation E.9 and minimize the right-hand side of Equation E.9
with respect to µ and obtain µ ⇣ n

d�1
2d�1 , which also leads to Equation E.10.

Now we can obtain an upper bound on the excess risk. For the notation simplicity, let f = fW (k),a.
The excess risk can be bounded by

L(f)� L⇤ EX⇠PX I{(2⌘(X)� 1)f(X) 0, |⌘(X)� 0.5| < �}|2⌘(X)� 1|
+ EX⇠PX I{(2⌘(X)� 1)f(X) 0, |⌘(X)� 0.5| � �}|2⌘(X)� 1|. (E.13)

The first term can be bounded via Tsybakov’s noise condition as

EX⇠PX I{(2⌘(X)� 1)f(X) 0, |⌘(X)� 0.5| < �}|2⌘(X)� 1| 2�E[I{|⌘(X)� 0.5| < �}]
=2�P(|⌘(X)� 0.5| < �) 2C�+1. (E.14)

It remains to bound the second term in Equation E.13. If p(x) is continuous, then by the fact that
|2⌘(X)� 1| |2⌘(X)� 1� f(X)| if (2⌘(X)� 1)f(X) 0, we have

EX⇠PX I{(2⌘(X)� 1)f(X) 0, |⌘(X)� 0.5| � �}|2⌘(X)� 1|
2��1EX⇠PX I{(2⌘(X)� 1)f(X) 0, |⌘(X)� 0.5| � �}|2⌘(X)� 1|2

2��1EX⇠PX I{|⌘(X)� 0.5| � �}(2⌘(X)� 1� f(X))2

2��1EX⇠PX (2⌘(X)� 1� f(X))2

4��1EX⇠PX (2⌘(X)� 1� bf(X))2 + 4��1EX⇠PX (f(X)� bf(X))2

=OP(�
�1n� d

2d�1), (E.15)

where the fourth inequality is by the Cauchy-Schwarz inequality, and the last equality (with big O

notation) is by Equation E.10 and Lemma E.3. Taking � = n� d
(2d�1)(+2) , and plugging Equation E.14

and Equation E.15 into Equation E.13 leads to

L(f) = L? +OP(n
� d(+1)

(2d�1)(+2)).

This finishes the proof.

E.2 Proof of Theorem 3.2

We first present a lemma.

Lemma E.4. Suppose two sets are separable with a positive margin � > 0. Then there exists a
function fT satisfying

fT (x) = 1, 8x 2 ⌦1, fT (x) = �1, 8x 2 ⌦2.

Proof of Theorem 3.2. By the equivalence of the RKHS generated by the Laplace kernel and N
[46, 47], it can be shown that N can be embedded into the Sobolev space W ⌫

2 for some ⌫ > d/2.
Consider the Hölder space C0,↵

b for 0 < ↵ 1 equipped with the norm

kfkC0,↵
b

:= sup
x,x02⌦,x 6=x0

|f(x)� f(x0)|
kx� x0k↵2

. (E.16)

By the Sobolev embedding theorem, we have the embedding relationship

kfkC0,⌧
b

 C1 kfkW ⌫
2
 C2 kfkN (E.17)

for all f 2 N , where ⌧ = min(⌫ � d/2, 1).

Without loss of generality, let us consider x 2 ⌦1. The case of x 2 ⌦2 can be proved similarly.
For any x 2 ⌦1, take x

0 = argminxi
kxi � xk2. Thus, the definition of the Hölder space and

Equation E.17 imply

|fW (k),a(x)� fW (k),a(x
0)| C2

��fW (k),a

��
N kx0 � xk⌧2 C3 kx0 � xk⌧2 , (E.18)

7

where the last inequality is by Assumption D.3.

Let bf be the solution to Equation E.1, and let bf1 be the solution to Equation E.1 with µ = 0. Let

fT be as in Lemma E.4. Note that bf1 satisfies bf1(xi) = fT (xi). Thus, by the identity
��� bf1
���
2

N
+

��� bf1 � fT
���
2

N
=
��� bfT

���
2

N
[64], we have

��� bf1
���
N

 kfT kN . Since bf is the solution to Equation E.1, we
have

1

n

nX

i=1

(yi � bf(xi))
2 +

µ

n

��� bf
���
2

N
 1

n

nX

i=1

(yi � fT (xi))
2 +

µ

n
kfT k2N =

µ

n
kfT k2N , (E.19)

which implies
��� bf
���
N

 kfT kN , where we utilize yi = fT (xi) in the separable case.

Direct computation shows

fW (k),a(x
0) = bf1(x0)� (bf1(x0)� bf(x0))� (bf(x0)� fW (k),a(x

0))

=1� I1 � I2, (E.20)

where we use bf1(xi) = 1 for any xi 2 ⌦; thus bf1(x0) = 1.

By the representer theorem, bf and bf1 can be expressed as

bf1(x) = h(x,X)(H1 + µIn)
�1

y, bf(x) = h(x,X)(H1)�1
y,

where h(x,X) = (h(x,x1), ..., h(x,xn)) 2 R1⇥n, H
1 = (h(xi,xj))n⇥n, and y =

(y1, ..., yn)> = (fT (x1), ..., fT (xn))>. Thus, the first term I1 in Equation E.20 can be bounded by

|I1| =| bf1(x0)� bf(x0)| = |h(x0,X)(H1)�1
y � h(x0,X)(H1 + µIn)

�1
y|

=|µh(x0,X)(H1)�1(H1 + µIn)
�1

y|

µ
q

h(x0,X)(H1)�1(H1 + µIn)�1(H1)�1h(x0,X)>y>(H1 + µIn)�1y

=µ
q

h(x0,X)(H1)�1(H1 + µIn)�1(H1)�1h(x0,X)>
��� bf1
���
N

p
µ
q
h(x0,X)(H1)�2h(x0,X)> kfT kN =

p
µ kfT kN , (E.21)

where the first inequality is by the Cauchy-Schwarz inequality, the second inequality is because
(H1 + µIn)�1 � µ�1

In, and the last equality is because for any xi, (H1)�1h(xi,X)> = ei.
Therefore, I1 converges to zero as n ! 1 since µ = o(1). Specifically, there exists an n1 such that
when n � n1, |I1| 1/4.

The second term I2 in Equation E.20 can be bounded by

|I2|
��� bf � fW (k),a

���
1

 C4

��� bf � fW (k),a

���
d�1
d

N

��� bf � fW (k),a

���
1
d

2

C4(
��� bf
���
N

+
��fW (k),a

��
N)

d�1
d

��� bf � fW (k),a

���
1
d

2

C5

⇣
EX⇠PX (bf(X)� fW (k),a(X))2

⌘ 1
2d

, (E.22)

which converges to zero by Lemma E.3. In Equation E.22, the second inequality is by the interpolation
inequality, the third inequality is by the triangle inequality, and the last inequality is because of
Assumption D.5. Therefore, there exists an n2 such that when n � n2, with probability at least 1� �,
|I2| 1/4.

Take n0 = max(n1, n2). For n � n0, Equation E.20 gives us fW (k),a(x
0) � 1/2 with probability

at least 1� �. Therefore, by Equation E.18, as long as

kx0 � xk2 = min
xi

kxi � xk2 (4C3)
�1/⌧ := C6, 8x 2 ⌦1, (E.23)

we have fW (k),a(x) � 1/4 for all x 2 ⌦1, which implies that the missclassification rate is zero.

8

Let N(�,⌦1, k·k2) be the covering number of ⌦1 and N0 = N(C6/2,⌦1, k·k2). Since ⌦1 is compact
and C6 > 0, N0 is finite (and is a constant). Therefore, ⌦1 can be covered by N0 balls with radius
C6/2 (denoted by B), and as long as for each ball, there exists one point xj in this ball, Equation E.23
is satisfied. Since xk has a probability density function with lower bound c1, it remains to upper
bound the probability that there exists one ball such that there is no point in it. Define this event as A.
The union bound of probability implies that for n > n0,

P(A) N0

✓
1� c1V ol(B)

V ol(⌦1)

◆n

 N0 exp(�C7n),

where C7 = � log
⇣
1� c1V ol(B)

V ol(⌦1)

⌘
is a positive constant. Clearly, we can adjust the constants such

that the results in Theorem 3.2 holds for all n. This finishes the proof.

E.3 Proof of Theorem 3.3

Note that fW (k),a is a classifier, and the decision boundary is defined by DT := {x|fW (k),a(x) = 0}.
Take any point x0 in DT . The definition of the Hölder space and Equation E.17 imply

|fW (k),a(x)� fW (k),a(x
0)|

kx� x0k⌧2
 C2

��fW (k),a

��
N C3, 8x 2 ⌦, (E.24)

which is the same as

kx� x
0k⌧2 � |fW (k),a(x)|/C3, 8x 2 ⌦, (E.25)

where the last inequality in Equation E.24 is because of Assumption D.3. Therefore, it suffices to
provide a lower bound of |fW (k),a(x)|. Without loss of generality, let x 2 ⌦1, because the case
x 2 ⌦2 can be proved similarly. However, this has already been proved in the proof of Theorem 3.2,
where we showed that with probability at least 1� � � C4 exp(�C5n), fW (k),a(x) � 1/4 for all
x 2 ⌦1.

E.4 Proof of Theorem 3.4

By applying the interpolation inequality, the L1 norm of 2⌘ � 1� fW (k),a can be bounded by
��2⌘ � 1� fW (k),a

��
1 C0

��2⌘ � 1� fW (k),a

�� 1
d

2

��2⌘ � 1� fW (k),a

�� d�1
d

W ⌫

C1

��2⌘ � 1� fW (k),a

�� 1
d

2

��2⌘ � 1� fW (k),a

�� d�1
d

N

C2

��2⌘ � 1� fW (k),a

�� 1
d

2

�
k2⌘ � 1kN +

��fW (k),a

��
N
� d�1

d

C3

��2⌘ � 1� fW (k),a

�� 1
d

2

C4

�
EX⇠PX (2⌘(X)� 1� fW (k),a(X))2

� 1
2d = OP(n

� 1
4d�2) (E.26)

where the second equality is by the equvilance of the Sobolev space W ⌫ and the RKHS N ; the third
inequality is by the triangle inequality; the fourth inequality is by Assumptions D.2 and D.3; the fifth
inequality is because of Assumption D.5; and the last equality (with big O notation) is because of
Equation E.15. This finishes the proof.

E.5 Proof of Lemma 3.5

Let’s first consider the simplest d = 1 case where ⌦1 = {�} and ⌦2 = {��}. Let � denote the
standard normal N(0, 1) density. By injecting Gaussian noises N(0, �2), the induced conditional
probability can be written as

e⌘�(x) =
�(x��

�)

�(x��
�) + �(x+�

�)
=

1

1 + exp(� 2�x
�2)

.

For small enough 1/2 > t > 0, direct calculation yields {x 2 R : |2e⌘�(x) � 1| < t} = (�xt, xt)
where

xt =
�2

2�
log

✓
1 + t

1� t

◆
 2�2

�
t.

9

Hence,

PX(|2e⌘�(x)� 1| < t) = PX(�xt < x < xt) 2xt�((� + xt)/�)

 C�2

�
exp

✓
� �2

2�2

◆
· t.

In general cases, notice that Tsybakov’s noise condition measures the separation between classes.
Therefore, the bottleneck for the inequality is where ⌦1 and ⌦2 are the closest, i.e., where margin 2�
is attained. Let x+ 2 ⌦1 and x� 2 ⌦2 satisfy kx+ � x�k2 = 2� (which can be attained since ⌦ is
compact). Consider the delta distribution at x+ and x�, which is less separated than the original
distribution. Then, it reduces to the simplest case.

E.6 Proof of Theorem 3.6

A closer look at the proof of Theorem 3.1 reveals that the convergence rate depends polynomially
on the constant in Tsybakov’s noise condition. Specifically, it can be checked that ke⌘�kN =

O(poly(1/�)). Let D↵f := @|↵|

@x
↵1
1 ···x↵d

d

f denote the ↵-th (weak) derivative of a function f with |↵| =
↵1 + . . .+ ↵d for a multi-index ↵ = (↵1, · · · ,↵d) 2 Nd

0. The Sobolev embedding theorem implies
that ke⌘�kN is bounded by the

P
|↵|1 kD↵e⌘�kL2

, which is polynomial with 1/�. Furthermore, it
can be checked that µ converges to zero polynomially with � ! 0. Under Tsybakov’s noise condition,
the convergence rate can be obtained via the proof of Theorem 3.1 as

L(bf)� L⇤ = OP(C
1

+2n� d(+1)
(2d�1)(+2)) = OP

✓
poly

✓
1

�

◆
C

1
+2n� d(+1)

(2d�1)(+2)

◆
.

In the Gaussian noise injection case, if we choose � = �n = n�1/2, applying Lemma 3.5 yields

L(bf)� L⇤ = OP(e
�n�/6poly (n)) = OP(e

�n�/7).

E.7 Proof of Theorem 3.7

Direct computation implies that

f⇤
i (x) =

KX

j=1

⌘j(x)vji,

which implies

f⇤(x) = (v1, ...,vK)⌘(x), (E.27)

where vji is the i-th element of vj . Let V = (v1, ...,vK). Multiplying V
> on both sides of

Equation E.27 leads to

V
>f⇤(x) =V

>(v1, ...,vK)⌘(x) =

✓
K

K � 1
I � 1

K � 1
11>

◆
⌘(x)

=
K

K � 1
⌘(x)� 1

K � 1
11>⌘(x)

=
K

K � 1
⌘(x)� 1

K � 1
1, (E.28)

where 1 = (1, ..., 1)>. In Equation E.28, the second equality is because v
>
i vj = �1/(K � 1) if

i 6= j and v
>
i vi = 1; and the last equality is because

Pn
i=1 ⌘i(x) = 1. By Equation E.28, it can be

seen that

⌘j(x) =
(K � 1)v>

j f
⇤(x) + 1

K
,

which finishes the proof.

10

F Proof of Lemmas in the Appendix

F.1 Proof of Lemma E.2

We follow the approach in the proof of Lemma 6.1 and Proposition 6.3 in [23]. Note that fl,P = 2p�1
minimizes Rl,P . We first show that for all f 2 F and all ↵ � 0,

EX,Y⇠P (l1 � f � l1 � fl,P)2 C⌘,(kfk1 + 1)
2+4↵
+↵

��(2⌘ � 1)�1
�� ↵

+↵

q,1 EX,Y⇠P (l1 � f � l1 � fl,P)

+↵ ,

(F.1)

where C⌘, := ||(2⌘ � 1)�1||,1 + 4. In particular, one can take ↵ = 0 and obtain

EX,Y⇠P (l1 � f � l1 � fl,P)2 C⌘,(kfk1 + 1)2EX,Y⇠P (l1 � f � l1 � fl,P). (F.2)

Clearly, Tsybakov’s noise condition implies that
��(2⌘ � 1)�1

��
,1 exists. For x 2 ⌦, let p :=

P(Y = 1|x) and t := f(x). Without loss of generality, let p > 1/2. Additionally, we denote

v(p, t) =p (l(1, t)� l (1, fl,P (x)))
2 + (1� p) (l(�1, t)� l (�1, fl,P (x)))

2 ,

m(p, t) =p (l(1, t)� l (1, fl,P (x))) + (1� p) (l(�1, t)� l (�1, fl,P (x))) . (F.3)

Note fl,P = 2p � 1 implies l (1, fl,P (x)) = 4(p � 1)2 and l (�1, fl,P (x)) = 4p2. Plugging them
into Equation F.3, it can be checked that

m(p, t) =1 + t2 + 2(1� 2p)t� 4p(1� p) = (1 + t� 2p)2,

v(p, t) =(1 + t� 2p)2((t+ 1)2 + 12p� 4pt� 12p2).

By taking

↵ � log 4� log(12p� 12p2 � 4pt+ 2� (t� 1)2)

log |2p� 1| , (F.4)

it can be shown that

v(p, t)
✓
2t2 +

4

|2p� 1|↵

◆
m(p, t). (F.5)

Since

log 4� log(12p� 12p2 � 4pt+ 2� (t� 1)2)

log |2p� 1|
log 4� log(� 2

3 t
2 + 4)

log |2p� 1| 0,

it suffices to take ↵ � 0. We further define

g(y,x) := l(y, f(x))� l(y, fl,P (x)),

h1(x) := ⌘(x)g(1,x) + (1� ⌘(x))g(�1,x),

h2(x) := ⌘(x)g2(1,x) + (1� ⌘(x))g2(�1,x).

Therefore, Equation F.5 implies h2(x) (2 kfk21 + 4
|2⌘(x)�1|↵)h1(x) for all x with ⌘(x) 6= 1/2.

Hence, we obtain

EX,Y⇠P g
2 =

Z

{x||2⌘(x)�1|�1<t}
h2(x)dPX +

Z

{x|1>|2⌘(x)�1|�1�t}
h2(x)dPX

(2 kfk21 + 4t↵)

Z

{x||2⌘(x)�1|�1<t}
h1(x)dPX +

Z

{x|1>|2⌘(x)�1|�1�t}
(kfk1 + 1)4dPX

4(kfk21 + t↵)EX,Y⇠P g + (kfk1 + 1)4
��(2⌘ � 1)�1

��
q,1 t�

4t↵(kfk1 + 1)2EX,Y⇠P g + (kfk1 + 1)4
��(2⌘ � 1)�1

��
q,1 t�

4t↵(kfk1 + 1)2EX,Y⇠P g + (kfk1 + 1)4
��(2⌘ � 1)�1

��
,1 t�

C⌘,(kfk1 + 1)
2+4↵
+↵

��(2⌘ � 1)�1
�� ↵

+↵

,1 EX,Y⇠P g

+↵ ,

11

where the last equality is implied by taking t+↵ := (||f ||1 + 1)2(EX,Y⇠P g)�1. This shows
Equation F.1 holds.

Based on Equation F.1, we can show that Lemma E.1 holds. To see this, let bC := (K� +
1)(2+4↵)/(+↵) and fix an f 2 �BN . The term EX,Y⇠P (L1 � f � L1 � fn)2 can be bounded
by

EX,Y⇠P (L1 � f � L1 � fn)2

2µ2n�2||f ||4 + 2µ2n�2||fn||4 + 2EX,Y⇠P (l1 � f � l1 � fn)2

4EX,Y⇠P (l1 � f � l1 � fl,P)2 + 4EX,Y⇠P (l1 � fl,P � l1 � fn)2 + 2µ2n�2||f ||4 + 2µ2n�2||fn||
8C⌘,

bC(EX,Y⇠P (l1 � f � l1 � fl,P) + EX,Y⇠P (l � fn � l � fl,P))/(+↵) + 2µ2n�2||f ||4 + 2µ2||fn||4

C bC(EX,Y⇠P (l � f � l � fl,P) + EX,Y⇠P (l � fn � l � fl,P) + µ2n�2||f ||4 + µ2n�2||fn||4)/(+↵)

C bC(EX,Y⇠P (L1 � f � L1 � fn) + 2EX,Y⇠P (l � fn � l � fl,P) + 2µn�1||fn||2)/(+↵)

C bC(EX,Y⇠P (L1 � f � L1 � fn))/(+↵) + 2C bCa/(+↵)(µ). (F.6)

In Equation F.6 the first and second inequalities is because of the Cauchy-Schwarz inequality; the
third inequality is because of Equation F.1 and ap + bp < 2(a+ b)p for all a, b � 0, 0 < p 1; the
fourth inequality follows from ap + bp < 2(a+ b)p for all a, b � 0, 0 < p 1; the fifth inequality is
because n�1µ||f ||2 1 and n�1µ||fn||2 1; the last inequality follows (a+ b)p < ap + bp for all
a, b � 0, 0 < p 1. This finishes the proof of Lemma E.1.

F.2 Proof of Lemma E.4

Since there is a positive margin between ⌦1 and ⌦2, we can always find two sets e⌦1 and e⌦2 with
infinitely smooth boundaries such that ⌦1 ⇢ e⌦1, and ⌦2 ⇢ e⌦2. Then the result follows from the
Sobolev extension theorem.

G Appendix for Detailed Experiments

G.1 Synthetic Data

We consider the square loss based and cross-entropy based overparameterized neural networks (ONN)
with `2 regularization, denoted as SL-ONN + `2 and CE-ONN + `2, respectively. The chosen ONNs
are two-hidden-layer ReLU neural networks with 500 neurons for each layer, and the parameter µ
is selected via a validation set. During the neural network training, we use the popular RMSProp
optimizer with the default settings, and select the tuning parameter µ for SL-ONN + `2 and CE-ONN
+ `2 by a validation set.

Figure G.3: The errorbar plot of validation misclassification rate with respect to different µ in the
separable case.

12

Separable case In the separable case, we consider a two-dimension distribution P = (⇢ sin ✓ +

0.04, ⇢ cos ✓) where ⇢ = (✓/4⇡)4/5 + ✏ with selected ✓ from (0, 4⇡] and ✏ ⇠ unif([�0.03, 0.03]).
We draw 100 positive and 100 negative training samples from �P and P , respectively. We select the
tuning parameter µ for SL-ONN + `2 and CE-ONN + `2 by minimizing the validation misclassification
rate, where the candidate set of µ is {0, 0.001, 0.01, 0.1, 1}. For each µ, we generate 40 replications
to estimate the mean and standard deviation of validation misclassification rate. We observe that
SL-ONN + `2 and CE-ONN + `2 have the least mean and least standard deviation for the validation
misclassification rate at µ = 0.1 and µ = 0.01, respectively. The errorbar plot for each µ is shown in
Figure G.3.

Figure G.4: An instance about the training process of SL-ONN + `2 (Left), CE-ONN + `2 (Center) and
CE-ONN (Right) in the separable case.

We also consider the cross-entropy loss based ONN without `2 regularization (CE-ONN). All three
models are trained for 10000 iterations and achieve 0% training misclassification rate. In Figure
G.5, we present five more examples about the decision boundary prediction and test accuracy of
SL-ONN + `2, CE-ONN + `2 and CE-ONN. We can find that SL-ONN + `2 still beats CE-ONN + `2
and CE-ONN in almost all the cases. SL-ONN + `2 attains the smallest misclassification rate and
depicts the largest margin decision boundary which separates the positive and negative samples best.
In addition, we can observe that CE-ONN + `2 outperforms CE-ONN in all cases, although the `2
regularization term bring some oscillations to the training of CE-ONN + `2, as shown in Figure G.4.

For providing concrete numerical verification, we also conduct an experiment to compare the margins
of decision boundaries trained by the square loss, as shown in Figure G.7. Moreover, Figure G.7 also
presents the margin of the decision boundary predicted by the cross entropy with adversarial training,
where we adapt the PGD attack with the attack strength level 0.05. It is obvious that the margins
of square loss is larger than that of cross entropy, and is comparable to that of cross entropy with
adversarial training. Meanwhile, the decision boundary of cross entropy with adversarial training is
more smooth than that of cross entropy. We note that hereby the decision boundary of cross entropy
with adversarial training can be regarded as the optimal decision boundary. Hence, Figure G.7 verifies
the robustness of the square loss and demonstrates that the decision boundary predicted by square
loss is closer to the optimal one.

Non-separable case We consider the conditional probability ⌘(x) = sin(
p
2⇡||x||2),x 2 [�1, 1]2,

and the calibration performance of SL-ONN + `2 and CE-ONN + `2, where the classifiers are
denoted by bfl2 and bfce, respectively. The training data points x1, · · · ,xn are i.i.d. sampled from
unif([�1, 1]2) and the training labels y1, · · · , yn are sampled according to Bernoulli(⌘(xi)), where
⌘(x) = sin(

p
2⇡||x||2), and n = 8000. The 3-dimensional plot of ⌘(x) is presented in Figure G.6.

We select the tuning parameter µ for SL-ONN + `2 and CE-ONN + `2 via a validation set, and the
candidate set of µ is {0, 0.001, 0.01, 0.1, 1}. For each µ, we run 40 replications to estimate the mean
and standard deviation of validation misclassification rate. The iteration number of training is 2000.
We find SL-ONN + `2 and CE-ONN + `2 have the smallest mean and standard deviation for the
validation misclassification rate at µ = 0.1 and µ = 0.1, respectively. The error bar plot 5 for µ
equaling to 0, 0.001, 0.01, 0.1 and 1 is shown in Figure G.8.

The calibration error results are presented in Figure G.9. The error bar plot of the test calibration
error shows that bfl2 has the smaller mean and standard deviation than bfce. It suggests that square

5In an error bar plot, the center of each plot is the mean, and the upper and lower red dashes denote
(mean+one standard deviation) and (mean � one standard deviation), respectively.

13

Figure G.5: Five examples in the separable case.

14

Figure G.6: The 3-dimensional plot of ⌘(x) in the non-separable case.

Figure G.7: Test misclassification rates, decision boundaries and margins predicted by: SL-ONN +
`2 (Left); CE-ONN + `2 (Center); CE-ONN with adversarial training in the separable case.

Figure G.8: The errorbar plot of validation misclassification rate with respect to different µ in the
non-separable case.

15

loss generally outperforms cross entropy in calibration. The histogram and kernel density estimation
of the test calibration errors for one case show that the pointwise calibration errors on the test
points of bfl2 are more concentrated around zero than those of bfce. Moreover, despite a comparable
misclassification rate with bfce, bfl2 has a smaller calibration error. Figure G.9 demonstrates that
SL-ONN + `2 recovers ⌘ much better than CE-ONN + `2.

Figure G.9: (Left) The error bar plot of test calibration errors for the 40 replicated runs. (Right)
The histogram and kernel density estimation of test calibration errors in one instance from 40
replications. In this instance, ||(bfl2 + 1)/2� ⌘||L1 = 0.188, ||(bfce + 1)/2� ⌘||L1 = 0.287, and the
test misclassification rate for bfl2 and bfce are 0.167 and 0.164, respectively.

G.2 Real Data

Data and network architecture We use the popular CIFAR-10 and CIFAR-100 datasets, with
training and testing split of 50000 and 10000. The data loader is from torch.utils.data. As
typically employed in practice, our training includes data augmentations, a composition of random
crop and horizontal flip. We trained two types of neural networks, ResNet [50] and Wide ResNet [51].
To be more specific, we used the default ResNet-18 and ResNet-50 for CIFAR-10 and CIFAR-100
respectively, and the default WRN-16-10 for both CIFAR-10 and CIFAR-100. All experiments are
run in PyTorch version 1.9.0 and cuda 10.2.

Training details The training algorithm is the default SGD with momentum (0.9) and weight decay
(0.0005). The learning rate scheduler is the StepLR() from torch.optim.lr_scheduler with
step size 50. In our experiment, the only parameters that we tuned are the learning rate (lr) and batch
size (bs), with only two options, (lr=0.01, bs=32) and (lr=0.1, bs=128). We find that (lr=0.01, bs=32)
performs better for most cases except for square loss trained WRN-16-10 on CIFAR-100, where the
average accuracy for (lr=0.01, bs=32) is 77.96%, around 1.5% less than that for (lr=0.1, bs=128).
Meanwhile, for cross-entropy trained WRN-16-10, (lr=0.1, bs=128) yields an average accuracy of
76.83%, around 1% less than that for (lr=0.01, bs=32). The two training settings perform quite
comparable for WRN-16-10 on CIFAR-10. For consistency, we stick with (lr=0.01, bs=32) in this
case.

Adversarial robustness For square loss, training deep classifiers is the same as regression. When
attacking classifiers trained with square loss, the default way of constructing adversarial examples
doesn’t work well. To be more specific, for a correctly classified training image (x, y), the adversarial
examples are typically generated by

max
k�k1=↵

L(f(x+ �), y).

Such an attacking scheme works fine for cross-entropy, where

L(f(x), y) = � log(softmax(f(x))) = � log

exp(fy(x))P
k 6=y exp(fk(x))

!
,

but is problematic for regression losses such as square loss. The fundamental reason lies in Proposition
3.7 and its proof. Recall that the conditional probability for square loss consists of projections of

16

the classifier outputs to all the simplex vertices, some of which are sure to be non-positive. The sum
of the class probabilities from Equation 3.2 is always 1 but unlike that from softmax function, the
summand can be negative. By maximizing the square loss, the resulting “adversarial" image can stay
the same class but more confidently. To illustrate, if f(x) = vy , the predicted confidence for label y
will be 100% and 0 for other classes. The “adversarial" image may be such that f(x + �) = 2vy,
where the predicted label remains unchanged but with an updated confidence of 2� 1/K for label y
and (1/K � 1)/(K � 1) < 0 for all other classes. This is obviously not a successful attack.

To this end, we devise a special attacking scheme for classifier trained with square loss and simplex
coding. The key idea is to choose attack directions tangent to the sphere inscribed by the simplex.
Instead of

L(f(x), y) = kf(x)� vyk22 ,
we choose

L(f(x), y) = ✓(f(x),vy),
where ✓(v1,v2) denotes the cosine similarity between v1 and v2. We refer to this attack as angle
attack.

Empirically, we found our angle attack to significantly outperform the naive attack by maximizing
the square loss. For square loss, let the predicted probabilities from Equation 3.2 be bp. Similar to
cross entropy, we have also tried two cases of L(f(x), y), which corresponds to

L1(f(x), y) = � log(softmax(bpy(x))) and L2(f(x), y) = � log(bpy(x)).
Interestingly for PGD-100, L1 performs the best, beating angle attack for the majority cases, except
for attacking WRN-16-10 on CIFAR-100 with strength 2/255. The reported adversarial accuracy for
square loss trained classifiers in Table 1 is by L1(f(x), y) = � log(softmax(bpy(x))).
The PGD attack results may be further improved for square loss. Nonetheless, the AutoAttack
still provides convincing results, as it includes both white-box and black-box attacks. We used the
standard version which includes 4 types of attacks, APGD-CE, APGD-DLR, FAB and Square Attack
as in [54].

Robustness to Gaussian Noise To make the robustness evaluation more comprehensive, beyond
the adversarial robustness, we also investigate the classifier’s robustness to Gaussian noise injections.
With the image pixels’ value normalized to 0 and 1, we consider injecting Gaussian noises to test
images and report the test accuracy. The noise standard deviation ranges from 0.1 to 0.4. The test
accuracy results for both CIFAR-10 and CIFAR-100 are listed in Table G.3.

Table G.3: Black-box Gaussian noise robustness results. The reported accuracy is the average of 5
replications.

Dataset Network Loss
Gaussian noise standard deviation

0.00 0.10 0.20 0.30 0.40

CIFAR-10
ResNet-18

SL 95.04 90.07 70.16 42.13 25.38
CE 95.15 90.03 69.71 41.08 24.66

WRN-16-10
SL 95.02 88.49 60.91 35.78 24.04
CE 93.94 84.78 56.63 33.70 22.41

CIFAR-100
ResNet-50

SL 78.91 63.06 36.64 17.78 9.47
CE 79.82 62.72 34.42 16.69 9.11

WRN-16-10
SL 79.65 62.01 30.69 15.11 8.88
CE 77.89 60.14 26.47 10.26 5.57

Simplex coding vs. one-hot coding The one-hot coding is the usual choice for applying square
loss to classification. However, it is empirically observed to struggle when the number of classes are
large. For a single training data point x and label k, [4] proposed to modify the training objective
from the typical (fk(x)� 1)2 +

P
i 6=k fi(x)

2 to J · (fk(x)�M)2 +
P

i 6=k fi(x)
2, where J,M are

hyperparameters to make fk more prominent in the loss. Similar modification is also proposed in
[7]. The scaling trick involves two hyperparameters, which can be hard to tune. We evaluate the
two coding schemes in our experiment setting and the results are summarized in Table G.4. The test
accuracy for scaled one-hot coding scheme performs comparably for ResNet-18 on CIFAR-10 and
ResNet-50 on CIFAR-100. For WRN-16-10, the simplex coding performs better.

17

Table G.4: Test accuracy for square loss with one-hot coding (scaled) (OC) vs. simplex coding (SC).
Accuracy with an asteroid sign (⇤) denotes cases where the training accuracy doesn’t overfit after 200
training epochs.

Dataset Network One-hot scaling SGD parameters OC clean acc(%) SC clean acc(%)

CIFAR-10
ResNet-18 k=1, M=1

lr=0.01, bs=32 94.95 95.04
lr=0.1, bs=128 10⇤ 10⇤

WRN-16-10 k=1,M =1
lr=0.01, bs=32 89.75⇤ 95.02
lr=0.1, bs=128 88.43⇤ 95.03

CIFAR-100
ResNet-50 k=5, M=15

lr=0.01, bs=32 79.06 78.91
lr=0.1, bs=128 1⇤ 1⇤

WRN-16-10 k=5, M=15
lr=0.01, bs=32 78.42 78.06
lr=0.1, bs=128 78.39 79.65

18

	Introduction
	Preliminaries
	Theoretical results
	Generalization error bound
	Robustness and calibration error
	Transition from separable to non-separable
	Multiclass Classification

	Numerical experiments
	Synthetic data
	Real data

	Conclusions
	Acknowledgements
	Gradient Descent and Neural Tangent Kernel
	Overview of Reproducing Kernel Hilbert Space
	Simplex Coordinates
	Assumptions
	Proofs of Main Results
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	Proof of Theorem 3.3
	Proof of Theorem 3.4
	Proof of Lemma 3.5
	Proof of Theorem 3.6
	Proof of Theorem 3.7

	Proof of Lemmas in the Appendix
	Proof of Lemma E.2
	Proof of Lemma E.4

	Appendix for Detailed Experiments
	Synthetic Data
	Real Data

