Supplementary Material for
Self-Supervised Visual Representation Learning
with Semantic Grouping

Xin Wen' Bingchen Zhao?® Anlin Zheng!'* Xiangyu Zhang* Xiaojuan Qi'
!University of Hong Kong 2University of Edinburgh 2LunarAl *MEGVII Technology

{wenxin, xjqi}@eee.hku.hk zhaobc.gm@gmail.com
{zhenganlin, zhangxiangyu}@megvii.com

Contents

A Additional implementation details
A.l Inverse augmentationo e
A2 Transferlearning
A.2.1 Object detection and instance segmentation
A.2.2 Semantic segmentationl
A.3 Unsupervised semantic segmentation,
A4 Visual conceptdiscovery

A.5 Re-implementing related works oL oL

B Additional transfer learning results
B.1 LongerCOCOschedule.

B.2 Pre-training with autonomous drivingdata L.
C Additional ablation studies
D Statistics about the binary indicator
E Computational costs
F Additional qualitative results
G Limitations and negative social impacts

H License of used datasets

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

W W NN NN DN

()

A Additional implementation details

A.1 Inverse augmentation

The inverse augmentation process aims to recover the original pixel locations and ensure the two
feature maps produced from two augmented views are spatially aligned after inverse augmentation.
There are two operations in our data augmentation pipeline that changes the scale or layout of the
image, i.e., random resized crop and random horizontal flip. Since we already know the spatial
coordinates where each view is cropped from, we can map the coordinates to the corresponding
feature maps and cut the rectangular part from the feature map where the two sets of coordinates
intersect. This is followed by a resize operation to recover the intersect part to the original size (e.g.,
7 7 fora224 224 input). In implementation, we achieve this through RolAlign [10]. If the
horizontal flip operation is applied to produce the view, we also use a horizontal flip operation after
RolAlign to recover the original spatial layout. After the inverse augmentation, each pixel in the two
feature maps is spatial-aligned, making applying the per-pixel cross-entropy loss easy.

A.2 Transfer learning

A.2.1 Object detection and instance segmentation

We train a Mask R-CNN [10] model with R50-FPN backbone [17] implemented with the open-source
project Detectron2 [24], following the same fine-tuning setup with [22, 26, 25]. Specifically, we use
a batch size of 16, and fine-tune for 90K iterations (standard 1 schedule) with batch normalization
layers synchronized. The learning rate is initialized as 0:02 with a linear warm-up for 1000 iterations,
and decayed by 0:1 at 60k and 80K iterations. The image scale is [640; 800] during training and 800
at inference. We fine-tune all layers end-to-end on COCO [18] train2017 set with the standard 1
schedule and report AP, AP35y, AP75 on the val2017 set.

A.2.2 Semantic segmentation

Cityscapes and PASCAL VOC. We strictly follow [9] for transfer learning on these two datasets.
Specifically, we use the same fully-convolutional network (FCN)-based [20] architecture as [9]. The
backbone consists of the convolutional layers in ResNet-50, in which the 3 3 convolutions in conv5
blocks have dilation 2 and stride 1. This is followed by two extra 3 3 convolutions of 256 channels
(dilation set to 6), with batch normalization and ReLU activations, and thena 1l 1 convolution for
per-pixel classification. The total stride is 16 (FCN-16s [20]).

Training is performed with random scaling (by a ratio in [0:5; 2:0]), cropping, and horizontal flipping.
The crop size is 513 on PASCAL VOC [6] and 769 on Cityscapes [4], and inference is performed
on the original image size. We train with batch size 16 and weight decay 0:0001. The learning rate
is 0:003 on VOC and is 0:01 on Cityscapes (multiplied by 0:1 at the 70th and 90th percentile of
training). For PASCAL VOC, we fine-tune the model on train_aug2012 set for 30k iterations and
report the mean intersection over union (mloU) on the val2012 set. For Cityscapes, we fine-tune on
the train_fine set for 90K iterations and evaluate it on the val_fine set.

ADE20K. For ADE20K [28], we train with a FCN-8s [20] model on the train set and evalu-
ate on the val set, and the optimization specifics follows the standard 80K iterations schedule of
MMSegmentation [3]. Specifically, we fine-tune for 80Kk iterations with stochastic gradient descent,
with a batch size of 16 and weight decay of 0:0005. The learning rate is 0:01 and decays following
the poly schedule with power of 0:9 and min_Ir of 0:0001.

A.3 Unsupervised semantic segmentation

Experiment setting. We follow the common practice in this field [14, 13, 12] to use a modified
version of COCO-Stuff [1], where the labels are merged into 27 categories (15 "stuff" categories
and 12 "thing" categories). We perform inference with resolution 320 and number of prototypes 27
following the common practice, and evaluate on mloU and pixel accuracy (pAcc).

Inference details. Intuitively, each prototype can be viewed as the cluster center of a semantic class.
Therefore, we simply adopt the prototypes S 2 RX P asal 1 convolution layer for per-pixel

classification, and predict the prototypical correspondence of each pixel with the argmax operation.
¢ = argmax (resize (2 §>)) 2z W (1)
K

where the resize operation denotes bi-linear interpolation on the logits to the size of the image
(320 320 in this case). To match the prototypes with the ground truth clusters, we follow the
standard protocol [14, 13] of finding the best one-to-one permutation mapping using Hungarian-
matching [16]. Then the pAcc and mloU are calculated according to the common practice [13].
During inference, we only take the teacher model parameterized by .

A.4 Visual concept discovery

Simply speaking, the visual concept discovery is similar to the semantic segment retrieval task [21],
except that the queries are prototypes rather than segments. Specifically, we adopt the COCO
val2017 set, consisting of 5k images, and the default model trained on COCO with the number of
prototypes K = 256. Each image is first resized to 256 pixels along the shorter side, after which a
224 224 center crop is applied. We then follow Eq. 1 to assign a prototype index to each pixel;
thus, each image is split into a set of groups, such that the pixels within each group hold the same
prototypical assignments. We rephrase the groups as segments, and compute the feature vector
for each segment by average pooling. Then for each prototype, we calculate the cosine similarity
between it and all segments in the dataset assigned to this prototype and retrieve those with top-k
high similarity scores.

A.5 Re-implementing related works

Some current works may differ in implementation details for downstream tasks (e.g., SoCo [23] uses
different hyper-parameters for COCO object detection and instance segmentation, DetCon [11] uses
different hyper-parameters for semantic segmentation, and DenseCL [22] adopts different network
architectures for semantic segmentation). For a fair comparison, we re-produced the transfer learning
results with a unified setting with the official checkpoints and re-implement the pre-training with the
official code if needed.

B Additional transfer learning results

B.1 Longer COCO schedule

Table 1: Additional transfer learning results with COCO 800 epochs pre-training. We report the
results in COCO object detection and COCO instance segmentation with both 1 and 2 schedules.

COCO detection COCO segmentation
b b b m m m
AP’ AP:, AP;5; AP" AP;, APy

SlotCon 1 (90K iterations) 41.0 61.1 450 370 583 398
SlotCon 2 (180K iterations) 426 6277 462 382 596 410

Method Transfer learning schedule

In Table 1, we further provide the downstream results of SlotCon in COCO object detection and
instance segmentation with a longer transfer learning schedule (2). Compared with the results with
the 1 schedule, it shows significant improvements in all metrics.

B.2 Pre-training with autonomous driving data

In Table 2, we show the results with BDD100OK [27] pre-training and evaluated on Cityscapes
semantic segmentation. The model is trained on BDD100K for 800 epochs with 64 prototypes. The
result is notably weaker than its COCO counterpart, yet still surpasses MoCo v2 pre-trained on COCO.
The BDD100K dataset is indeed challenging for pre-training as its images are less discriminative, and
the task of pre-training on autonomous driving data is a valuable direction for future explorations.

Table 2: Transfer learning results with BDD100K pre-training.

Pre-train Data Method Cityscapes mloU
- Random init. 65.3
COCO MoCo v2 73.8
COCO SlotCon 76.2
BDDI100K SlotCon 73.9

C Additional ablation studies

Table 3: Ablation studies with COCO 800 epochs pre-training. We show the AP® on COCO
objection detection and mIoU on Cityscapes, PASCAL VOC, and ADE20K semantic segmentation.
The default options are marked with a gray background.

(a) Batch size (b) Type of group-level loss (c) Where to apply invaug?
B COCO City VOC ADE Loss COCO City VOC ADE Align COCO City VOC ADE

256 40.6 759 709 38.1 Reg. 40.7 759 710 39.0 Proj. 409 757 714 380
512 410 762 716 390 Ctr. 410 762 71.6 39.0 Asgn. 410 762 71.6 39.0
1024 40.7 7577 71.8 38.6

(d) Batch size and image-level objective (e) Geometric augmentations
B Limage COCO AP® COCO AP™ Method Geometric aug. VOC mloU
512 X 41.0 37.0 Random init. - 39.5
512 v 40.8 36.8 SlotCon v 71.6
1024 X 40.7 36.7 SlotCon X 62.6
1024 v 41.1 37.0

In Table 3, we provide the results of further ablation studies in batch size, the type of group-level
contrastive loss, the place to apply inverse augmentation, the influence of an image-level learning
objective, and the importance of geometric augmentations. We discuss them as follows:

Batch size. Table 3a shows the most suitable batch size for our method is 512. Increasing it to
1024 does not result in better performance. We argue that the real slot-level batch size is actually
bigger than 512, and should be multiplied by the number of pixels (49) or slots (8) per image for
the grouping loss and the group-level contrastive loss, respectively. Considering the mismatch in the
batch size scale of the two loss functions, the learning rate might should be further tuned to work
with larger batches [7].

Type of group-level loss. Table 3b shows that both the BYOL [8]-style regression loss and the
contrastive loss are helpful to learning transferable features, and the results with the contrastive loss
are especially higher for object detection in COCO. This may indicate that the contrastive loss, which
better pushes negative samples apart, is beneficial for object detection, in which the ability to tell
confusing objects apart is also critical.

Place to apply inverse augmentation. Table 3c ablates whether to apply the inverse augmentation
operation on the dense projections or the grouping assignments, and shows the latter is better. This can
keep the non-overlapping features for the group-level contrastive loss and utilize more information.

Image-level learning objective. Table 3d ablates the effect of an auxiliary image-level learning
objective. We add a MoCo v3 [2] style image-level contrastive learning loss to SlotCon (COCO 800
epoch pre-training setting), and the experiment results on COCO show that it depends on the batch
size. With a smaller batch size of 512, the detection AP drops by 0:2 points, while with a higher batch
size of 1024, the detection AP rises by 0:4 points. Our explanation is that the image-level objective is
more sensitive to the batch size, and it requires a larger batch size to learn holistic representations
that are complementary to the object-level objective.

Geometric augmentations. Table 3e ablates the effect of the geometric augmentations. Our main
nding is that geometric augmentations are necessary to learn object-centric representations in our
setting. We train SlotCon on COCO for 800 epochs with two identical crops applied for each image,
thus only the photometric invariance is adopted as the supervision. We then visualized the slots
the same way as Figure 3 in the main paper, and found that almost none of the slots can bind to
a meaningful semantic. Most of them attend to a similar-shaped region that locates at the same
position across different images while holding diverging semantics. And some of them learn textures
like animal fur, cloudy sky, snowland, or leaves. A fast evaluation on PASCAL VOC semantic
segmentation shows a signi cant performance drop, yet the feature is still notably better than random
initialization.

D Statistics about the binary indicator

How many slots are active on average for
each image? It depends on the number of cate-
gories/semantics per image. As shown in Figure 1,
seven slots are active on average for one image after
convergence.

How often is one slot active over the whole dataset?

It depends on the category/semantic distribution of
the dataset, as the slots are roughly bound to real-
world semantic categories. We studied the activeness
of the slots over the COC@al2017 set that contains
5000images, and found th&D out of the256 slots

are dead, and not active to any image. The activeness
of the remaining slots follows a long-tailed distribu-
tion. The top-5 active slots correspond to tr8&q),

sky (337), streetside car3?), building exterior wall
(313, and indoor wall 807); and the bottom-5 active

slots correspond to skateboardéd), grassland45), Figure 1: Average number of active slots per
train (56), luggage §7), and airplane?). image during training on COCO.

How many terms are excluded in Eq. 6 in the main paper? Given the slot number &56, if

all slots are active for one image and the two crops overlap well, there sho@Eblp®sitive pairs.

We studied a well-converged model and found that, on average, only aBdpdirs are active, so
around2524 terms are excluded. It is reasonable considering that aréstats are active on one
image, and the overlapping area between the two crops can be small. Considering a total batch size
of 512, the number of excluded negative samples should be arelidd (256 7) =127488.

E Computational costs

In Table 3, we give a direct Computational cost Table 3: Computationa] cost evaluation.
comparison between SlotCon and two previous

works. The experiments are conducted on thdiethod Time/epoch ~ Memory/GPU
same machine witB NVIDIA GeForce RTX penseCL [22] 204600 79GB
3090 GPUs. Both PixPro and SlotCon adopt apixpro [26] 201 g0 151 GB
batch size ofl024and have amp turned on, and s|otCon 209300 16:0GB

DenseCL adopts a batch size2i6 by default.
The training time of DenseCL might be higher than optimal as we failed to install apex.

F Additional qualitative results

Unsupervised semantic segmentation. In Figure 2, 3, 4, we provide the visualization of more
results in COCO-Stuff unsupervised semantic segmentation. Compared with PELI&r method's
overall successes in distinguishing confusing objects apart and localizing small objects.

Visual concept discovery on COCO. In Figure 5, 6, we show more results of visual concepts
discovered by our model from COCO, which cover a wide range of natural scenes. We further show
that the model tends to categorize person-related concepts into ne-grained clusters. For example,
in Figure 7, we show that it also groups segments according to the part of the human body; and in
Figure 8, we show that it also groups person segments by the sport they are playing. We hypothesize
that persons are too common in COCO, and the model nds that allocating more prototypes to learn
person-related concepts can better help optimize the grouping loss.

Visual concept discovery on ImageNet. In Figure 9, 10, we also provide examples of visual
concepts discovered by our method from ImageNet. Due to the scale of ImageNet, it is hard to
compute the segments for all the images. As ImageNet is basically single-object-centric, we simply
treat each image as a single segment to save computation for nearest-neighbor searching. The
visualization veri es the compatibility of our method with object-centric data.

G Limitations and negative social impacts

Grouping precision. Since we directly learn a set of semantic prototypes with a quite low-resolution
feature map32 downsample) and do not have any supervision for precise object boundaries, it
is hard for our model to perform detailed semantic grouping and cases are that many foreground
instances are segmented with over-con dence. Using post-processing through iterative re nements
such as CRF][5] or pre-compute visual primitives (super-pixels) on the raw imdggfnay improve

the result, but they are out of the scope of this work. Besides, modern object discovery techniques
such as Slot AttentionlP] that incorporate attention mechanism and iterative re nement may also
help learn better semantic groups; we leave this for future work.

Training cost. As all self-supervised learning methods do, our approach also needs to pre-train
with multiple GPU devices for a long time, which may increase carbon emissions. However, for
one thing, the pre-training only needs to be done once and can help reduce the training time of
multiple downstream tasks; for another, our method can learn relatively good representations with
shorter training timee.g, our method pre-trained on ImageNet idY0epochs achieves compatible
performance with PixPra?f] pre-trained for400epochs in COCO objection detectiohR® = 41:4).

The data can be unreliable. With reduced human priors, our method learns to discover ob-
jects/semantics from large-scale natural images. However, totally relying on the data may lead to
"bad" biases. In our experiments on scene-centric data, we noticed that the model allocates more
prototypes to human-related concepts (as humans occur most frequently in COCOQO), while many
other kinds of animals only have one prototype (see Figure 6, 8, 7). When pre-training on a more
long-tailed and less discriminative scenaroy, autonomous driving data, detailed in Sec B.2), the

data can lead to highly biased prototypes and representations, and harm downstream performance.
Injecting human priors to guide the criterion for objects/semantics could be a promising direction.

Semantic rather than object. Our method performs semantic grouping; this means that objects
with identical semantics can be indistinguishable. Therefore, the contrastive learning objective (Eq. 7
in the main paper) does not contrast between objects in the same image with the same semantic
(e.g, two elephants in one image). However, the success of self-supervised learning has shown that
discriminating instances with identical category labels can further boost representation quality. The
transition from semantic to objectness is to be explored.

H License of used datasets

All the datasets used in this paper are permitted for research use. The terms of access to the images of
COCO [18] and ImageNet [5] allow the use for non-commercial research and educational purposes.
Besides, the annotations of COCT3] and COCO-Stuff] follow the Creative Commons Attribution

4.0 License, also allowing for research purposes.

Figure 2: Additional results in COCO-Stuff] unsupervised semantic segmentation. Each row from
top to down: Image, PiCIELJ], Ours. Overall, our method successfully distinguishes confusing
objects and localizes small objectbeét viewed in colgr

Figure 3: Additional results in COCO-Stuff] unsupervised semantic segmentation. Each row from
top to down: Image, PiCIELR], Ours. Overall, our method successfully distinguishes confusing
objects and localizes small objectbeét viewed in colgr

Figure 4: Additional results in COCO-Stuff] unsupervised semantic segmentation. Each row from
top to down: Image, PiCIELJ], Ours. Overall, our method successfully distinguishes confusing
objects and localizes small objectbeét viewed in colgr

Figure 5: Additional examples of visual concepts discovered by our method from the @aI2@L7
split. Each row shows the top 10 segments retrieved with the same prototype, marked with red masks.
(best viewed in colgr

