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Abstract

Prediction over tabular data is an essential and fundamental problem in many
important downstream tasks. However, existing methods either treat a data instance
of the table independently as input or do not jointly utilize multi-row features and
labels to directly change and enhance target data representations. In this paper, we
propose to 1) construct a hypergraph from relevant data instance retrieval to model
the cross-row and cross-column patterns of those instances, and 2) perform message
Propagation to Enhance the target data instance representations for Tabular predic-
tion tasks. Specifically, our tailored message propagation step benefits from both
the fusion of label and features during propagation, as well as locality-aware high-
order feature interactions. Experiments on two important tabular data prediction
tasks validate the superiority of the proposed PET model relative to other baselines.
Additionally, we demonstrate the effectiveness of the model components and the
feature enhancement ability of PET via various ablation studies and visualizations.
The code is available at https://github.com/KounianhuaDu/PET.

1 Introduction

Prediction over tabular data is a fundamental and essential problem in many data science applications
including recommender systems (Bobadilla et al., 2013; Ying et al., 2018), online advertising
(Richardson et al., 2007; Zhou et al., 2018), fraud detection (Bolton and Hand, 2002), question
answering (Chen et al., 2020), etc. Most existing methods seek to capture the patterns of feature
interactions within an instance independently using tree models (Chen and Guestrin, 2016) or deep
networks (Guo et al., 2017).

Recently, as shown by Papernot and McDaniel (2018), feeding in neighbors of the target as input
can improve the robustness of data representations and help the model generalize better to out-of-
distribution samples. Some retrieval based methods (Pi et al., 2020; Qin et al., 2020, 2021) then
seek to utilize multiple neighboring data instances of the target for label prediction. These methods
take the auxiliary instances as extra inputs but do not consider that such auxiliary information could
enhance the target representation. Other existing graph-based methods on tabular data (You et al.,
2020; Wu et al., 2021; Guo et al., 2021b) aim to learn robust representations with locality structure, as
Verma and Zhang (2019) proved the stabilization and generalization ability of graph neural networks.

†Work done during internship at Amazon Web Services Shanghai AI Lab.
‡Weinan Zhang is the corresponding author.
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Figure 1: Difference between PET and other models. (a) The popular tree models and interaction-
based models utilize a single data instance for prediction. (b) The retrieval-based methods take
multiple data instances as input without sufficiently mining the interaction patterns among them.
(c) The proposed PET models the multiple data instances set as a hypergraph and capture their
correlations with the assistance of labels.

However, they either omit the high-order product feature interactions, or else serve as a plugin
while resorting to other architectures like factorization machines (Rendle, 2010) to explore feature
interactions. Moreover, they ignore the mutual enhancement between the representations of labels
and features. In this paper, with the aim of learning enhanced data representations of tabular data,
we propose to construct a hypergraph among relevant data instances to model the set relationships
(Srinivasan et al., 2021). Additionally, we design an end-to-end graph neural network prediction
model that generates high-order feature interactions with the assistance of the locality structure and
label adjustment.

Specifically, we design PET, a novel architecture that Propagates and Enhances the Tabular data
representations based on the hypergraph for target label prediction. We first retrieve from the
observed data instances pool to get the neighboring data instances for each target. The resulting
instance set can be seen as a hypergraph, where sets of feature columns of data instances form
hyperedges and each distinct feature value of these data instances form a node. This hypergraph
models the cross-row and cross-column relations of the resulting instance set. Then we conduct
message propagation on the graph. The propagation serves three purposes. First, auxiliary label
information from the retrieved data instances propagates through the common feature value nodes to
help the target prediction. Second, feature representations get enhanced through the locality structure.
Our interactive message generation, attention-based aggregation, and update generate locality-aware
high-order feature interactions. Third, the labels are incorporated into the propagating messages to
directly adjust the feature spaces and generate label-enhanced feature representations.

The main contributions are summarized as follows:

• We propose a retrieval-based hypergraph to capture the feature and label correlations among
tabular data instances.

• We design an end-to-end graph neural network prediction model that unifies the product
feature interaction, locality mining, and label enhancement.

• We utilize the observed labels in the resulting set to guide the feature learning process and
use the propagated labels to enhance predictions.

We evaluate the proposed PET model on two prediction tasks, i.e., binary classification and top-n
ranking, over five tabular datasets, where substantial performance improvement against other strong
baselines validates the superiority of PET.

2 Preliminaries and Related Work

Tabular data prediction. Tabular data prediction treats every row of the table as a data instance and
every column/field as a feature attribute.1 We consider tabular data prediction under a single table
scenario in this paper, and prediction over multiple tables can be seen as the prediction over a joined
table. We also focus on tabular discrete data in this paper, while the continuous feature values can be

1We use row and data instance, as well as column and field interchangeably.
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discretized in various ways (Guo et al., 2021a). Currently some of the most widely used models for
tabular data prediction include Gradient Boosting Decision Trees (GBDTs) (Friedman, 2001) and
Factorization Machines (FM) (Rendle, 2010). Variants of FM such as DeepFM (Guo et al., 2017) and
Wide & Deep (Cheng et al., 2016) are especially popular in industrial applications. For a given row,
such models simply take in the row and make predictions, i.e., these models assume that the rows
are IID. Such an assumption, however, is reasonable only if the embedding representations of the
tabular data can sufficiently host the high-order interaction patterns within the data instance, which is
practically impossible.

Graph neural networks on tabular data. As Graph Neural Networks (GNNs) become popular,
multiple attempts to apply GNNs on tabular data prediction have emerged. Since the model takes
in a graph that connects the rows and columns together, the prediction on a single row no longer
depends only on itself, but also other rows, and is therefore suitable for exploiting non-IID properties
in tabular data. Examples of using GNNs on tabular data include Wu et al. (2021) that constructs
a mini-batch data-feature bipartite graph, You et al. (2020) that treats the (incomplete) table as an
adjacency matrix of a bipartite graph, and Guo et al. (2021b) that treats rows as nodes and build edges
according to predefined rules. These methods omit the product feature interactions or else resort to
other architecture like factorization machines to explore them. Moreover, they ignore the mutual
enhancement between labels and features.

Hypergraphs and hyperedge classification/regression. If we treat each individual value in a table
as a single node, then a row describes an n-ary relationship among the nodes. Normal graphs have
trouble describing this relation since edges can only connect two nodes at a time. A hypergraph
generalizes graphs such that an edge can connect more than two nodes. It is defined as a pair
G = (V,E) with its node set V and its hyperedge set E ⊆ P(V ), where P(V ) is the power set of
V , meaning that each "edge" becomes simply a subset of V , regardless of the number of nodes in
the "edge". We can construct a hypergraph from a set of rows, where each hyperedge correspond
to a row and each node correspond to the distinct feature values among all the rows. Tabular data
prediction problem can be cast into a hyperedge classification/regression problem, where every row
now corresponds to a hyperedge.

Hypergraph neural networks. Hypergraph neural networks are an adaptation of GNNs with a mes-
sage passing paradigm whereby node representations are used to update hyperedge representations,
which in turn update the node representations again (Srinivasan et al., 2021; Bai et al., 2021; Feng
et al., 2019). Using a hypergraph neural network on tabular data allows us to obtain a representation
for each row from its corresponding hyperedge, as well as a representation for each individual value
of each column from its corresponding node.

3 Methodology

When making prediction for a sample, feeding in similar or relevant samples together as input
is known to contribute to robustness and generalization abilities for out-of-distribution samples
(Papernot and McDaniel, 2018). In light of this, for a given data instance, our model retrieves a set of
relevant data instances according to a relevance metric, aiming to take auxiliary information from
relevant data instances.

The resulting instances set can be seen as a hypergraph, where each distinct feature value forms a
node and a collection of them, i.e., a data instance, forms a hyperedge. After the star expansion
(Agarwal et al., 2006; Srinivasan et al., 2021), we get a bipartite graph with feature value nodes on
one side and data instance nodes on the other, on which we propagate and enhance representations.
An advantage of message passing is that it allows us to capture higher-order interactions among nodes
and hyperedges (Srinivasan et al., 2021), i.e. the interactions among the individual column values as
well as the rows. The other advantage of message passing is that we can utilize the labels of retrieved
data instances to interact with features to generate label-enhanced messages, guide the message
aggregation process, and take advantage of label propagation at the same time. After message passing,
the enhanced data instance representations are then used for prediction.

Figure 2 illustrates the framework of PET. Detailed descriptions of each individual component are
provided in the following subsections.
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Figure 2: The workflow of PET. For each row to predict (top-left), PET retrieves a fixed number of
relevant data instances (bottom-left) and constructs a hypergraph (bottom-right) from the resulting
data instances set. After a star expansion (top-right), we get a data-feature bipartite graph with data
instance nodes at the bottom and feature value nodes at the top. We then perform the proposed
hypergraph neural network on the resulting graph and use the target data instance node representation
for prediction.

3.1 Graph Construction

For each target data instance, we retrieve K relevant data instances from the observed data instances
set using ElasticSearch2 and construct a hypergraph from the resulting instance set.

Let Xt = {xt
f |f = 1, . . . , F} be the feature of a target data instance t, where F is the number of

feature fields and xt
f is the feature value of the f -th field of data instance t. We first conduct a boolean

query to obtain instances that have at least one common feature value with the target data instance.
Then we retrieve the top-K relevant instances r1, · · · , rK from the filtered instances set according to
the relevance value (Qin et al., 2021) defined as:

R(Xt, Xj) =

F∑
f=1

IDF(xt
f ) · 1(xt

f=xj
f )
, (1)

IDF(xt
f ) = log

N −N(xt
f ) + 0.5

N(xt
f ) + 0.5

, (2)

where 1(·) is the indicator function, N is the number of data instances in the table, and N(xt
f ) is the

number of data instances that have feature value xt
f in the f -th field. This metric is equivalent to the

BM25 (Robertson et al., 1995) metric if we treat each data instance as a document and their feature
values as the terms.

After the retrieval, the resulting instances set {Xt, Xr1 , · · · , XrK} can be seen as a hypergraph,
where each distinct feature value in each individual field forms a node and each data instance
constructs a hyperedge. We then perform a star expansion (Agarwal et al., 2006) on the hypergraph,
i.e. construct a bipartite graph G = (VD, VF , E) where VD = {t, r1, . . . , rK}, VF = {xj

f |f =

1, · · · , F ; j = t, r1, . . . , rK}, and an undirected edge exists between two nodes i ∈ VF and j ∈ VD

if i ∈ Xj .

3.2 Message Passing and Interaction

After the graph is constructed, we propagate and enhance the representations on it. The propagation
serves three purposes. First, the label information propagates through common feature value nodes
to help the label prediction of the target data instance node. Second, the features get enhanced
through taking in high-order information. Locality-aware high-order product feature interactions
are generated through the interactive message generation and attention based aggregation. Third,

2https://www.elastic.co/elasticsearch/
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the label embeddings directly interact with the features to adjust the feature spaces and generate
label-enhanced features and high-order interactions. Then we detail the components as follows.

Initialization. Before message passing, we initialize the node representations and edge representa-
tions with trainable embedding vectors. Let Φx and Φybe different trainable embedding layers for
feature value nodes and data instances nodes, respectively. And let Φin and Φout be the embedding
layers for the edges. We first initialize the feature value node representations as

h
(0)
i = Φx(i), i ∈ VF . (3)

We also initialize the data instance node representations of the retrieved rows with a trainable embed-
ding vector associated with their labels. As for the target data node, we initialize its representations
with a constant zero vector.

h
(0)
j =

{
0, j = t,

Φy(y
j), j ∈ VD\{t},

(4)

where yj denotes the label of the data instance j.

In addition, we initialize each edge representation with the embedding of its incident data instance
node label to guide the feature learning process and generate high-order interactions.

e
(0)
ij =

{
Φin(y

i), i ∈ VD, j ∈ VF ,

Φout(y
j), i ∈ VF , j ∈ VD.

(5)

Message Generation. Then we use the interactions between edge and node representations along
with the original node representations to generate the messages:

m
(l)
ij = (e

(l−1)
ij ⊙ h

(l−1)
i )∥h(l−1)

i , (6)

where ⊙ denotes the Hadamard product, superscript l means the l-th layer, and ∥ denotes the
concatenation operation.

As edge representations carry the label information initially, the Hadamard product term generates
label-enhanced features. In addition, the edges will contain node features after updating edge
representations with incident node representations, then the Hadamard product term produces high-
order product feature interactions. The high-order product feature interactions prove to be important
in many interaction-based tabular data prediction methods (Qu et al., 2018), which are often missed
in other graph-based tabular networks or captured by an extra factorization machine (Wu et al., 2021).

Message Aggregation. The incoming neighboring messages are then aggregated based on an
attention mechanism:

Q
(l)
j = W

(l)
Q h

(l−1)
j ,

K
(l)
ij = W

(l)
K m

(l)
ij ,

V
(l)
ij = W

(l)
V m

(l)
ij , (7)

a
(l)
ij = softmaxi∈N(j)(Q

(l)
j K

(l)
ij ),

n
(l)
j =

∑
i∈N(j)

a
(l)
ij V

(l)
ij .

Node Embedding Update. After receiving the aggregated neighboring messgages, the node embed-
dings are updated based on the aggregated messages and their own node embeddings.

h
(l)
j = σ(W

(l)
N (h

(l−1)
j ∥n(l)

j )), (8)

where σ(·) denotes the ReLU activation function.

Edge Embedding Update. Then we update edge embeddings using their incident node embeddings
as Equation (9). As edge embeddings are updated using the node embeddings, the features and labels
on nodes are propagated to the edges as well. After rounds of propagation, the messages generated
contain high-order feature interactions and high-order feature-label interactions.

e
(l)
ij = σ(W

(l)
E (h

(l)
i ∥h

(l)
j ∥e

(l−1)
ij )). (9)
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Figure 3: The representation of the target node after propagation. We use the red color to represent
the retrieved instance node and use the grey color to represent the target data instance node to
predict. Other feature value nodes are in different colors. The information flow is marked with the
corresponding color. The dots-on-edges represent the feature and label information stored in edges.
(best viewed in colors)

3.3 Label Prediction

Then we use the target data node embedding of the last layer for prediction:

ŷt = MLP(h(L)
t ), (10)

For binary classification, the training objective is set as cross entropy:

L(Y, Ŷ ) = −
∑
t

(yt log ŷt + (1− yt) log(1− ŷt)) , (11)

where yt is the label of the target data instance t.

3.4 Discussion

In this section, we discuss the strength and potential weakness of the proposed model and offer the
complexity analysis for the proposed method.

3.4.1 Model Analysis

We illustrate the representation of the target node after propagation in Figure 3. Following the pro-
posed propagation method, the target node will receive the first order features, second-order features,
label-enhanced features, and the propagated labels after two rounds of propagation. Propagating more
than two layers will further produce higher-order feature interactions, cross-rows feature interactions,
and feature-label interactions. Furthermore, the feature messages are adjusted by corresponding
labels and attentively aggregated based on the locality structure.

When dealing with datasets with a large number of fields, the constructed graph may be dense. In
this way, we could potentially meet the oversmoothing problem, which may degrade the model
performance. However, this problem can still be overcome by some methods. For example, we could
retrieve and construct the graph over selected fields (e.g., top 10 fields that have the largest mutual
information with the labels).

3.4.2 Complexity Analysis

In this section, we offer the complexity analysis for PET. Let K indicate the number of retrieved
data instances, F indicate the number of feature fields, N be the number of features, and d be the
embedding size.

For the retrieval stage, as discussed in RIM (Qin et al., 2021), the average length of the posting lists
in the inverted index is |SearchPool|

N . The total time complexity of retrieval is O(F |SearchPool|
N ). As

for constructing the inverted index, it could be done offline and only once. The complexity of it is
O(F |SearchPool|).
The main computation of PET lies in the message passing part. The number of nodes in the graph for
a data instance is no more than (K + 1)(F + 1), and the number of edges is 2(K + 1)F . Both of
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them are O(KF ). The time complexity of single-layer message passing of PET is O(KFd2). This
makes PET scalable as the complexity is linear with respect to the number of feature fields (number
of table columns). In addition, the graph construction and message passing can be highly parallel: 1)
The graph construction for each data instance can be done in parallel for a batch data. We batch all
the resulting graphs for the data instances in the batch to form one single batched graph. Then we can
apply GNN on the resulting single batched graph to make predictions parallelly. 2) For the GNN, the
operation of the attention computation can be parallelized across all edges, and the computation of
representations can be parallelized across all nodes and edges.

For the MLP computation, PET inputs the target node embedding for prediction. The complexity of
it is O(d2), which is independent of the number of feature fields. In addition, the number of model
parameters of PET is light. Both other methods (e.g., DeepFM, RIM, etc.) and PET have embedding
tables of the same size Nd. The main differences lie in the linear layers of models. And for PET, the
number of parameters of linear layers are O(d2), which is independent of the number of fields.

4 Experiments

In this section, we show the experimental results and the corresponding settings. Generally, we
experiment on two kinds of tabular data prediction tasks: click-through rate (CTR) prediction and
top-n recommendation. The results showcase the value of our model on tabular data prediction tasks.
Additionally, we conduct several ablation studies to validate the components of our model.

4.1 Setup
Table 1: Dataset statistics.

Datasets Samples Fields

Tmall 54,925,331 9
Taobao 100,150,807 4
Alipay 35,179,371 6

Movielens-1M 1,000,209 7
LastFM 18,993,371 5

We evaluate the performance of PET on five datasets. For
the CTR prediction task, we conduct experiments on three
large-scale datasets, i.e., Tmall3, Taobao4, and Alipay5.
For the top-n recommendation task, we experiment on
two widely-used public recommendation datasets, i.e.,
Movielens-1M6 and LastFM7. The statistics of the used
datasets are summarized in Table 1.

The evaluation metrics include area under ROC curve (AUC) and negative log-likehood (LogLoss)
for the CTR prediction task and hit rate (HR), normalized discounted cumulative gain (NDCG), and
mean reciprocal rank (MRR) for the top-n recommendation task.

Following Qin et al. (2021), we spilt the datasets according to the global timestamps. The earliest
data instances are grouped into the retrieval pool. The latest data instances form the test pool. Then
the remaining data instances are grouped into the train pool. To avoid unfair comparisons, the
non-retrieval model takes the retrieval pool as an additional train pool.

On the CTR prediction task, we compare our model against nine widely-used and strong baselines.
GBDT (Chen and Guestrin, 2016) is the widely-used tree model. DeepFM (Guo et al., 2017) is the
inner-product interaction-based model. FATE (Wu et al., 2021) and TabGNN (Guo et al., 2021b) are
the recent graph models. DIN (Zhou et al., 2018) and DIEN (Zhou et al., 2019) are the attention-based
sequential models. SIM (Pi et al., 2020), UBR (Qin et al., 2020), and RIM (Qin et al., 2021) are
the retrieval-based models. On the top-n recommendation task, we compare PET with six strong
recommendation models, including factorization-based FPMC (Rendle et al., 2010) and TransRec
(He et al., 2017), and recently proposed DNN models NARM (Li et al., 2017), GRU4Rec (Hidasi
et al., 2016), SASRec (Kang and McAuley, 2018), and RIM (Qin et al., 2021).

As for the hyperparameters, we test the number of GNN layers in {2, 3}. The embedding sizes of
all the models are consistent to ensure the fair comparison. More detailed hyperparameters and
experiment settings are provided in Appendix A.5.

3https://tianchi.aliyun.com/dataset/dataDetail?dataId=42
4https://tianchi.aliyun.com/dataset/dataDetail?dataId=649
5https://tianchi.aliyun.com/dataset/dataDetail?dataId=53
6https://grouplens.org/datasets/movielens/1m/
7http://ocelma.net/MusicRecommendationDataset/lastfm-1K.html
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Table 2: Result comparisons with baselines on CTR prediction task. (K = 10)

Models Tmall Taobao Alipay

AUC LogLoss Rel.Impr. AUC LogLoss Rel.Impr. AUC LogLoss Rel.Impr.

GBDT 0.8319 0.5103 12.08% 0.6134 0.6797 44.08% 0.6747 0.9062 32.36%
DeepFM 0.8581 0.4695 8.66% 0.6710 0.6497 31.71% 0.6971 0.6271 28.1%

FATE 0.8553 0.4737 9.01% 0.6762 0.6497 30.70% 0.7356 0.6199 21.40%
TabGNN 0.8945 0.4158 4.24% 0.7294 0.6173 21.17% 0.8086 0.5849 10.44%

DIN 0.8796 0.4292 6.00% 0.7433 0.6086 18.90% 0.7647 0.6044 16.78%
DIEN 0.8838 0.4445 5.50% 0.7506 0.6084 17.74% 0.7502 0.6151 19.03%
SIM 0.8857 0.4520 5.27% 0.7825 0.5795 12.95% 0.7600 0.6089 17.50%
UBR 0.8975 0.4368 3.89% 0.8169 0.5432 8.19% 0.7952 0.5747 12.30%
RIM 0.9138 0.3804 2.04% 0.8563 0.4644 3.21% 0.8006 0.5615 11.54%
PET 0.9324 0.3321 − 0.8838 0.4162 − 0.8930 0.4132 −

Table 3: Result comparisons with baselines on top-n recommendation task. (K = 10)

Datasets Metric FPMC TransRec NARM GRU4Rec SASRec RIM PET

ML-1M

HR@1 0.0261 0.0275 0.0337 0.0369 0.0392 0.0645 0.0904
HR@5 0.1334 0.1375 0.1418 0.1395 0.1588 0.2515 0.2889

HR@10 0.2577 0.2659 0.2631 0.2624 0.2709 0.4014 0.4404
NDCG@5 0.0788 0.0808 0.0866 0.0872 0.0981 0.1577 0.1903

NDCG@10 0.1184 0.1217 0.1254 0.1265 0.1341 0.2059 0.2390
MRR 0.1041 0.1078 0.1113 0.1135 0.1193 0.1704 0.2006

LastFM

HR@1 0.0148 0.0563 0.0423 0.0658 0.0584 0.0915 0.1149
HR@5 0.0733 0.1725 0.1394 0.1785 0.1729 0.3468 0.3621

HR@10 0.1531 0.2628 0.2227 0.2581 0.2499 0.5780 0.6033
NDCG@5 0.0432 0.1148 0.0916 0.1229 0.1163 0.2165 0.2381

NDCG@10 0.0685 0.1441 0.1185 0.1486 0.1409 0.2911 0.3156
MRR 0.0694 0.1303 0.1083 0.1362 0.1289 0.2210 0.2492

4.2 Overall performance comparison

We first validate the effectiveness of the proposed PET model. The main results are summarized in
Tables 2 and 3, where we can see the proposed PET performs consistently better on all datasets.

The results demonstrate the superiority of PET against the baselines on both tasks. On the CTR
prediction task, PET achieves relatively 2.04%, 3.21%, 10.44% higher AUC over the best performed
baseline on Tmall, Taobao, Alipay, respectively. The results show that PET can learn effective tabular
data representation for better prediction performance. Furthermore, compared with RIM that takes
exactly the same inputs with PET, the improvements of PET are statistically significant under 95%
confidence level. Given that RIM also utilizes the labels of relevant rows, this empirically justifies
the capability of our propagation method. On the top-n recommendation task, PET shows significant
improvements on the recommendation task against other baselines, too. The results show that PET
performs substantially better than the strong baselines in all comparisons.

4.3 Ablation study

4.3.1 Impact of the label usages

We further study the usage of labels of PET. The results are summarized in Table 4. For fast
exploration, we randomly sample 10% data from training pool and test pool on the three large CTR
datasets, respectively. The best performed baseline RIM is tested on the sampled data for comparison.
Both RIM and PET utilize the same set of retrieved data instances and their label information. We
then examine the impact of different label usages on the sampled data. In the PET model, we initialize
the embeddings of data instances nodes and edges with the corresponding label embeddings. We then
inspect the impacts of such initialization and the operations on edges. For convenience, we calculate
the homophily ratios for the resulting instances set. The homophily ratios for Tmall, Taobao, and
Alipay are 0.5566, 0.6111, and 0.5097, respectively.
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Table 4: Impact of label embeddings. (On randomly sampled data, K = 10)

Models Tmall Taobao Alipay

AUC LogLoss AUC LogLoss AUC LogLoss

RIM 0.9120 0.3769 0.8587 0.4586 0.7845 0.5742
PET 0.9279 0.3387 0.8762 0.4279 0.8720 0.4201

PET (w/o edge labels) 0.9291 0.3367 0.8665 0.4465 0.8558 0.4776
PET (w/o node labels) 0.9233 0.3494 0.8431 0.4847 0.8518 0.4799
PET (w/o all labels) 0.9208 0.3568 0.8416 0.4815 0.8096 0.5719

We first remove edge embedding initialization with labels and eliminate all the operations involved
with edges, thus the message becomes

m
(l)
ij = h

(l−1)
i . (12)

In addition, the edge embedding update step in Equation (9) is also omitted. As such, the labels
only serve from propagation among nodes. The high-order product interaction between features
and label-feature interaction are omitted. As shown in Table 4, PET without edge labels performs
weaker than the original PET model, which demonstrates the power of high-order product interactions
and label-enhanced features. Moreover, PET without edge labels still performs better than RIM,
which validates the superiority of label propagation through common feature nodes against simple
attention-based aggregation.

By removing the node labels, the embeddings of all the data instance nodes are initialized as constant
vectors. In this way, no pure first-order label embeddings are used for prediction. Since any
information related with labels will be propagated to nodes after a product interaction with features.
One can see that PET without node labels performs better than RIM, which further justifies the
effectiveness of high-order product interactions and label-enhanced features. Additionally, PET
without node labels performs weaker than the original PET, which implies the power of initializing
node embeddings with pure label embeddings for propagation.

We also provide PET (w/o all labels) to see the feature interactions under the framework. Concretely,
we randomly initialize the label values. The results show the power of feature interactions and the
advantages of feeding in labels.

4.3.2 Visualization of the feature distribution

In order to further explore the representation enhancement of PET, we visualize the features of PET
and RIM with t-SNE (Van der Maaten and Hinton, 2008). Figure 4 illustrates the distributions of data
instance embeddings and the feature embeddings of PET and RIM on Tmall. For both models, we
randomly choose 10,000 samples from the train data and 10,000 samples from the test data. For PET,
the data instance embeddings are taken from the data instance nodes (inputs of the MLP predictor)
and the feature embeddings are the concatenated feature node embeddings for each data instance.
For RIM, the data instance embeddings are the inputs of the final MLP predictor and the feature
embeddings are the concatenated feature embeddings of each data instance.

From Figure 4, we can see that the distributions of train positive data points and train negative data
points are more dissimilar than those of RIM. The same phenomenon happens in the distributions of
test positive data points and test negative data points. This illustrates that PET gives more informative
representations. (Visualizations on more datasets can be found in Appendix A.2.)

4.3.3 Impacts of different retrieval schemes

First, we evaluate the effectiveness of current retrieval by comparing the current retrieval scheme
with the random retrieval scheme. The results are summarized in Table 5. One can see that the
relevance-based retrieval performs much better than random retrieval. This validates the effectiveness
of the relevance-based retrieval and feeding in relevant rows.

We also study the impact of using different retrieval sizes K. The results are put in Appendix A.3
due to the page limit. Generally, too few retrieval samples may fail to carry enough information to
enhance the representation, while too many retrieved samples will introduce more noise.
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Figure 4: The t-SNE visualization of data and feature embeddings on Tmall.

Table 5: Impacts of the retrieval schemes.

Models Tmall Taobao Alipay

AUC LogLoss AUC LogLoss AUC LogLoss

Random retrieval 0.8433 0.4922 0.6544 0.6572 0.7271 0.6120
Relevance retrieval 0.9324 0.3321 0.8838 0.4162 0.8930 0.4132

5 Conclusion

In this paper, we focus on improving the prediction of tabular data, which is essential in many
important downstream tasks. Existing methods either take each data instance independently or
directly take multiple data instances as input without enhancing the target data instance representation.
We propose to construct a retrieval-based hypergraph to model the cross-row and cross-column
relations of tabular data, utilizing the propagation on the resulting graph to directly change and
enhance the target data instance representations. Concretely, we utilize a relevance retrieval to
construct the hyperedges set of the hypergraph, aiming to resort to relevant patterns. Then we design
PET, a novel architecture that propagates and enhances the tabular data representations based on
the hypergraph for target label prediction. The propagation serves from three aspects: 1) label
propagates through common feature values; 2) features get enhanced through locality and high-order
product feature interactions are generated through the interactive message passing framework; and 3)
labels are used to generate the label-enhanced features. Experiments on two important tabular data
prediction tasks validate the superiority of the proposed PET model over strong baselines.
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