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Abstract

We investigate the robustness of vision transformers (ViTs) through the lens of
their special patch-based architectural structure, i.e., they process an image as a
sequence of image patches. We find that ViTs are surprisingly insensitive to patch-
based transformations, even when the transformation largely destroys the original
semantics and makes the image unrecognizable by humans. This indicates that
ViTs heavily use features that survived such transformations but are generally
not indicative of the semantic class to humans. Further investigations show that
these features are useful but non-robust, as ViTs trained on them can achieve high
in-distribution accuracy, but break down under distribution shifts. From this un-
derstanding, we ask: can training the model to rely less on these features improve
ViT robustness and out-of-distribution performance? We use the images trans-
formed with our patch-based operations as negatively augmented views and offer
losses to regularize the training away from using non-robust features. This is a
complementary view to existing research that mostly focuses on augmenting in-
puts with semantic-preserving transformations to enforce models’ invariance. We
show that patch-based negative augmentation consistently improves robustness
of ViTs on ImageNet based robustness benchmarks across 20+ different experi-
mental settings. Furthermore, we find our patch-based negative augmentation are
complementary to traditional (positive) data augmentation techniques and batch-
based negative examples in contrastive learning.

1 Introduction
Building vision models that are robust, i.e., that maintain accuracy even on unexpected and out-of-
distribution images, is increasingly a requirement to trusting vision models and a strong benchmark
for progress in the field. Recently, Vision Transformers (ViTs, Dosovitskiy et al. (2021)) sparked
great interest in the literature, as a radically new model architecture offering significant accuracy
improvements and with hope of new robustness benefits. Over the past decade, there has been
extensive work on understanding the robustness of convolution-based neural architectures, as the
dominant design for visual tasks; researchers have explored adversarial robustness (Szegedy et al.,
2013), domain generalization (Xiao et al., 2021; Khani & Liang, 2021), feature biases (Brendel &
Bethge, 2019; Geirhos et al., 2018; Hermann et al., 2020). As a result, with the new promise of vision
transformers, it is critical to understand their properties and in particular their robustness. Recent
early studies (Naseer et al., 2021; Paul & Chen, 2021; Bhojanapalli et al., 2021) have found ViTs be
more robust than ConvNets in some scenarios, with the hypothesis that the non-local attention based
interactions enabled ViTs to capture more global and semantic features. In contrast, we add to this
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Figure 1: Patch-based transformations largely destroy images to be unrecognizable to humans
whereas ViT recognizes them as the original class (e.g., keeshond or magpie) with high confidence.
Visualization of patch-based transformations. On the top of each image, we display the predicted
confidence score of ViT-B/16 pretrained on ImageNet-21k and finetuned on ImageNet-1k.

line of research showing a different side of the challenge: we find that ViTs are still vulnerable to
relying on non-robust features, and propose an algorithm to mitigate it for better out-of-distribution
performance.

Specifically, we first conduct a study on the robustness properties of ViTs and show that ViTs still
rely on specific non-robust features. We start with the architectural traits of ViTs – ViTs operate
on non-overlapping image patches and allow long range interaction between patches even in lower
layers. It is hypothesized in recent studies (Naseer et al., 2021; Paul & Chen, 2021; Bhojanapalli
et al., 2021) that the non-local attention based interactions contribute to better robustness of ViTs
than ConvNets. To study the ability of ViTs to integrate global semantics structures across patches,
we design and apply patch-based image transformations, such as random patch rotation, shuffling,
and background-infilling (Figure 1). Those transformations destroy the spatial relationship between
patches and corrupted the global semantics, and the resultant images are often visually unrecog-
nizable. However, we find that ViTs are surprisingly insensitive to these transformations and can
make highly accurate predictions on these transformed images. This suggests that ViTs use features
that survive such transformations but are generally not indicative of the semantic class to humans.
Going one step further, we find that those features are useful but not robust, as ViTs trained on them
achieved high in-distribution accuracy, but suffered significantly on robustness benchmarks.

With this understanding of ViTs’ reliance on non-robust features captured by patch-based transfor-
mations, we aim to mitigate this shortcoming by answering the following questions: (a) how can we
train ViTs to not rely on such features? and (b) will reducing reliance on such features meaningfully
improve out-of-distribution performance and not sacrifice in-distribution accuracy? A majority of
past robust training algorithms encourage the smoothness of model predictions on augmented im-
ages with semantic preserving transformations (Hendrycks et al., 2020; Cubuk et al., 2019). How-
ever, the patch-based transformations deliberately destroy the semantic meaning and only leave non-
robust features. Taking inspiration from recent research on generative modeling (Sinha et al., 2020),
we propose a family of robust training algorithms based on patch-based negative augmentations that
regularize the training from relying on non-robust features surviving patch-based transformations.
Through extensive evaluation on a wide set of ImageNet-based benchmarks, we find that our meth-
ods consistently improve the robustness of the trained ViTs. Furthermore, our patch-based negative
augmentation can be combined with the traditional (positive) data augmentation to boost the per-
formance further. With this we get a more complete picture: training models both to be insensitive
to spurious changes (as in positive augmentation) but also to not rely on non-robust features (as in
negative augmentation) together can meaningfully improve robustness of ViTs.

Our key contributions are as follows:

• Understanding Non-Robust Features in ViT: We show that ViTs heavily rely on non-robust
features surviving patch-based transformations but are not indicative of the semantic classes to
humans.
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Figure 2: ViTs can rely on features surviving patch-based transformations to maintain a high accu-
racy, even after images have been heavily transformed to be largely unrecognizable. Top-1 accuracy
of ViT models when tested on patch-based transformed images using the semantic class of the cor-
responding clean image as ground-truth. The test accuracy on ImageNet-1k validation set is shown
on the right. All ViT models are pre-trained on ImageNet-21k and fine-tuned on ImageNet-1k.

• Modeling: We propose a set of patch-based operations as negatively augmented views, com-
plementary to existing works that focus on semantic-preserving (“positive”) augmentations, to
regularize the training away from using these specific non-robust features;
• Improved Robustness of ViT: We show across 20+ experimental settings that our proposed

patch-based negative augmented views can consistently improve ViT’s robustness and com-
plementary to “positive” augmentation techniques as well as batch-based negative examples in
contrastive learning.

2 Preliminaries
Vision Transformers Vision transformers (Dosovitskiy et al., 2021) are a family of architec-
tures adapted from Transformers in natural language processing (Vaswani et al., 2017), which di-
rectly process visual tokens constructed from image patch embeddings. To construct visual tokens,
ViT (Dosovitskiy et al., 2021) first splits an image into a grid of patches. Each patch is linearly pro-
jected into a hidden representation vector, and combined with a positional embedding. A learnable
class token is also added. Transformers (Vaswani et al., 2017) are then directly applied on this set
of visual and class token embeddings as if they are word embeddings in the original Transformer
formulation. Finally, a linear projection of class token is used to calculate the class probability.

Model Variants We consider ViT models pretrained on either ILSVRC-2012 ImageNet-1k, with
∼1.3 million images or ImageNet-21k, with ∼14 million images (Russakovsky et al., 2015). All
models are fine-tuned on ImageNet-1k dataset. We adopt the notations used in (Dosovitskiy et al.,
2021) to denote model size and input patch size. For example, ViT-B/16 denotes the “Base” model
variant with input patch size 16× 16.

Robustness Benchmarks To evaluate models’ robustness, we mainly focus on three ImageNet-
based robustness benchmarks, ImageNet-A (Hendrycks et al., 2019), ImageNet-C (Hendrycks &
Dietterich, 2019a), ImageNet-R (Hendrycks et al., 2021). Specifically, ImageNet-A contains chal-
lenging natural images from a distribution unlike ImageNet training distribution, which can easily
fool models to make a misclassification. ImageNet-C consists of 19 types of corruptions that are
frequently encountered in natural images and each corruption has 5 levels of severity. It is widely
used to measure models’ robustness under distributional shift. ImageNet-R is composed of images
obtained by artistic rendition of ImageNet classes, e.g., cartoons, and is widely used to evaluate
model’s robustness on out-of-distribution data.

3 Understanding the Robustness of Vision Transformers

Recent works (Naseer et al., 2021; Paul & Chen, 2021; Bhojanapalli et al., 2021) have shown that
vision transformers achieve better robustness compared to standard convolutional networks. One
explanation is that the attention mechanism can capture better global structures. To investigate if
ViT has successfully taken advantage of the long range interactions between patches, we design a
series of patch-based transformations which significantly destroys the global structure of images.
The patch-based transformations (see Fig. 1) are:
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Figure 3: Features preserved in patch-based transformations are useful but non-robust as training
ViT on them impedes robustness. Top-1 Accuracy (%) on ImageNet-1k validation set and Ima-
geNet robustness datasets: ImageNet-A, ImageNet-C, ImageNet-R. The baseline model is ViT-B/16
in (Dosovitskiy et al., 2021) trained on original images. Other models are trained on patch-based
transformed images, e.g., “P-Shuffle” stands for a ViT-B/16 model trained on patch-based shuffled
images. Numbers above the bars are either accuracy (e.g., ViT-B/16) or the max accuracy difference
between each model family and the baseline ViT-B/16. The patch size in P-Shuffle and P-Rotate and
replacement ratio in P-Infill is denoted by “ps” and “rr” respectively.

• Patch-based Shuffle (P-Shuffle): we randomly shuffle the input image patches to change their
positions1.
• Patch-based Rotate (P-Rotate): we randomly select a rotation degree from the set Ω =
{0◦, 90◦, 180◦, 270◦} and rotate each image patch independently.
• Patch-based Infill (P-Infill): we replace the image patches in the center region of an image

with the patches on the image boundary2.

Each patch-based transformation is performed to a single image. We make sure the patch size of our
patch-based transformation is a multiple of the input image patch of ViT so that the content within
each patch is well-maintained. For P-infill, we use “replace rate” to denote the ratio of replaced
patches in the center over the total number of patches in an image. Examples of transformed images
are shown in Fig. 1 (see Appendix E for more examples). In most cases, it is challenging to recognize
the semantic classes after those transformations.

Do ViTs rely on features not indicative of the semantic classes to humans? To validate if ViTs be-
have similarly as humans on these patch-based transformed images, we evaluate ViT models (Doso-
vitskiy et al., 2021) on these patch-based transformed image. Specifically, we apply each patch-
based transformation to ImageNet-1k validation set and report the test accuracy of each ViT on the
transformed images. The test accuracy is computed by using the semantic class of the correspond-
ing original image as the ground-truth. As shown in Figure 2, the accuracies achieved by ViTs are
significantly higher than random guessing (0.1%). In addition, as shown in Figure 1, ViT gives these
patch-based transformed images a highly confident prediction even when the transformation largely
destroys the semantics and make the image unrecognizable by humans.3 This strongly indicates
that ViT models heavily rely on the features that survive these transformations to make a prediction.
However, these features are not indicative of the semantic class to humans.

Do features preserved in patch-based transformations impede robustness? Taking one step further,
we want to know if the features preserved by simple patch-based transformations, which are not
indicative of the semantic class to humans, result in robustness issues. To this end, we train a
vision transformer, e.g., ViT-B/16, on patch-based transformed images with original semantic class
assigned as their ground-truth. Note that all the training images are patch-based transformed images.
In this way, we force the model to fully exploit the features preserved in patch-based transformations.
In addition, we reuse all the training details and hyperparameters in (Dosovitskiy et al., 2021) to
make sure the “only” difference between our models and the baseline ViT-B/16 (Dosovitskiy et al.,
2021) is the training images. Then, we test the model on ImageNet-1k validation set and three
robustness benchmarks, ImageNet-A, ImageNet-C and ImageNet-R without any transformation.

1P-Shuffle is equivalent to shuffling the position embeddings.
2For example, given an image with size 384× 384, input patch size is 16× 16 and replace rate 0.25, we in

total have 576 patches xi,j , where i and j denotes the row and column index and 1 ≤ i, j ≤ 24. The patches
in the center xm,n, 7 ≤ m,n ≤ 18 are replaced by the remaining patches.

3Similar patterns are observed when ViT models are pretrained on ImageNet-1k.
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First, we can observe that for the baseline ViT-B/16, compared to in-distribution accuracy, all the
out-of-distribution accuracies have suffered from a significant drop (the 4 blue bars in Figure 3).
This trend has been observed both for ViTs and convolution-based networks (Paul & Chen, 2021;
Zhai et al., 2021). Second, if we compare the accuracy between the baseline model and models
trained on patch-based transformations (i.e., the difference between the blue bar and one of the
red/green/orange bars in Figure 3), we find that ViTs’ in-distribution accuracy drops only slightly,
but the robustness drop is significant when models are trained on these patch-based transformations.
Take P-Shuffle as an example, the model trained on patch-based shuffled images can still achieve
79.1% accuracy on ImageNet-1k, only 5 percentage point (pp) drop in in-distribution accuracy. In
contrast, the accuracy drop on robustness datasets is much more significant, e.g., 17pp on ImageNet-
R. The deterioration rate in robustness is close to 50% of the baseline ViT-B/16. This strongly
suggests that the features preserved in patch-based transformations are sufficient for high-accurate
in-distribution prediction but are not robust under distributional shifts.

Taking the above results together, we conclude that even though ViTs are shown to be more robust
than ConvNets in previous studies (Naseer et al., 2021; Paul & Chen, 2021), they still heavily rely
on features that are not indicative of the semantic classes to humans. These features, captured by
patch-based transformations, are useful but non-robust, as ViTs trained on them achieve high in-
distribution accuracy but suffer significantly on robustness benchmarks.

With this knowledge we now ask: based on these understandings, can we train ViTs to not rely on
such non-robust features? And if we do, will it improve their robustness?

4 Improving the Robustness of Vision Transformers
Based on the key observations that the patch-based transformations encode features that contribute
to the non-robustness of ViTs, we propose a negative augmentation procedure to regularize ViTs
from relying on such features. To this end, we use the images transformed with our patch-based
operations as negatively augmented views. Then we design negative loss regularizations to prevent
the model from using those non-robust features preserved in patch-based transformations.

Specifically, given a clean image x, we generate its negative view, denoted as x̃, by ap-
plying a patch-based transformation to x. We call it negative augmentation, in contrast
with the standard (positive) augmentation that are semantic preserving. Let Lce(B;θ) =
− 1
|B|

∑
(x,y)∈B y log softmax(f(x;θ)) represent the cross-entropy loss function used to train a vi-

sion transformer with parameters θ, where B is a minibatch of clean examples, and y denotes the
ground-truth label. The loss on negative views Lneg(B, B̃;θ) can be easily added to the cross-
entropy loss Lce(B;θ) via

Lce(B;θ) + λ · Lneg(B, B̃;θ), (1)

where λ is a coefficient balancing the importance between clean training data as well as patch-based
negative augmentation. Below, we introduce uniform loss and `2 loss to leverage negative views.

Uniform loss Many existing data augmentation techniques (Cubuk et al., 2019, 2020; Hendrycks
et al., 2020) use one-hot labels for semantic-preserving augmented data to enforce the invariance
of the model prediction. In contrast, the semantic classes of our generated patch-based negative
augmented data are visually unrecognizable, as shown in Figure 1. Therefore, we propose to use
uniform labels instead for those negative augmentations. Specifically, the loss function on negative
views that we optimize at each training step can be formulated as:

Lneg(B, B̃;θ) = − 1

|B̃|

∑
(x̃,ỹ)∈B̃

ỹ log softmax(f(x̃;θ)), (2)

where ỹ denotes the uniform distribution: ỹk = 1
K where K is the total number of classes. f(x;θ)

denotes the function mapping the input image into the logit space.

`2 Loss An alternative to pre-assuming labels for negative augmentation is to add the constraints
on the logit space (or the space of predicted probability). Inspired by existing work (Kannan et al.,
2018; Zhang et al., 2019; Hendrycks et al., 2020) which provides an extra regularization term en-
couraging similar logits between clean and “positive” augmented counterparts, we instead encourage
the logits of clean examples and their corresponding negative augmentations to be far away. In this
way, we prevent the model from relying on the non-robust features preserved in negative views.
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Table 1: Top-1 accuracies for ViT models pre-trained and fine-tuned on ImageNet-1k with or without
the proposed negative augmentation. Best results highlighted in bold.

Model ImageNet-1k ImageNet-A ImageNet-C ImageNet-R

ViT-B/32 (Dosovitskiy et al., 2021) 72.5 3.7 46.7 19.4
+ P-Rotate / Uniform 72.9 (+0.4) 3.7 (+0.0) 47.9 (+1.2) 19.9 (+0.5)
+ P-Rotate / L2 73.2 (+0.7) 3.8 (+0.1) 48.4 (+1.7) 20.4 (+1.0)

ViT-B/16 (Dosovitskiy et al., 2021) 77.6 6.7 50.8 20.3
+ P-Rotate / Uniform 78.2 (+0.6) 7.0 (+0.3) 52.4 (+1.6) 21.4 (+1.1)
+ P-Rotate / L2 77.8 (+0.2) 6.7 (+0.0) 51.6 (+0.8) 21.0 (+0.7)

Specifically, we maximize the `2 distance between the predicted probability of clean examples and
their corresponding negative views. The loss on negative views, therefore, can be formulated as:

Lneg(B, B̃;θ) = − 1

|B̃|

∑
x∈B,x̃∈B̃

‖softmax(f(x;θ))− softmax(f(x̃;θ))‖2. (3)

Here the `2 distance is computed over the predicted probability rather than the logits f(x;θ) because
empirically we observe that maximizing the difference of logits can cause numerical instability.

5 Experiments
Experimental setup We follow Dosovitskiy et al. (2021) to first pre-train all the models with image
size 224× 224 and then fine-tune the models with a higher resolution 384× 384. We reuse all their
training hyper-parameters, including batch size, weight decay, and training epochs (see Appendix B
for details). For the extra loss coefficient λ in Eqn. 1 we sweep it from the set {0.5, 1, 1.5} and
choose the model with the best hold-out validation performance. Please refer to Appendix C for the
chosen hyperparameters for each model. We make sure our proposed models and our implemented
baselines are trained with exactly the same settings for fair comparison.

5.1 Effective in improving robustness of vanilla ViTs

First, we apply our proposed patch-based transformations to a ViT model pre-trained and fine-tuned
on ImageNet-1k. The extra loss regularization on negative views is used in both pre-training and
fine-tuning stages to prevent the model from learning non-robust features preserved in patch-based
transformations. We use “Transformation / Regularization” to denote a pair of patch-based negative
augmentation and loss regularization. For examples, “P-Rotate / Uniform” means that we use P-
Rotate to generate the negative views and use uniform loss to regularize the training. We display the
results in Table 1, where we can clearly see that our proposed patch-based negative augmentation
effectively improves the out-of-distribution robustness on ImageNet-C and ImageNet-R. Note the
improvement is small over ImageNet-A when the baseline almost does not work, but it becomes
more siginificant when the baseline improves (e.g., Table 5).

Larger improvement on small-scale datasets We also apply our patch-based negative augmen-
tation to ViT-B/16 on CIFAR-100 (Krizhevsky, 2009) in the fine-tuning stage and find that it can
also significantly improve the robustness on the corrupted dataset CIFAR-100-C (Hendrycks & Di-
etterich, 2019b), which includes 19 different corruption types with 5 different corruption severities.
For example, P-Shuffle / Uniform can boost the in-distribution accuracy of ViT-B/16 on CIFAR-100
from 91.8% to 92.6% (+0.8) and the robustness accuracy on CIFAR-100-C can also be improved
from 74.6% to 77.0% (+2.4), as shown in Table 10 in Appendix.

5.2 Complementary to traditional (“positive”) data augmentation

To investigate if our proposed patch-based negative augmentation is complementary to traditional
(“positive”) data augmentation, we apply our patch-based negative transformation on top of tra-
ditional data augmentation: Rand-Augment (Cubuk et al., 2020), which is widely used in vision
transformers (Touvron et al., 2021; Mao et al., 2021), and AugMix (Hendrycks et al., 2020), which
is specifically proposed to improve models’ robustness under distributional shift. Crucially, we fol-
low (Hendrycks et al., 2020) to exclude transformations used in “positive” data augmentation which
overlap with corruption types in ImageNet-C (Hendrycks & Dietterich, 2019a). Therefore, the set of
transformations used in Rand-Augment and AugMix is disjoint with the corruptions in ImageNet-C.

When we combine “negative” and “positive” augmentation, the cross-entropy loss Lce(B+;θ) in
Eqn. 1 is computed over “positive” examples B+ = {x+

1 , · · · ,x
+
N} using either Rand-Augment or
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Table 2: Patch-based negative augmentation is complementary to “positive” data augmenta-
tion. Top-1 accuracies for ViT-B/16 pre-trained and fine-tuned on ImageNet-1k using Rand-
Augment (Cubuk et al., 2020) or AugMix (Hendrycks et al., 2020). The proposed negative aug-
mentation is added on top of either positive augmentation. Best results are highlighted in bold.

Model ImageNet-1k ImageNet-A ImageNet-C ImageNet-R

Rand-Augment (Cubuk et al., 2020) 79.1 7.2 55.2 23.0

+ P-Shuffle / Uniform 79.3 7.7 (+0.5) 56.2 (+1.0) 23.4 (+0.4)
+ P-Rotate / Uniform 79.3 8.1 (+0.9) 56.4 (+0.8) 23.8 (+0.8)
+ P-Infill / Uniform 79.2 7.8 (+0.6) 56.4 (+1.2) 24.0 (+1.0)

+ P-Shuffle / L2 78.9 7.5 (+0.3) 55.6 (+0.4) 22.6 (-0.4)
+ P-Rotate / L2 79.1 7.9 (+0.7) 56.7 (+1.5) 23.8 (+0.8)
+ P-Infill / L2 78.8 7.4 (+0.2) 55.4 (+0.2) 23.2 (+0.2)

AugMix (Hendrycks et al., 2020) 78.8 7.7 57.8 24.9

+ P-Shuffle / Uniform 79.2 8.0 (+0.3) 58.6 (+0.8) 25.7 (+0.8)
+ P-Rotate / Uniform 79.1 8.2 (+0.5) 58.5 (+0.7) 25.7 (+0.8)
+ P-Infill / Uniform 79.3 8.3 (+0.6) 58.4 (+0.6) 25.7 (+0.8)

+ P-Shuffle / L2 78.8 7.9 (+0.2) 58.3 (+0.5) 25.7 (+0.8)
+ P-Rotate / L2 79.0 8.3 (+0.6) 58.8 (+1.0) 26.0 (+1.1)
+ P-Infill / L2 79.0 7.9 (+0.2) 58.5 (+0.7) 25.6 (+0.7)

Table 3: Effects of patch-based negative augmentation on five different levels of corruption severities
on ImageNet-C. Best results are highlighted in bold. See Table 12 in Appendix for full results.

Model ImageNet-C Corruption Severity Level

1 2 3 4 5

Rand-Augment (Cubuk et al., 2020) 70.4 63.7 57.9 48.2 36.1
+ P-Rotate / Uniform 71.1 (+0.7) 64.6 (+0.9) 59.0 (+1.1) 50.0 (+1.8) 37.6 (+1.5)
+ P-Rotate / L2 71.1 (+0.7) 64.8 (+1.1) 59.5 (+1.6) 50.1 (+1.9) 37.8 (+1.7)

AugMix (Hendrycks et al., 2020) 71.4 65.2 60.5 51.9 40.2
+ P-Rotate / Uniform 71.7 (+0.3) 65.7 (+0.5) 61.1 (+0.6) 52.7 (+0.8) 41.4 (+1.2)
+ P-Rotate / L2 71.9 (+0.5) 66.0 (+0.8) 61.5 (+1.0) 52.9 (+1.0) 41.6 (+1.4)

AugMix. Meanwhile, the loss regularization on negative views in Eqn. 1 is computed over neg-
atively transformed version of x+. That is: for ∀x+ ∈ B+, we apply our patch-based negative
transformation to obtain its negative version and then use the negative example to compute the loss
regularization Lneg . The positive data augmentation is only used in pre-training stage as we ob-
serve it is slightly better than using them for both stages (Please see more detailed discussion in
Appendix D.4) and Steiner et al. (2021) have the similar observation. Instead, we apply our negative
augmentation in both stages, as it is the best design choice as discussed in Appendix D.3.

As shown in Table 2, we see that when our patch-based negative augmentations are applied to
either Rand-Augment or AugMix, we can consistently improve the robustness of vision transformers
across all three robustness benchmarks. This is particularly noteworthy as both Rand-Agument and
AugMix are already designed to significantly improve the robustness of vision models. Yet, we
see that patch-based negative augmentation provides further robustness benefits. This suggests that
robustness of vision models was not adequately addressed by “positive” data augmentation and that
patch-based negative augmentation is complementary to these traditional approaches.

To have a clear picture how negative augmentation improves robustness on data with different de-
grees of corruptions, we also display the top-1 accuracy on ImageNet-C with five different levels
of corruption severity in Table 3. The general trend emerges: as the corruption level goes higher,
the benefit of negative examples becomes larger. This suggests our proposed negative examples are
especially useful when data is highly corrupted.

5.3 Complementary to batch-based negative examples in contrastive loss

In addition, we also investigate if our proposed patch-based negative augmentation can be incor-
porated into the traditional contrastive loss formulation and if they are complementary and provide
additional value on top of the batch-based negative examples traditionally used (Oord et al., 2018;
Chen et al., 2020a). We will first describe how to use contrastive loss as a regularization term and
then introduce how to integrate patch-based negative augmentation into contrastive loss.
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Table 4: Complementary to batch-based negative examples in contrastive loss. Top-1 accuracies of
ViT-B/16 pretrained and fine-tuned on ImageNet-1k with and without P-Rotate.

Model ImageNet-1k ImageNet-A ImageNet-C ImageNet-R

ViT-B/16 + Contrastive* 78.7 8.1 53.5 22.8
ViT-B/16 + P-Rotate / Contrastive 78.9 8.6 (+0.5) 54.1 (+0.6) 23.6 (+0.8)

Rand-Augment + Contrastive* 79.7 8.9 57.6 24.7
Rand-Augment + P-Rotate / Contrastive 79.9 9.4 (+0.5) 58.4 (+0.8) 25.4 (+0.7)

Table 5: Patch-based negative augmentation is helpful even with large-scale pretraining. Top-1
accuracies of ViT-B/16 pretrained on ImageNet-21k and finetuned on ImageNet-1k. Mean±standard
deviation are reported over 4 independent runs.

Model ImageNet-1k ImageNet-A ImageNet-C ImageNet-R

Rand-Augment (Cubuk et al., 2020) 84.4±0.0 28.7±0.2 67.2±0.0 38.7±0.1

+ P-Shuffle / Uniform 84.5 29.9 67.7 38.9
+ P-Shuffle / L2 84.5±0.0 29.7±0.3 68.0±0.0 39.6±0.2

Following supervised contrastive loss proposed in (Khosla et al., 2020), for an example xi ∈ B, we
create a positive set Pi ≡ {xj ∈ B\{xi}|yj = yi} with all the examples in the minibatch B sharing
the same class as xi. The anchor xi is excluded from its positive set Pi. Next, all the examples in
the minibatch B with a different class as xi are used as negative examples. Let the candidate set
Qi ≡ B\{xi}, the contrastive loss can be expressed as

Lcont(B;θ) = − 1

|B|
∑
xi∈B

1

|Pi|
∑
xj∈Pi

log
exp(sim(xi,xj)/τ)∑

xk∈Qi
exp(sim(xi,xk)/τ)

, (4)

where τ is the temperature and sim(xi,xj) =
g(xi;θ)

ᵀ·g(xj ;θ)
‖g(xi;θ)‖‖g(xj ;θ)‖ computes the cosine similarity

between g(xi;θ) and g(xj ;θ), and g(x;θ) denotes the representation learned by the penultimate
layer of the classifier. We do not use a learnable projection head as in contrastive representation
learning (Chen et al., 2020a,b) to avoid extra network parameters. The contrastive loss Lcont is used
as the regularization term Lneg in Eqn 1. We denote this stronger baseline as “Contrastive*”.

To integrate our proposed patch-based negative examples into contrastive loss, we expand the neg-
ative set in contrastive loss, which now composed of two types of negative examples: 1) all the
examples in the minibatch B with a different class as xi, 2) the patch-based negatively transformed
images x̃ ∈ B̃. Therefore, for each anchor xi, we can in total have 2|B| − |Pi| − 1 negative pairs,
where |B| is the batch size and |Pi| is the cardinality of the positive set Pi. Accordingly, the candi-
date set in Eqn 4 becomes Qi ≡ B̃ ∪ B\{xi}. In Table 4, we can see that even if we add the patch-
based negative augmentation on top of this stronger contrastive baseline, we can still consistently
achieve extra improvement across robustness benchmarks. This shows our proposed patch-based
negative augmentation is also complementary to batch-based negative examples in contrastive loss
in improving models’ robustness. Similar trend holds on other settings, see Table 14 in Appendix.
Comparing to the other two negative loss regularizations, uniform and `2 loss, we suggest readers
to use our proposed contrastive loss in practice since it incorporates the extra benefit of constraining
the embeddings of positive pairs to be similar and consistently performs better.

5.4 Robustness improvements even under larger pre-training datasets
We further investigate if our proposed method can scale up to larger datasets and continues to be
necessary and valuable. To this end, we test if our proposed patch-based negative augmentation
still helps robustness when models are pre-trained on ImageNet-21k (10x larger than ImageNet-1k),
where the baseline performance is higher. Take P-Shuffle as an example, we display the results in
Table 5 with negative augmentation in both pre-training and fine-tuning stages. We see that even
when the pre-training dataset is significantly increased, our patch-based negative augmentation can
still further improve the robustness of ViT. This demonstrates that our approach is valuable at scale
and improves models’ robustness from an angle orthogonal to larger pre-training data.

Mean and standard deviation: Considering training models from scratch on ImageNet-1k or 21k
is very costly, we take the strongest baseline as an example to independently run multiple times. As
shown in Table 5, the small standard deviations suggests the improvement is statistically significant.
In addition, we have presented 20+ different experimental settings in the paper where our proposed
patch-based negative examples consistently improves robustness.
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5.5 Patch-based negative augmentation reduces texture bias

Geirhos et al. (2018) observed that unlike humans, CNNs rely on more local information (e.g.,
texture) rather than more global information (e.g., shape) to make a classification. Since our patch-
based transformations largely destroy the global structure (e.g., shape), we want to investigate if
the non-robust features surviving patch-based transformation overlap with local texture biases. To
this end, we evaluate ViT-B/16 trained on patch-based transformations on Conflict Stimuli bench-
mark (Geirhos et al., 2018), and we see that ViTs trained only on patch-based transformation have
a 4.9pp to 31.1pp increase on texture bias (Figure 5 in Appendix). This suggests that the useful but
non-robust features preserved in patch-based transformation are indeed overlapped with the local
texture bias. In addition, using our patch-negative augmentation can also to some extent reduce
models’ reliance on local texture bias, e.g., we decrease the texture accuracy from 71.7% to 66.5%
for ViT-B/16 (Table 6 in Appendix).

6 Discussions

Does ViT become more robust w.r.t. transformed images? We further evaluate ViTs trained
with our robust training algorithms on the patch-based transformed images. We found all three losses
on negative views can successfully reduce the prediction accuracy of ViTs to be close to random
guess with the original semantic classes as the ground-truth. In other words, our robust training
algorithms make ViTs behave similarly as humans on those patch-based transformed images.

Image          
ViT- B/16

Attention map
+  P-Rotate / Uniform  

Attention map

Jellyfish JellyfishPaper Towel

Shield ShieldFire Screen

Axolotl AxolotlGoldfish

Starfish Ocarina Starfish

Figure 4: Attention visualization of
images misclassified by ViT-B/16 (mid-
dle column) and correctly classified by
patch-based negative augmentation (P-
Rotate) using uniform loss (third col-
umn) on ImageNet-R. The ground truth
(first column) or the predicted class
(second and third column) are displayed
at the bottom of each image.

Are high confidence predictions w.r.t. patch trans-
formed images due to non-overlapping patch embed-
dings? To answer this, we test original ViT from Doso-
vitskiy et al. (2021) on the patch-transformed images
where the patch size of the patch-based transformations
pst is not perfectly aligned with the input patch size psi,
e.g., pst is not a multiple of psi. This can approximate the
scenario when patch embeddings are extracted from over-
lapped patches. As shown in Table 11 in Appendix, when
the patch size of the patch-based transformation (pst =
24) and the input patch size (psi = 16) of ViT are not
perfectly aligned, the test accuracy on the patch-based
shuffled images decreases from 84.1% to 32.9%. This is
lower than the case that the patch sizes are aligned, e.g.,
the test accuracy is 57.8% when pst = 32, but still sig-
nificantly higher than humans (a random guess is close to
0.1%) as well as comparable CNN-based network 9.2%.
Therefore, we conjecture the high confidence w.r.t. trans-
formed images is partially from non-overlapping patch
embedding in ViTs.

When does patch-based negative augmentation help?
To answer this question, we follow (Dosovitskiy et al.,
2021) to visualize the attention maps of models trained
with/without our proposed negative data augmentation.
In Figure 4, we can see that our negative augmentation
can effectively 1) help models attend to the object to make
a correct prediction whereas the standard ViT fails (top
two rows), and 2) mitigate models’ reliance on unrobust
biases, e.g., local bias, color bias, texture bias, etc. For example, the cartoon Axolotl (third row) is
misclassified by the standard ViT as Goldfish due to color similarity and the Starfish (bottom row) is
incorrectly recognized as Ocarina because of local resemblance. This is aligned with other signals
in previous sections that standard ViT relies on unrobust biases to make a prediction, whereas our
negative augmentation effectively encourages the model to rely less on these unrobust features. In-
terestingly, for the bottom two rows, the standard ViT has successfully attended to the object in both
cases but still failed to make correct predictions, indicating that the attention on the object does not
ensure a model is relying on semantically meaningful and robust features to make a prediction.
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7 Related Work

Vision transformers (Dosovitskiy et al., 2021; Touvron et al., 2021) are a family of Transformer
models (Vaswani et al., 2017) that directly process visual tokens constructed from image patch em-
bedding. Unlike convolutional neural networks (LeCun et al., 1989; Krizhevsky et al., 2012; He
et al., 2016) that assume locality and translation invariance in their architectures, vision transform-
ers have no such assumptions and can exchange information globally. A few recent studies find
pretrained vision transformers are at least as robust as the ResNet counterparts (Bhojanapalli et al.,
2021), and possibly more robust (Naseer et al., 2021; Paul & Chen, 2021). Our work studies a
specific aspect of robustness pertaining patch-based visual tokens in ViT, and show it may lead to
a generalization gap. Different from (Naseer et al., 2021) which also shows ViTs are insensitive to
patch operations such as shuffle and occlusion, we design different types of patch-based transforma-
tions and develop deeper understanding that the features preserved in patch-based transformations
are non-robust. Further, we propose a mitigation strategy based on these patch-based transforma-
tions to increase robustness of vision transformers. Another orthogonal line of improving robustness
of vision transformers is to develop a deeper understanding of the self-attention mechanisms in vi-
sion transformers (Gu et al., 2022) and further advances the neural network architectures (Zhou
et al., 2022).

Data augmentation is widely used in computer vision models to improve model perfor-
mance (Howard, 2013; Szegedy et al., 2015; Cubuk et al., 2020, 2019; Touvron et al., 2021). How-
ever, most of the existing data augmentations are “positive” in the sense they assume the class
semantic being preserved after the transformation. In this work, we explore “negative” data aug-
mentation operations based on patches, where we encourage the representations of transformed
example to be different from the original ones. Most related to our work in this direction is the work
of Sinha et al. (2020). Although the concept of negative augmentation was proposed in their work,
they only apply it for generative and unsupervised modeling without consideration of robustness. In
contrast, our work focuses on discriminative and supervised modeling, and demonstrate how such
negative examples can reveal specific robustness issues and such augmentation approaches can offer
robustness improvements under large-scale pretraining settings.

Our work is also related to contrastive learning (Wu et al., 2018; Hjelm et al., 2019; Oord et al.,
2018; He et al., 2020; Tian et al., 2020). The increasing number of negative pairs has shown to
be important for representation learning in self-supervised contrastive learning (Chen et al., 2020a),
where different images serve as negative examples for each other, and supervised contrastive learn-
ing (Khosla et al., 2020), where images with different classes are used as negative examples. Unlike
the traditional setting of representation learning, our proposed contrastive loss serves as a regular-
ization term with patch-based negative augmentations as extra negative data points.

8 Conclusion

Through this research we have found concrete evidences of ViTs relying on non-robust features to
make predictions and shown that this reliance is limiting out-of-distribution robustness. This opens
multiple exciting new lines of research. First, our methodology for analyzing the robustness of ViTs
provides a valuable recipe for future research. Through designing patch-wise, semantic-destroying
transformations that ViTs are insensitive to, we identified which non-robust features models rely
on. Second, through negative augmentations during training we reduced the ViTs’ reliance on such
non-robust features, and improved the out-of-distribution performance of ViTs significantly, with-
out harming in-distribution accuracy. This approach shows the potential for further improving the
robustness of ViTs. While we have identified multiple such non-robust features in ViTs, we be-
lieve discovering and addressing more is a promising direction for continued progress toward robust
vision transformers and vision models in general.
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