
A Proofs from Section 5

To ease notation in this section, we consider the multimodal setting X “ X p0qˆX p1q. The extension
to arbitrary φ0pXq, φ1pXq is straightforward. First, we fix an arbitrary label model Ŷ and, we
assume for this part that Ŷ can be written as a function mapping single examples to pseudolabels:
Ŷ : X p0q Ñ YYt∅u. We first prove Theorem 1 for this case. Second, we discuss the extention of this
theorem to the case where the pseudolabels Ỹ come from some label model Ŷ plus a subset selector
such as the cut statistic. This complicates the situation because the post-subselection pseudolabels
tỸ pxiqu (i.e., the output of the cut statistic on the training set) cannot be written as i.i.d. samples of a
“refined label model” Ỹ : X p0q Ñ Y Y t∅u. We show how to use sample splitting to suitably define
the population-level function Ỹ : X p0q Ñ Y Y t∅u, which allows us to directly apply Theorem 1.

A.1 Proof of Theorem 1.

Suppose that Y “ t0, 1u. Recall the conditional independence assumption:

Assumption (Conditional independence). The random variables Xp0q, Xp1q are conditionally inde-
pendent given the true (unobserved) label Y . That is, for any A Ă X p0q, B Ă X p1q,

PX,Y rXp0q P A,Xp1q P B|Y s “ PX,Y rXp0q P A|Y sPX,Y rXp1q P B|Y s.

Let Ŷ : X p0q Ñ Y Y t∅u be an arbitrary label model, and define:

α “ PX,Y rY “ 0|Ŷ pXp0qq “ 1s

γ “ PX,Y rY “ 1|Ŷ pXp0qq “ 0s

These parameters measure the amount of noise in Ŷ . We assume throughout that PrŶ “ ys ą 0

for y P t0, 1u and that α ` γ ă 1. Note that this implies PrŶ ‰ ∅|Y “ ys ą 0 for all y, since
otherwise either α or γ is 1. So there are pseudolabeled examples from both conditional distributions
PrX|Y “ ys.

Theorem. Suppose we observe a weakly labeled training set sT :“ tx
p0q
i , x

p1q
i , Ŷ px

p0q
i qu

n
i“1, where

the xi’s are drawn i.i.d. from the marginal distribution PX . This differs from T in the main text
because we include both views xp0q, xp1q and also include the points where Ŷ pxp0qi q “ ∅.

Let F be a hypothesis class consisting of functions f : X p1q Ñ Y . Suppose Assumption 1 holds, and
that PrŶ “ ys ą 0 for y P t0, 1u and that α` γ ă 1. Define the balanced error of a classifier f on
labels Z P t0, 1u as:

errbalpf, Zq “
1

2
pPrfpXq “ 0|Z “ 1s ` PrfpXq “ 1|Z “ 0sq.

We will consider both Z “ Y and Z “ Ŷ . Let f P F be an arbitrary classifier. Then f ’s true
balanced error errbalpf, Y q and f ’s pseudolabel balanced error errbalpf, Ŷ q satisfy:

errbalpf, Y q “
1

1´ α´ γ

„

errbalpf, Ŷ q ´
α` γ

2

.

Now let f˚ :“ inffPF errbalpf, Y q be the classifier with optimal balanced accuracy on the true
labels. Suppose that f̂ is the classifier obtained by minimizing the empirical balanced accuracy on
the dataset T “ tpxp1qi , Ŷ px

p0q
i qqu:

f̂ :“ argmin
fPF

xerrbalpf, Ŷ q “
1

2

˜
řn
i“1 1fpx

p1q

i q“0
1
Ŷ px

p0q

i q“1
řn
i“1 1Ŷ px

p0q

i q“1

`

řn
i“1 1fpx

p1q

i q“1
1
Ŷ px

p0q

i q“0
řn
i“1 1Ŷ px

p0q

i q“0

¸

.

Note that the training points txi : Ŷ px
p0q
i q “ ∅u do not feature at all in the above expression, so we

can safely discard them for the training step. Then for any δ ą 0 the following holds with probability

15

at least 1´ δ over the sampling of sT :

errbalpf, Y q ´ errbalpf˚, Y q ď rO
˜

1

1´ α´ γ

d

V CpFq ` log 1
δ

nPrŶ ‰ ∅sminy PrŶ “ y|Ŷ ‰ ∅s

¸

,

where Õ hides log factors in m and VCpFq.

Proof. Lemma 1 proves that for any f P F ,

errbalpf, Y q “
1

1´ α´ γ

„

errbalpf, Ŷ q ´
α` γ

2

.

Subtracting errbalpf˚, Ŷ q from both sides:

errbalpf̂ , Y q ´ errbalpf˚, Y q “
1

1´ α´ γ

”

errbalpf̂ , Ŷ q ´ errbalpf˚, Ŷ q
ı

.

Let f̂˚ be the classifier in F with optimal population-level balanced error on Ŷ :

f̂˚ :“ argmin
fPF

errbalpf, Ŷ q.

Then

errbalpf̂ , Y q ´ errbalpf˚, Y q ď
1

1´ α´ γ

”

errbalpf̂ , Ŷ q ´ errbalpf̂˚, Ŷ q
ı

. (2)

Now we need to control errbalpf̂ , Ŷ q ´ errbalpf̂˚, Ŷ q, the excess risk of f̂ on the weak labels
Ŷ . From sT , we can form a sample of n i.i.d. points tpxp1qi , ŷiqu

n
i“1 from the joint distribution:

PX rXp1q, Ŷ pXp0qqs.
Theorem 2 implies that for any δ ą 0, with probability at least 1 ´ δ over the sampling of
tpx

p1q
i , ŷiqu

n
i“1, we have the following deviation bound:

sup
fPF

Pr|xerrbalpf, Ŷ q ´ errbalpf, Ŷ q|s ď rO
˜
d

V CpFq ` log 1
δ

nPrŶ ‰ ∅sminy PrŶ “ y|Ŷ ‰ ∅s

¸

.

We prove Theorem 2 in the self-contained Section A.3. We can easily turn this uniform convergence
result into an excess risk bound for f̂ with a standard sequence of inequalities. We drop the
subscript and remove Ŷ from the error arguments for convenience, so errp¨q in the following refers to
errbalp¨, Ŷ q:

errpf̂q ´ errpf̂˚q “ xerrpf̂q ´xerrpf̂˚q ` errpfq ´xerrpfq `xerrpf̂˚q ´ errpf̂˚q

ď errpfq ´xerrpfq `xerrpf̂˚q ´ errpf̂˚q

ď |errpfq ´xerrpfq| ` |xerrpf̂˚q ´ errpf̂˚q|

ďw.p. 1´δ
rO
˜
d

V CpFq ` log 1
δ

nPrŶ ‰ ∅sminy PrŶ “ y|Ŷ ‰ ∅s

¸

.

The first inequality used that xerrpf̂q ´xerrpf̂˚q ď 0 since f̂ is the empirical minimizer, and the last
inequality applied the deviation bound to each term. Hence we have shown that with probability at
least 1´ δ,

errbalpf̂ , Ŷ q ´ errbalpf̂˚, Ŷ q ď rO
˜
d

V CpFq ` log 1
δ

nPrŶ ‰ ∅sminy PrŶ “ y|Ŷ ‰ ∅s

¸

.

Plugging this in to (2) completes the proof of Theorem 1.

16

Lemma 1 ([33], [22]). Suppose Assumption 1 holds and that α`γ ă 1, PrŶ “ ys ą 0 for y P t0, 1u.
Then for any f P F , the balanced errors on Ŷ and Y satisfy the following relationship:

errbalpf, Y q “
1

1´ α´ γ

„

errbalpf, Ŷ q ´
α` γ

2

.

Proof. The formula relating errbalpf, Ŷ q and errbalpf, Y q is due to Scott et al. [33], Menon et al. [22].
We reprove it here to show that PrŶ “ ∅s ą 0 does not affect the result, since those works consider
Ŷ px

p0q
i q P t0, 1u. Define:

zFNRpfq “ PrfpXp1qq “ 0|Ŷ pXp0qq “ 1s

zFPRpfq “ PrfpXp1qq “ 1|Ŷ pXp0qq “ 0s

FNRpfq “ PrfpXp1qq “ 0|Y “ 1s

FPRpfq “ PrfpXp1qq “ 1|Y “ 0s.

Observe that:

zFNRpfq “ PrfpXp1qq “ 0|Ŷ pXp0qq “ 1s “
ÿ

y

PrfpXp1qq “ 0, Y “ y|Ŷ pXp0qq “ 1s

“
ÿ

y

PrfpXp1qq “ 0, Ŷ pXp0qq “ 1|Y “ ysPrY “ ys

PrŶ pXp0qq “ 1s

“
ÿ

y

PrfpXp1qq “ 0|Y “ ysPrŶ pXp0qq “ 1|Y “ ysPrY “ ys

PrŶ pXp0qq “ 1s

“
ÿ

y

PrfpXp1qq “ 0|Y “ ysPrY “ y|Ŷ pXp0qq “ 1s

“ Prf “ 0|Y “ 0sPrY “ 0|Ŷ “ 1s ` Prf “ 0|Y “ 1sPrY “ 1|Ŷ “ 1s

“ p1´ FPRpfqqα` FNRpfqp1´ αq.

Similarly,

zFPRpfq “ p1´ FNRpfqqγ ` FPRpfqp1´ γq.

Collecting these equalities gives:
„

p1´ γq ´γ
´α p1´ αq

 „

FPRpfq
FNRpfq

`

„

γ
α

“

„

zFPRpfq
zFNRpfq

The coefficient matrix is invertible since we assumed α`γ ă 1. Multiplying both sides by its inverse
gives:

FPRpfq “
1

1´ α´ γ

´

p1´ αqzFPRpfq ` γzFNRpfq ´ γ
¯

FNRpfq “
1

1´ α´ γ

´

αzFPRpfq ` p1´ γqzFNRpfq ´ α
¯

Finally, plugging these in to errbalpf, Y q “ 1
2 pFPRpfq ` FNRpfqq gives the first result.

A.2 Dealing with subset selection

Suppose Ŷ is some fixed label model (such as majority vote). Let sT “ tpxp0qi , x
p1q
i , Ŷ px

p0q
i qqu

n
i“1 be

the full weakly-labeled sample, including points where Ŷ “ ∅. We have assumed the xi’s are drawn
i.i.d. from some distribution PX over X satisfying:

PrXp0q P A,Xp1q P B|Y s “ PrXp0q P A|Y sPrXp1q P B|Y s

17

for any A Ă X p0q, B Ă X p1q. Let S be a function that maps sets tpxp0qi , x
p1q
i , Ŷ px

p0q
i qqu

n
i“1 to

t0, 1un, where SpsT qi indicates whether to include example i in the subset. We assume that S only
uses the information tpxp0qi , Ŷ px

p0q
i qqu, i.e., that membership in the subset does not depend directly

on xp1qi . We can also consider S as defining a new set of pseudolabels Ỹ pxp0qi q for sT . Define these
new pseudolabels Ỹ pxp0qi q P Y Y t∅u as:

Ỹ px
p0q
i q “

#

Ŷ px
p0q
i q SpT qi “ 1

∅ SpT qi “ 0.

We then use the refined set T 1 “ tpxp1qi , Ỹ px
p0q
i qqu to train the end model (recall that the end model

only uses xp1q, and that points where Ỹ pxp0qi q “ ∅ can be safely ignored during the training process,
since they do not appear in the loss function.

Importantly, the S we have studied in this work operate at the set level, and so cannot be written as

SpsT q “ tS̃pxp0q1 q, S̃pxp0q2 q, . . . , S̃pxp0qm qu P t0, 1un

for an example-level selector function S̃ : X ˆ pY Y t∅uq Ñ t0, 1u. For example, both the cut
statistic and entropy scoring use a percentile-based ranking of examples, and choose the top β fraction
of examples in sT to have SpsT qi “ 1. The value of the threshold for inclusion in the subset T 1 thus
depends on the entire sample sT and not just on a single example.

Ultimately, we would like to obtain a generalization bound for an end model trained with the refined
pseudolabels Ỹ . However, the set-level form of S presents an issue, because it is unclear how to even
define the population-level quantities considered in Theorem 1, such as α “ PX,Y rY “ 0|Ỹ “ 1s.
How do we define Ỹ pxq for x that do not appear in the sample sT ? Additionally, the samples
tpx

p1q
i , Ỹ px

p0q
i qqu

n
i“1 are not i.i.d., which means we can’t directly apply Theorem 1. To see this,

consider the case where β “ 1
m ` ε, i.e., the selection percentile is set so that only one example is

chosen to have Ỹ pxp0qi q ‰ ∅. Then observing a sample pxp1qi , Ỹ px
p0q
i qq with Ỹ pxp0qi q ‰ ∅ implies

that Ỹ pxp0qj q “ ∅ for all j ‰ i. To resolve these issues, we use a straightforward sample-splitting
scheme.

Suppose we partition sT into two halves, sT “ psT0, sT1q. We can use sT0 to produce an example-level
selector S, i.e., a selector such that for any U Ă pX ˆ Yqn, U “ tpxi, Ŷ pxiqquni“1:

SpUq “ tS̃pxp0q1 q, S̃pxp0q2 q, . . . , S̃pxp0qn qu P t0, 1um.

for some S̃ : X p0q Ñ t0, 1u.

For example, for the cut statistic, to compute S̃pxp0qq for an arbitrary x, we first compute Ŷ pxp0qq,
and then compute the K-nearest neighbors of x among the non-abstaining points in sT0. I.e., we insert
x into the nearest-neighbor graph over sT0 with the pseudolabel Ŷ pxq. Next, we use this graph and
the empirical distribution of Ŷ from sT0 to compute the Z-score for x. The last step is to threshold the
Z-score to decide whether to set S̃pxq “ 1. We compute the quantiles of Z-score for the examples
sT0, and we set S̃pxp0qq “ 1 if x’s Z-score would have been in the top β fraction in sT0. To summarize,
to compute Ỹ pxp0qq we essentially perform the cut statistic on the set sT0 Y tpx

p0q, xp1q, Ŷ pxp0qqqu
(but where x is left out of the percentile computations, and its Z-score is compared to the quantiles
computed on sT0).

This sample-splitting trick allows us to extend the selection beyond the training sample to easily
define a population-level Ỹ pXp0qq:

Ỹ pXp0qq “

"

Ŷ pXp0qq S̃pXp0qq “ 1

∅ S̃pXp0qq “ 0

We can now compute the relevant α and γ parameters for Ỹ , i.e., PrY “ 0|Ỹ “ 1s and PrY “

1|Ỹ “ 0s are well-defined. Note that these parameters depend on sT0. We can then use sT1 in place of

18

sT as the full training data, and treat Ỹ like an arbitrary label model and applying Theorem 1. Note
that the generalization bound now holds with respect to the sampling of sT1, while holding sT0 fixed.
As a final check, observe that subset selection using S does not affect conditional independence: for
y ‰ ∅ and B Ă X p1q,

PrXp1q P B, Ỹ pXq “ y|Y s “ PrXp1q P B, Ŷ pXp0qq “ y,SpXp0qq “ 1|Y s

“ PrXp1q P B|Y sPrŶ pXp0qq “ y,SpXp0qq “ 1|Y s

“ PrXp1q P B|Y sPrỸ |Xs.

The first equality recalled that Ŷ pXq and SpXq only depend on φ0, and the second used conditional
independence ofXp0q andXp1q given Y . The proof for y “ ∅ is similar. Therefore, we can still apply
Lemma 1 with Ỹ . The samples T1 “ tpx

p1q
i , Ỹ px

p0q
i qu (which we obtained from sT1 by discarding

x
p0q
i) are clearly i.i.d. because we assumed that tpxp1qi , x

p0q
i qu

n
i“1 were i.i.d. samples. Hence, we can

still apply the Theorem 2 result in the proof of Theorem 1. This sample-splitting construction of Ỹ
allowed us to reduce to the case of a fixed, population level label model and directly use Theorem 1
to give bounds on the end model error when training with the refined pseudolabels.

A.3 Balanced error generalization bound: Notation and result

The notation in this section is self-contained and slightly differs from that of previous sections. Let
X be an input space and Y “ t0, 1,∅u be the (binary) label space + an abstention symbol. Let H be
a class of functions mapping X Ñ t0, 1u. We assume pX,Y q P X ˆ Y is a pair of random variables
distributed according to an unknown distribution P. We observe a sequence of n i.i.d. pairs pXi, Yiq
sampled according to P, and the goal is to learn a classifier h P H with low balanced error:

Rphq :“
1

2
pPrhpXq “ 1|Y “ 0s ` PrhpXq “ 0|Y “ 1sq ,

To measure classifier performance from our finite sample, we use the empirical balanced error:

Rnphq :“
1

2

ˆ

řn
i“1 1hpXiq“11Yi“0
řn
i“1 1Yi“0

`

řn
i“1 1hpXiq“01Yi“1
řn
i“1 1Yi“1

˙

Note that the points where Y “ ∅ do not appear in either expression. The goal is to derive a bound
on the generalization gap Rphq ´Rnphq for a classifier ĥ that is learned from (and hence, depends
on) the the finite sample tpXi, Yiq : iu. The challenge lies in the presence of random variables in
the denominator of Rnphq, so unlike the empirical zero-one loss, it cannot be written simply as
1
n

řn
i“1 gph, x, yq for some indicator function g.

The following theorem gives a uniform (over H) convergence result for the balanced error. The key
technique used in the proof is essentially due to Woodworth et al. [39].
Theorem 2. For any δ P p0, 1q and any distribution P , with probability at least 1 ´ δ over the
sampling of tpXi, Yiqu

n
i“1,

sup
hPH

Rphq ´Rnphq ď rO
˜

d

VCpHq ` log 1
δ

nPrY ‰ ∅sminyPt0,1u PrY “ y|Y ‰ ∅s

¸

,

where rO hides log factors in n and VCpHq.

Proof. Let S “ tpXi, Yiqu
n
i“1 refer to the empirical sample. For convenience, for each pȳ, yq P

t0, 1u ˆ t0, 1u, define:
γȳyphq “ PrhpXq “ ȳ|Y “ ys,

and its empirical analogue:

γSȳyphq “

řn
i“1 1hpXiq“ȳ1Yi“y
řn
i“1 1Yi“y

.

Then Rphq “ 1
2 pγ01 ` γ10q and Rnphq “ 1

2 pγ
S
01 ` γ

S
10q. For sample S, let

Iy “ ti P rns : Yi “ yu

19

be the set of indices i where Yi “ y, and set nSy “ |Iy|. Conditioned on Iy, the γS variables are
distributed as:

γSȳyphq|Iy „
1

nSy
Binomialpγȳy, n

S
y q,

since the randomness over X in the sample gives nSy independent trials to make hpXiq equal to ȳ. We
hide the argument h below for convenience. Observe that E

“

γSȳy
ˇ

ˇ Iy
‰

“ γȳy . Then for every η ą 0,

Pr|γSȳy ´ γȳy| ą ts “
ÿ

Iy

P
“

|γSȳy ´ γȳy| ą t
ˇ

ˇ Iy
‰

PrIys

ď P
“

nSy ă p1´ ηqnPrY “ ys
‰

`
ÿ

Iy :nS
yěp1´ηqnPrY“ys

P
“

|γSȳy ´ γȳy| ą t
ˇ

ˇ Iy
‰

PrIys

ď exp

ˆ

´
η2nPrY “ ys

2

˙

`
ÿ

Iy :nS
yěp1´ηqnPrY“ys

2 expp´2nSy t
2qPrIys

ď exp

ˆ

´
η2nPrY “ ys

2

˙

` 2 expp´2t2p1´ ηqnPrY “ ysq

The first inequality comes from simplifying the sum over all 2n possible values of Iy. The second
comes from applying a Chernoff bound to BinomialpPrY “ ys, nq and Hoeffding’s inequality to
γȳy. We can set η to balance these terms:

η2

2
“ 2t2p1´ ηq,

which yields:
η “ 2

´

a

t4 ` t2 ´ t2
¯

,

since the other root is negative. Substituting η gives:

Pr|γSȳy ´ γȳy| ą ts ď 3 exp

ˆ

´2
´

a

t4 ` t2 ´ t2
¯2

nPrY “ ys

˙

For t P p0, 1q,
?
t4 ` t2 ´ t2 ě t{4, so

Pr|γSȳy ´ γȳy| ą ts ď 3 exp

ˆ

´
t2

8
nPrY “ ys

˙

Hence, for t P p0, 1q,

Pr|Rphq ´Rnphq| ą ts ď Pr|γ01 ´ γ
S
01| ` |γ10 ´ γ

S
10| ą 2ts

ď Pr|γ01 ´ γ
S
01| ą ts ` Pr|γ10 ´ γ

S
10| ą ts

ď 6 exp

ˆ

´
t2

8
n min
yPt0,1u

PrY “ ys

˙

.

“ 6 exp

ˆ

´
t2

8
nPrY ‰ ∅s min

yPt0,1u
PrY “ y|Y ‰ ∅s

˙

.

Now we show how to apply this deviation bound for R in place of Hoeffding’s inequality in the
symmetrization argument from Bousquet et al. [4].

Lemma 2 (Symmetrization). Let Z “ pX,Y q and suppose we have a ghost sample of n additional
points Z 1i drawn i.i.d. from P . Let R1nphq denote the empirical balanced error of classifier h on the
ghost sample. Then for any t ą 0 such that nt2 ě 32 log 12

minyPt0,1u PrY“ys :

P
„

sup
hPH

Rphq ´Rnphq ą t

ď 2P
„

sup
hPH

R1nphq ´Rnphq ą t{2

.

20

Proof of Lemma 2. This follows Bousquet et al. [4] exactly, except we replace the application of one
inequality with the deviation bound derived above. Let hn be the function achieving the supremum
on the left-hand-side. This depends on the sample pZ1, . . . , Znq.

1Rphnq´Rnphnqąt1Rphnq´R1
nphnqăt{2 “ 1Rphnq´Rnphnqąt^R1

nphnq´Rphnqě´t{2

ď 1R1
nphnq´Rnphnqąt{2

Taking the expectation over the second sample pZ 11, . . . , Z
1
nq,

1Rphnq´RnphnqątP
1rRphnq ´R

1
nphnq ă t{2s ď P1rR1nphnq ´Rnphnq ą t{2s

From the result above,

P 1rRphnq ´R
1
nphnq ě t{2s ď 6 exp

ˆ

´
t2

32
n min
yPt0,1u

PrY “ ys

˙

ď
1

2

by the condition on nt2. Hence

1Rphnq´Rnphnqąt ď 2P1rR1nphnq ´Rnphnq ą t{2s,

and taking the expectation over the original sample pZ1, . . . , Znq finishes the proof.

Define HZ1,...,Zn
“ tphpx1q, . . . hpxnqq : h P Hu. Recall that the growth function of class H

is defined as SHpnq “ suppZ1,...,Znq
|HZ1,...,Zn

|. Now to finish the proof of Theorem 2, observe
that the sup in the right-hand-side of the Lemma 2 result only depends on the finite set of vectors
HZ1,...,Zn,Z1

1,...,Z
1
n

That is,

P
„

sup
hPH

Rphq ´Rnphq ą t

ď 2P

«

sup
hPHZ1,...,Zn,Z1

1,...,Z1
n

R1nphq ´Rnphq ą t{2

ff

ď 2SHp2nq max
hPHZ1,...,Zn,Z1

1,...,Z1
n

PrR1nphq ´Rnphq ą t{2s

ď 4SHp2nqPrRphq ´Rnphq ą t{4s

ď 24SHp2nq exp

ˆ

´
t2

128
n min
yPt0,1u

PrY “ ys

˙

,

where in the first line we applied the definition of the growth function and used the union bound, and
in the last line we applied the concentration result for fixed h. Recall that the Sauer-Shelah lemma
[38, 32, 36] implies that for any class H with VCpHq “ d, SHpnq ď

`

en
d

˘d
. Then setting:

t ě 8

d

2
VCpHq log 2en

VCpHq ` log 24
δ

nminyPt0,1u PrY “ ys

completes the proof. Note that this choice of t ensures that nt2 ě 32 log 12
minyPt0,1u PrY“ys for any δ P

p0, 1q.

21

Table 4: Details for the WRENCH datasets used in this work.

Task Domain Dataset Num. Labels # Λ’s Train Val Test

Sentiment Movie IMDb 2 5 20,000 2,500 2,500
Review Yelp 2 8 30,400 3,800 3,800

Spam Classification Comments Youtube 2 10 1,586 200 250

Question Classification Web Query TREC 6 68 4,965 500 500

Relation Classification
Web Text SemEval 9 164 1,749 200 692
Chemical ChemProt 10 26 12,861 1,607 1,607
Biomedical CDR 2 33 8,430 920 4,673

Image Classification Video Frames Basketball 2 4 17,970 1,064 1,222

Topic Classification News AGNews 4 9 96,000 12,000 12,000

Table 5: Hyperparameter search spaces for label models and end models.

Model Parameters Searched Values

MeTaL
learning rate 1e-5, 1e-4, 1e-3, 1e-2, 1e-1
weight decaay 1e-5, 1e-4, 1e-3, 1e-2, 1e-1
training epochs 5, 10, 50, 100, 200

Data Programming
learning rate 1e-5, 5e-5, 1e-4
weight decaay 1e-5, 1e-4, 1e-3, 1e-2, 1e-1
training epochs 5, 10, 50, 100, 200

Logistic Regression

learning rate 1e-5, 1e-4, 1e-3, 1e-2, 1e-1
weight decaay 1e-5, 1e-4, 1e-3, 1e-2, 1e-1
batch size 32, 128, 512
training steps 10000

MLP

learning rate 1e-5, 1e-4, 1e-3, 1e-2, 1e-1
weight decaay 1e-5, 1e-4, 1e-3, 1e-2, 1e-1
batch size 32, 128, 512
training steps 10000
hidden layers 1
hidden size 100

BERT, RoBERTa

learning rate 2e-5,3e-5,5e-5
weight decay 1e-4
batch size 16, 32
training steps 10000

B All Empirical Results

B.1 Dataset and hyperparameter details

Table 4 is a reproduction of Zhang et al. [42]’s Table 5 for the datasets used in this paper. Zhang
et al. [42]’s Table 5 contains more statistics on the labeling functions, including average coverage
and accuracy.

Table 5 shows the hyperparameter search spaces for the label models and end models. We used the
same search spaces and tuning procedure as Zhang et al. [42] (see their Table 10), choosing the values
that obtain the best mean performance on the gold-labeled validation set across five trial runs. As
discussed in Section 4, we do not re-tune these hyperparameters for β ă 1.0; we used fixed values to
show that simply tuning β on its own can improve performance.

B.2 End model performance and β

Figure 6 shows how the end model test performance changes with β for TREC and SemEval datasets
and Majority Vote and Dawid-Skene label models. At low coverage fractions, the end model performs

22

Figure 6: End model performance versus coverage fraction β for TREC and SemEval, Majority Vote
and Dawid-Skene.

worse than in the β “ 1.0 case because there is less training data and because the training subsets
can be imbalanced (recall that we do not use stratified subset selection, and that the generalization
bound in Theorem 1 depends on the minimum coverage for each class). At the intermediate coverage
fractions, the end model performs better than the β “ 1.0 case. An interesting direction for future
work is to determine methods for automatically selecting the best value of β.

B.3 Subset selection versus relabeling

Why not correct pseudolabels with nearest neighbor? Consider an example xi whose weak label
Ŷ pxiq disagrees with the weak label Ŷ pxjq of most neighbors j P Npiq. This example would get
thrown out by the cut statistic selection. Instead of throwing such data points out, we could try to
re-label them with the majority weak label from the neighbors. However, throwing data out is a more
conservative (and hence possibly more robust) approach: Figure 7a shows a simple example where
relabeling performs much worse than sub-selection. For the representations studied in this work,
relabeling largely fails to improve training set quality and end model performance.

If the weak labels are mostly inaccurate close to the true unknown decision boundary (e.g., on hard
examples), relabeling can actually make the training set worse. This is also borne out on real empirical
examples. Figure 7b shows the weak label accuracy on a relabeled Yelp training set where the β
fraction of examples with the largest cut statistic score score Zi—examples with many more cut
edges than expected—are relabeled according to the majority vote of their neighbors. Relabeling
largely fails to improve over the quality of the β “ 1.0 full training set. However, we note that instead
of relabeling, [6] obtained good results using nearest-neighbor to expand the pseudolabeled training
set by labeling some of the unlabeled examples txi : Λpxiq “ ∅u. If most uncovered examples
tx : Ŷ pxq “ ∅u are closer to correctly pseudolabeled examples than incorrectly labeled ones, this
nearest-neighbor expansion can improve performance.

B.4 Additional selection accuracy plots

Figure 8 contain analogous plots to Figure 2 for every dataset in Table 1. These figures compare the
quality of the training subsets selected by the cut statistic and entropy scoring.

B.5 Ablation for number of cut statistic neighbors

K value Test accuracy
5 76.92 (2.57)
10 73.72 (2.59)
20 72.92 (1.31)
40 73.12 (2.39)
80 72.16 (1.89)

This table shows how the results change when varying the number
of nearest-neighbors K used in the cut statistic, using majority vote
and training a RoBERTa end model on TREC. The performance
gain over β “ 1.0 (which obtains 66.28% mean accuracy) is not
sensitive to the choice of K. As in all of our results, we re-used
hyperparameters from the β “ 1.0 case and chose the best value of
β “ 1.0 according to gold-labeled validation performance. The best
value for β was stable across all choices of K: β “ 0.4 had the optimal validation performance in all
of these experiments. As indicated in the table, better results may be obtained by tuning over K, but
our results showed the same value of K obtains good performance across a wide variety of datasets
and end models.

23

(a)

(b)

Figure 7: Left: example where subset selection performs better than re-labeling using φ. In this
example, the true labels Y are recoverable by an unknown linear classifier (the dotted line). The
weak labels (solid versus striped) are mostly incorrect close to this unknown decision boundary and
always correct farther from the decision boundary. Relabeling the noisy points using nearest-neighbor
(e.g., 4-nearest neighbor) actually makes the weak label accuracy worse, whereas selecting based on
the cut statistic yields a subset of examples with 100% accuracy. Right: relabeling performance on
Yelp. Points pβ, Y q show the accuracy of the pseudo-labeled training set obtained by relabeling the
noisiest β fraction of points (ranked by the cut statistic Zi) with the majority vote of their neighbors
in φ (dotted blue), compared to the accuracy when β “ 1 (solid orange). Relabeling largely fails to
improve accuracy over the β “ 1.0 case.

Table 6: RoBERTa results using β “ 1.0 (no sub-selection), reported from Zhang et al. [42]
imdb yelp youtube trec semeval chemprot agnews

MV [42] 85.76 (0.70) 89.91 (1.76) 96.56 (0.86) 66.28 (1.21) 84.00 (0.84) 56.85 (1.91) 86.88 (0.98)
MV (ours) 86.99 (0.55) 88.51 (3.25) 95.84 (1.18) 67.60 (2.38) 85.83 (1.22) 57.06 (1.12) 87.46 (0.53)

DP [42] 86.26 (1.02) 89.59 (2.87) 95.60 (0.80) 72.12 (4.58) 70.57 (0.83) 39.91 (9.33) 86.81 (0.42)
DP (ours) 86.31 (1.53) 88.73 (5.07) 94.08 (1.48) 71.40 (3.30) 71.07 (1.66) 52.52 (0.69) 86.75 (0.24)

DS [42] 84.74 (1.41) 92.30 (1.75) 93.52 (1.39) 48.32 (1.50) 69.67 (1.18) 45.69 (0.86) 87.16 (0.58)
DS (ours) 85.50 (1.68) 92.42 (1.41) 92.48 (1.44) 51.24 (3.50) 70.83 (0.75) 45.61 (2.60) 87.29 (0.40)

FS [42] 86.95 (0.58) 92.08 (2.63) 93.84 (1.57) 30.44 (3.48) 31.83 (0.00) 39.95 (6.50) 86.69 (0.29)
FS (ours) 85.25 (1.96) 92.14 (2.76) 93.52 (2.11) 35.40 (1.32) 31.83 (0.00) 47.23 (1.04) 86.56 (0.55)

MeTaL [42] 84.98 (1.07) 89.08 (3.71) 94.56 (0.65) 60.04 (1.18) 70.73 (0.68) 54.59 (0.77) 87.18 (0.45)
MeTaL (ours) 86.16 (1.13) 88.41 (3.25) 92.40 (1.19) 55.44 (1.08) 59.53 (1.87) 56.74 (0.58) 86.74 (0.60)

B.6 Original WRENCH results

Our β “ 1.0 results closely matched the β “ 1.0 results from Zhang et al. [42], but not in every
case, despite using the same hyperparameter search space and tuning scheme for both the label model
and the end model. Table 6 shows our results for RoBERTa and β “ 1.0 in line with the same
results reported in Zhang et al. [42]. Table 7 compares the performance of our method (i.e., selection
with the cut statistic) against the performance of COSINE [41], which performs multiple rounds of
self-training on the unlabeled data.

B.7 Combining the Cut Statistic with Weakly-Supervised Self-Training Methods

COSINE. COSINE [41] combines an initial set of pseudolabeled data with a self-training procedure
to make better use of the unlabeled data that is not covered by weak rules. In each round of self-
training, a subset of the data is chosen to use as the training set for the next round by using the
confidence score of the trained end model. Instead of using the confidence score, we can instead use
the cut statistic to select the training data for each round. This is analogous to switching from the
standard self-training algorithm to SETRED [19], which uses the cut statistic to select data for each
self-training round. Intuitively, replacing the poorly-calibrated confidence score with the cut statistic

24

0.2 0.4 0.6 0.8 1.0
Coverage

0.6

0.8

A
cc

ur
ac

y

Majority Vote

0.2 0.4 0.6 0.8 1.0
Coverage

0.8

0.9

Snorkel (DP)

0.2 0.4 0.6 0.8 1.0
Coverage

0.8

0.9

Dawid-Skene

0.2 0.4 0.6 0.8 1.0
Coverage

0.8

0.9

MeTaL

0.2 0.4 0.6 0.8 1.0
Coverage

0.8

0.9

FlyingSquid
Pseudolabel Accuracy on Training Subset vs Coverage, Yelp

method
entropy
cutstat

0.2 0.4 0.6 0.8 1.0
Coverage

0.75

0.80

0.85

A
cc

ur
ac

y

Majority Vote

0.2 0.4 0.6 0.8 1.0
Coverage

0.75

0.80

0.85

Snorkel (DP)

0.2 0.4 0.6 0.8 1.0
Coverage

0.75

0.80

0.85

Dawid-Skene

0.2 0.4 0.6 0.8 1.0
Coverage

0.75

0.80

0.85

MeTaL

0.2 0.4 0.6 0.8 1.0
Coverage

0.8

0.9
FlyingSquid

Pseudolabel Accuracy on Training Subset vs Coverage, IMDb

method
entropy
cutstat

0.2 0.4 0.6 0.8 1.0
Coverage

0.8

1.0

A
cc

ur
ac

y

Majority Vote

0.2 0.4 0.6 0.8 1.0
Coverage

0.9

1.0
Snorkel (DP)

0.2 0.4 0.6 0.8 1.0
Coverage

0.9

1.0
Dawid-Skene

0.2 0.4 0.6 0.8 1.0
Coverage

0.9

1.0
MeTaL

0.2 0.4 0.6 0.8 1.0
Coverage

0.8

0.9

1.0
FlyingSquid

Pseudolabel Accuracy on Training Subset vs Coverage, YouTube

method
entropy
cutstat

0.2 0.4 0.6 0.8 1.0
Coverage

0.6

0.8

A
cc

ur
ac

y

Majority Vote

0.2 0.4 0.6 0.8 1.0
Coverage

0.6

0.8

Snorkel (DP)

0.2 0.4 0.6 0.8 1.0
Coverage

0.6

0.8

Dawid-Skene

0.2 0.4 0.6 0.8 1.0
Coverage

0.6

0.8

1.0 MeTaL

0.2 0.4 0.6 0.8 1.0
Coverage

0.1

0.2

0.3
FlyingSquid

Pseudolabel Accuracy on Training Subset vs Coverage, TREC

method
entropy
cutstat

0.2 0.4 0.6 0.8 1.0
Coverage

0.8

0.9

1.0

A
cc

ur
ac

y

Majority Vote

0.2 0.4 0.6 0.8 1.0
Coverage

0.6

0.8

1.0
Snorkel (DP)

0.2 0.4 0.6 0.8 1.0
Coverage

0.8

0.9

1.0
Dawid-Skene

0.2 0.4 0.6 0.8 1.0
Coverage

0.50

0.75

1.00
MeTaL

0.2 0.4 0.6 0.8 1.0
Coverage

0.1

0.2

0.3
FlyingSquid

Pseudolabel Accuracy on Training Subset vs Coverage, SemEval

method
entropy
cutstat

0.2 0.4 0.6 0.8 1.0
Coverage

0.525

0.550

0.575

A
cc

ur
ac

y

Majority Vote

0.2 0.4 0.6 0.8 1.0
Coverage

0.4

0.5

0.6

Snorkel (DP)

0.2 0.4 0.6 0.8 1.0
Coverage

0.5

0.6

0.7 Dawid-Skene

0.2 0.4 0.6 0.8 1.0
Coverage

0.6

0.7

MeTaL

0.2 0.4 0.6 0.8 1.0
Coverage

0.4

0.6

FlyingSquid
Pseudolabel Accuracy on Training Subset vs Coverage, ChemProt

method
entropy
cutstat

0.2 0.4 0.6 0.8 1.0
Coverage

0.85

0.90

0.95

A
cc

ur
ac

y

Majority Vote

0.2 0.4 0.6 0.8 1.0
Coverage

0.85

0.90

0.95

Snorkel (DP)

0.2 0.4 0.6 0.8 1.0
Coverage

0.85

0.90

0.95

Dawid-Skene

0.2 0.4 0.6 0.8 1.0
Coverage

0.5

1.0
MeTaL

0.2 0.4 0.6 0.8 1.0
Coverage

0.8

0.9

FlyingSquid
Pseudolabel Accuracy on Training Subset vs Coverage, AGNews

method
entropy
cutstat

Figure 8: Accuracy of the pseudolabeled training set versus the selection fraction β for five different
label models and seven datasets. A pretrained BERT model is used as φ for the cut statistic. The
accuracy of the weak training labels is better for β ă 1, indicating that sub-selection can select
higher-quality training sets. The two curves should always agree at β “ 1.0, but don’t always do so
for MeTaL due to noise in the MeTaL training procedure.

in each round should lead to higher quality training data and increased performance. Our previous
experiments show this is true for the first round.

ASTRA. ASTRA [15] is a semi-weakly supervised learning method that uses weakly-labeled data
plus a small set of labeled data and a large set of unlabeled data. There are two networks: the
teacher model, also called the Rule Attention Network (RAN), and the student model, which is
analogous to our end model (BERT, RoBERTa, etc.). Training proceeds in rounds. In the first step,
the student model is fine-tuned on the small labeled dataset and used to pseudolabel the unlabeled

25

Table 7: Cut statistic versus the COSINE method [41]. We report the tuned COSINE performance
from [42]. COSINE performs multiple rounds of self-training on the unlabeled data, whereas the cut
statistic method performs one round of training on a carefully chosen subset of the weakly-labeled
data. Surprisingly, the cut statistic is sometimes competitive with COSINE despite not using any of
the unlabeled data and only requiring one round of training. We show in Section B.7 how to combine
two appraoches.

End Model Method imdb yelp youtube trec semeval chemprot agnews

BERT

MV + COSINE 82.98 (0.05) 89.22 (0.05) 98.00 (0.00) 76.56 (0.08) 86.80 (0.46) 58.47 (0.08) 87.03 (0.00)
MV + cutstat 81.86 (1.36) 89.49 (0.78) 95.60 (0.72) 71.84 (3.00) 92.47 (0.49) 57.47 (1.00) 86.26 (0.43)

DP + COSINE 84.58 (0.08) 88.44 (0.03) 96.32 (0.16) 78.72 (0.43) 75.77 (1.33) 57.51 (0.02) 86.98 (0.39)
DP + cutstat 79.07 (2.52) 88.13 (1.46) 93.92 (0.93) 76.76 (1.92) 91.07 (0.90) 55.10 (1.49) 85.89 (0.45)

DS + COSINE 91.54 (0.54) 90.84 (0.30) 94.16 (0.20) 53.36 (0.29) 72.50 (0.00) 49.65 (0.68) 87.19 (0.00)
DS + cutstat 80.22 (1.69) 89.04 (1.10) 90.72 (1.27) 57.28 (2.91) 89.07 (1.62) 49.07 (1.48) 86.93 (0.22)

FS + COSINE 84.40 (0.00) 89.05 (0.07) 94.80 (0.00) 27.60 (0.00) 31.83 (0.00) 48.10 (0.60) 87.16 (0.16)
FS + cutstat 80.85 (1.50) 88.75 (1.13) 91.04 (1.23) 33.84 (3.17) 31.83 (0.00) 48.65 (0.99) 85.90 (0.39)

MeTaL + COSINE 83.47 (0.12) 89.76 (0.00) 94.88 (0.53) 61.80 (0.00) 79.20 (2.33) 55.46 (0.12) 87.26 (0.02)
MeTaL + cutstat 81.49 (1.51) 88.41 (1.19) 92.64 (0.41) 63.80 (2.28) 65.23 (0.91) 58.33 (0.81) 86.16 (0.48)

RoBERTa

MV + COSINE 88.22 (0.22) 94.23 (0.20) 97.60 (0.00) 77.96 (0.34) 86.20 (0.07) 59.43 (0.00) 88.15 (0.30)
MV + cutstat 86.69 (0.75) 95.19 (0.23) 96.00 (1.10) 72.92 (1.31) 92.07 (0.80) 59.05 (0.56) 88.01 (0.47)

DP + COSINE 87.91 (0.15) 94.09 (0.06) 96.80 (0.00) 82.36 (0.08) 75.17 (0.95) 52.86 (0.06) 87.53 (0.03)
DP + cutstat 86.46 (1.82) 93.95 (0.93) 93.04 (1.30) 76.84 (4.09) 86.07 (1.82) 56.43 (1.37) 87.76 (0.17)

DS + COSINE 88.01 (0.56) 94.19 (0.18) 96.24 (0.41) 59.40 (0.42) 71.70 (0.07) 46.75 (0.27) 88.20 (0.11)
DS + cutstat 86.14 (0.60) 93.81 (0.69) 93.84 (0.70) 58.48 (2.75) 81.67 (1.33) 52.93 (1.67) 88.35 (0.22)

FS + COSINE 88.48 (0.00) 95.33 (0.06) 96.80 (0.00) 33.80 (0.00) 31.83 (0.00) 39.89 (0.00) 87.23 (0.00)
FS + cutstat 87.71 (0.76) 94.50 (0.74) 95.84 (0.54) 38.16 (0.43) 31.83 (0.00) 50.55 (1.05) 87.49 (0.13)

MeTaL + COSINE 86.46 (0.11) 93.11 (0.01) 97.04 (0.20) 71.64 (0.59) 70.90 (0.08) 53.32 (0.19) 87.85 (0.02)
MeTaL + cutstat 87.46 (0.65) 94.03 (0.53) 93.84 (1.38) 69.72 (2.39) 66.70 (0.90) 57.40 (0.98) 88.40 (0.38)

5 00

500

1000

C
ou

nt

Majority Vote

5 00

500

1000

C
ou

nt

Data Programming

5 00

500

1000

C
ou

nt

Dawid-Skene

5 00

500

1000

C
ou

nt

FlyingSquid

2.5 0.0 2.50

500

1000

C
ou

nt

MeTaL

Figure 9: Histograms for the cut statistic score Zi on IMDb using BERT as φ.

dataset. Next, the teacher is trained on the weakly-labeled training data plus pseudolabeled data
from the gold-fine-tuned student. The teacher then pseudolabels the unlabeled data using a learned
instance-specific weighting procedure, so that high-quality examples are upweighted. Finally, the
student model is trained on this data.

We can insert the cut statistic in multiple parts of this procedure. First, in each round, ASTRA trains
the teacher model on all of the pseudolabeled data from the gold-fine-tuned student. Instead, we
can use the cut statistic to select a high-quality subset of this data for the teacher model to train on.
Second, the student model is trained on a subset of the data selected by the teacher model; we can
further filter this subset with the cut statistic. Applying the cut statistic in this step is somewhat less
necessary, since ASTRA already has a (soft) instance-specific selection procedure built-in.

Table 8 shows plain ASTRA versus ASTRA + cutstat on SemEval and TREC using a RoBERTa-base
end model. Standard deviations are reported across five random seeds for choosing the labeled subset.
Following the best constant β from Section 4, we set β “ 0.6 for the first round of training, then
increase by 0.1 in each round to use more of the unlabeled data each time. So β for the t-th round
of ASTRA is minp1, 0.6 ` 0.1tq, t P t0, . . . , 24u. Following Karamanolakis et al. [15], we train
ASTRA for up to 25 iterations using a patience of 3 iterations. In each step, the model checkpoint
with best validation performance is kept. We did not perform hyperparameter tuning on the end
model parameters and used a fixed learning rate of 2e-5 and batch size 128. The cut statistic improves
the ASTRA performance for nearly every labeled data size despite us not tuning β on the validation
set. Tuning β on the validation set, as in Table 1, would likely result in even better performance gains.

26

Table 8: Combining the cut statistic with ASTRA [15] boosts performance by selecting a higher-
quality set of training data for the teacher model in each round. These results use fixed end-model
hyperparameters and a fixed choice for the cut statistic fraction β in each round.

Method |Labeled set| trec semeval
ASTRA 10 65.60 (5.19) 82.70 (3.04)

+ cutstat 10 67.40 (5.78) 91.10 (0.92)
ASTRA 20 74.40 (3.35) 86.53 (1.17)

+ cutstat 20 75.04 (1.63) 90.27 (2.09)
ASTRA 40 85.72 (1.32) 87.60 (1.22)

+ cutstat 40 84.52 (3.17) 91.20 (1.11)

C Cut statistic code

For simplicity in computing the graphG for the cut statistic, we provide code where the neighborhoods
sets Npiq are not necessarily symmetric, so i P Npjq ùñ j P Npiq. This does not change the
empirical performance of the algorithm.

import torch

def get_conf_inds(labels, features, coverage, device='cuda'):
features = torch.FloatTensor(features).to(device)
labels = torch.LongTensor(labels).to(device)

move to CPU for memory issues on large dset
pairwise_dists = torch.cdist(features, features, p=2).to('cpu')

N = labels.shape[0]
dists_sorted = torch.argsort(pairwise_dists)
neighbors = dists_sorted[:,:20]
dists_nn = pairwise_dists[torch.arange(N)[:,None], neighbors]
weights = 1/(1 + dists_nn)

neighbors = neighbors.to(device)
dists_nn = dists_nn.to(device)
weights = weights.to(device)

cut_vals = (labels[:,None] != labels[None,:]).long()
cut_neighbors = cut_vals[torch.arange(N)[:,None], neighbors]
Jp = (weights * cut_neighbors).sum(dim=1)

weak_counts = torch.bincount(labels)
weak_pct = weak_counts / weak_counts.sum()

prior_probs = weak_pct[labels]
mu_vals = (1-prior_probs) * weights.sum(dim=1)
sigma_vals = prior_probs * (1-prior_probs) * torch.pow(weights, 2).sum(dim=1)
sigma_vals = torch.sqrt(sigma_vals)
normalized = (Jp - mu_vals) / sigma_vals

normalized = normalized.cpu()
inds_sorted = torch.argsort(normalized)

N_select = int(coverage * N)
conf_inds = inds_sorted[:N_select]
conf_inds = list(set(conf_inds.tolist()))
return conf_inds

27

