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Abstract

We develop a new type of model for solving the task of inverting the transmis-
sion effects of multi-mode optical fibres through the construction of an SO+(2, 1)-
equivariant neural network. This model takes advantage of the of the azimuthal
correlations known to exist in fibre speckle patterns and naturally accounts for the
difference in spatial arrangement between input and speckle patterns. In addition,
we use a second post-processing network to remove circular artifacts, fill gaps,
and sharpen the images, which is required due to the nature of optical fibre trans-
mission. This two stage approach allows for the inspection of the predicted im-
ages produced by the more robust physically motivated equivariant model, which
could be useful in a safety-critical application, or by the output of both models,
which produces high quality images. Further, this model can scale to previously
unachievable resolutions of imaging with multi-mode optical fibres and is demon-
strated on 256 × 256 pixel images. This is a result of improving the trainable
parameter requirement from O(N4) to O(m), where N is pixel size and m is
number of fibre modes. Finally, this model generalises to new images, outside of
the set of training data classes, better than previous models.

1 Introduction

Multi-mode fibres (MMF) have many potential applications in medical imaging, cryptography, and
communications. In the medical domain, the use of multi-mode fibre imaging has potential to create
hair-thin endoscopes for imaging sensitive areas of the body. However, to achieve these applications,
the fibre transmission properties must be compensated for to return a clear image (Stasio, 2017). A
MMF has multiple different fibre modes, each of which propagates at a different velocity. This leads
to an amplitude and phase mixing of the image as it propagates through the fibre (Mitschke, 2016).
As a result, an input image creates a complex-valued speckled pattern on the output of the MMF.
The ability to accurately and in a scalable way learn to invert the transmission effects would unlock
MMF imaging as a useful tool across a range of domains. This work concerns the use of a single
multi-mode fibre and not fibre bundles.
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Inverting a speckled image is challenging for multiple reasons. Firstly, the speckled images have
a non-local relationship with respect to the original images. As a result, solely local patch-based
models, such as convolutional neural networks, do not make sense as a solution without some dense
mapping function. Therefore, the non-locality necessitates mapping the speckled images into a spa-
tial arrangement similar to the original images before typical image-based deep learning techniques
can be used, such as convolutions and pooling. In addition, the speckled images have circular corre-
lation, which could be taken advantage of, although as noted by Moran et al. (2018), finding these
requires solving the inversion, creating a chicken-and-egg problem. Finally, the fibre is equivalent
to an unknown complex transmission matrix (TM) so, the inverse of this could be found using a
complex-valued linear model, although this presents challenges in terms of memory requirements.
A mapping between 350× 350 original and speckled images would result in a TM with 3504 ≈ 15
billion entries, requiring a linear model with as many parameters.

Previous work in inverting the transmission effects of MMFs has either required extensive experi-
mentation to characterise the TM of the fibre (Čižmár & Dholakia, 2011, 2012; Choi et al., 2012;
Mahalati et al., 2013; Papadopoulos et al., 2012; Plöschner et al., 2015; Leite et al., 2021), where the
number of experimental measurements required for re-calibration was reduced by Li et al. (2021) by
exploiting sparstiy in the TM; made use of dense linear models (Moran et al., 2018; Fan et al., 2019;
Caramazza et al., 2019); or made use of convolutional models (Borhani et al., 2018; Rahmani et al.,
2018). For the machine learning approaches to tackling the inversion task, those which make use
of a dense linear model (Moran et al., 2018; Fan et al., 2019; Caramazza et al., 2019) can naturally
account for the difference in spatial arrangement between speckled and original images, although
they scale badly with the resolution of the images considered (O(N4) for N × N resolution). On
the other hand, in theory, the convolutional neural network (CNN) models (Borhani et al., 2018;
Rahmani et al., 2018) improve upon the scalability issue, but in practice due to the need to approxi-
mate the transmission matrix and its non-local effects, the models require a large number of layers
in order to be able to effectively map every pixel in the speckled image to every pixel in the original
image, and hence in practice do not over come the scalability issues. All of these approaches are
mostly expected to work for classes of objects that belong to the class that was used for training
(Borhani et al., 2018), with Rahmani et al. (2018) making initial steps towards general imaging and
Caramazza et al. (2019) demonstrating this for a more diverse testing dataset. We provide further
details on each of the previous methods in Appendix A.2.

In this work we present a model which naturally accounts for the difference in spatial arrangement
between speckled and original images and scales more efficiently than previous methods to higher
resolution images. We believe this is the first method to demonstrate an ability to invert 256 × 256
pixel speckled images into 256 × 256 pixel original images. Our approach also takes advantage of
the circular correlations in the speckled images, and improves upon previous general imaging results.
Concerning the equivariance literature, we develop a model comprising of cylindrical harmonic
basis functions, a basis set which has seen little attention in the equivariance literature, and make the
connection between the transmission of light through a fibre and the group theoretic understanding
used in developing equivariant neural networks. Our contributions are:

1. A more data-efficient, scalable model to solve the inversion of MMF transmission effects.
2. A model that provides better generalisation to out-of-training domain images.
3. A connection between group theoretic equivariant neural networks and the inversion of

MMF transmission effects, providing a new type of model to tackle the problem.

2 Background

2.1 Multi-Mode Fibres

Multi-mode fibres present a clear advantage over single-mode fibre bundles due to having 1-2
orders of magnitude greater density of modes than a fibre bundle (Choi et al., 2012). Despite this,
the different propagation velocities of each mode, which result in the fibre producing scrambled
images, presents a significant challenge. If each propagation mode and velocity was known the
TM could be computed, providing a linear system that inverts the transmission effects, although
in general this is not known. Further, mode specific losses and imperfect mapping between the
input pixels and fibre modes can lead to information loss such that inverting the transmission does
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not yield the true original input image, as is demonstrated in Figure 1. Therefore, a model which
correctly models the physics of inverting the transmission effects should produce the inverted
image in Figure 1 and producing the original image requires addition information to be learned.
We discuss the propagation of light through optical fibres and how we construct theoretical TMs in
Section 2.2 and further details on the inversion of the TM in Appendix A.4.

(a) Original (b) Speckled (c) Inverted

Figure 1: (a) Original image. (b) Speckled image from passing original images through a theoretical
TM. (c) Inverted image created by passing speckled images through the inverted theoretical TM.

2.2 Generation of Theoretical Transmission Matrices

Light propagation through a MMF is characterised by the transmission modes of the fibre. The fi-
bres considered in this work have a step index profile with the refractive index within the core being
constant and at a higher value than the cladding. Analytical solutions for the fibre modes can be
determined by solving the Helmholtz equation in cylindrical coordinates (details in Appendix A.1).
The problem can therefore be expressed as an eigenvalue eigenfunction problem, where the eigen-
functions are the fibre modes and the eigenvalues are the propagation constants, β, of the modes.
The solutions for the electric field within the fibre are comprised of Bessel functions of the first kind
inside the core and modified Bessel functions of the second kind in the cladding as follows:

f core
l (r, θ) =

Jl(u(β) · r
R )

Jl(u(β))
e±ilθ, f clad

l (r, θ) =
Kl(w(β) · r

R )

Kl(w(β))
e±ilθ, (1)

where r and θ are the radial and azimuthal coordinates, respectively, l is the azimuthal index of the
mode, R is the fibre core radius, and u and w are normalised frequencies defined as follows:

u(β) = R
√
k20n

2
core − β2

lm, w(β) = R
√
β2
lm − k20n

2
clad, (2)

where ncore and nclad are the refractive indices of the core and cladding, respectively, k0 is the
vacuum wave number, and m is the radial mode index. Further details on the connection between
propagation of light through MMFs and group theoretic equivariant neural networks are provided
in Appendix A.1. Taking the derivative of Equations 1, and equating the resulting functions asserts
a smoothness condition on the electric field across the core-cladding boundary. Solving for this for
all values of β over all possible integer values of l gives the propagation constants. These constants
correspond to the fibre modes given by the now appropriately parameterised Equations 1. Examples
of the mode fields are given in Figure 2.

A diagonal fibre propagation matrix, F , can then be made from the eigenvalues, β, of the Helmholtz
problem and the corresponding eigenfunctions can be recorded in a matrix, M , which maps the
image space to the fibre mode, or group space. We can find the inverse mapping bases from the
fibre or group space back to the image space, M†, by taking the conjugate transpose. These three
components allow us to construct the transmission matrix as: TM = MFM †.

2.3 Equivariance

Equivariance in neural networks concerns the study of symmetries and uses these to build an induc-
tive bias into a model (Cohen & Welling, 2016a; Bronstein et al., 2021). Equivariance as a prop-
erty of a neural network guarantees that a transformation of the input data produces a predictable
transformation of the predicted features (Worrall et al., 2017). Formally, we say that, given two
transformations T and T ′ which are linear representations of a group G and a network or layer Φ,
the network is equivariant if applying transform Tg to an input x and then passing it through the

3



Figure 2: Electric field amplitude profiles of the Bessel bases used within our model. Here red is
positive, blue is negative and the colour saturation represents the electric field strength. These bases
are often known as LP modes.

network Φ yields the same result as first passing x through Φ and then transforming by T ′
g (Cohen

& Welling, 2016a); that is,
ΦTg(x) = T ′

g(Φ(x)). (3)

Convolutional neural networks (CNNs) are an early example of equivariance on images, where by
design they are translationally equivariant (LeCun et al., 1998). More recently, equivariance has
been considered for other group actions than that of the translation group. The majority of works on
images involve incorporating rotation or reflection equivariance into the model, where a variety of
different group transformations have been considered (Cohen & Welling, 2016a,b; Weiler & Cesa,
2019; Murugan et al., 2019; Wiersma et al., 2020; De Haan et al., 2020; Franzen & Wand, 2021).

We are not interested in developing a group equivariant convolutional model here due to the non-
similar spatial arrangements between the speckled and original image domains. Despite this, the
concept of equivariance still applies, as the concept of learning a model from a fixed basis set, which
guarantees symmetry properties are conserved, is relevant due to the nature of transmission through
multi-mode optical fibres.

2.4 Circular Harmonics

Of the works that incorporate rotation equivariance into CNNs we are particularly interested in
those using a continuous rotation group SO(2). In the case of discrete rotation groups a different
feature space is associated to each rotation angle. Storing features for an infinite number of rotation
angles is not computationally tractable. One option is to turn to a Fourier representation, whereby
instead of choosing a discrete number of rotations a maximum frequency can be chosen. To use
a Fourier representation for the weights of the model the domain R2 is decomposed into a radial
profile and angular function. Solving for the kernel space of permissible filters that can be used
within a CNN and ensuring that the model maintains rotation equivariance yields only the spectrally
localised circular harmonics (Worrall et al., 2017; Weiler & Cesa, 2019; Franzen & Wand, 2021).
Therefore a rotation equivariant CNN can be created by solving for the circular harmonics up to a
certain rotational frequency, combining this with a radial profile function, and sampling a basis of
resolution given by the CNN filter size. This yields a set of bases which can be linearly combined
with a learnable weighting applied to each to form the kernel for the CNN.

2.4.1 Cylindrical Harmonics

While the circular harmonics have seen some attention in the deep learning community due to the
use in constructing rotational equivariant CNNs, the cylindrical harmonics have seen less attention
(Klicpera et al., 2020). The cylindrical harmonics appear as a solution to Bessel functions for integer
α and are therefore of interest for problems where information transformation is characterised by
such functions. For example Bessel functions are used when solving wave or heat propagation.
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Bessel functions are solutions for different complex numbers α of Bessel’s differential equation:

x2 d
2y

dx2
+ x

dy

dx
+ (x2 − α2)y = 0. (4)

For integer values of α the Bessel function solutions are a linearly independent set of functions ex-
pressed in cylindrical coordinates. Each function consists of the product of three functions. The
radially dependent term is typically called the cylindrical harmonics. Further details on the connec-
tion between group theory and the Bessel basis functions is provided in Appendix A.1.

3 Our Method

Our method comprises two models: a Bessel equivariant model and a convolutional post-processing
model. The Bessel equivariant model uses a basis set comprising cylindrical harmonics and learns
a complex mapping function to use the known symmetries in optical fibres. The Bessel equivariant
model is constrained by the basis choice to produce circular images, which can have circular artifacts
also seen in a true inversion, see Figure 1. The post-processing model is used to fill gaps in the
corners, remove circular artifacts, and sharpen the images. The two stage approach is useful in safety-
critical applications as users can inspect the output of both models, where the Bessel equivariant
model output is less likely to depend on the training data due to the choice of inductive bias.

3.1 Bessel Basis Equivariant Model

The core of our model has an inductive bias that better replicates the physics of the task of inverting
the transmission effects of MMF imaging. To achieve this we utilise prior knowledge of MMFs and
the modes with which an image propagates through the fibre. Similar to the successes of rotation
equivariant neural networks, which make use of circular harmonics to achieve rotation equivariance,
we utilise cylindrical harmonics as an inductive bias of the model. This is motivated by the prop-
agation modes of the fibre being characterised by Bessel functions, where the radially dependent
solution is given by the cylindrical harmonics. We make the connection to the group theoretic devel-
opment of equivariant neural networks in Appendix A.1, demonstrating the connection between the
group SO+(2, 1), the light cone, and Bessel function solution to the wave equation.

The first stage of the model is the computation of two sets of basis functions. The first set transforms
the input image into a function that lives on the group and the second transforms back into the image
domain. The model’s weight matrix linearly transforms the function mapped by the first basis set.
The basis filters are computed in accordance with equations in Appendix 2.2.

These functions are sampled on a grid given by the size of the speckled images for the first basis
set and the original images for the second basis set. An example of the bases produced is given
in Figure 2. The Bessel function bases are computed in a pre-training stage and therefore this
step only has to be completed once when creating the model. Further, these bases are not trainable
parameters and are not updated during training of the model. These basis functions are an alternative
to those used in general rotation equivariant neural networks, which typically offer equivariance to
the group SO(2), except they correctly model the symmetry group, SO+(2, 1) of the task of inverting
transmission effects of a MMF due to the added time dimension.

The model trainable parameters are complex-valued weights of size equal to the number of bases.
The complex weight matrix is a diagonal matrix. The images transformed by the first basis set are
multiplied by the weight matrix before being transformed by the second basis set to produce the
predicted image. The overall model architecture is given in Figure 3.

3.2 Post-Processing Model

As demonstrated in Section A.4 the limited number of modes means that the transmission effects of
a MMF are typically not fully invertible leading to information loss. We would therefore not expect
an equivariant model informed by the physics of the task to be able to fully invert the transmission
effects. To overcome this we add a second model which is similar to a super-resolution model, except
that it does not change the resolution and instead learns to remove circular artifacts, fill in gaps, and
sharpen the images. It is a fully convolutional model comprising of convolutional layers and non-
linearities. This model takes as input the output of our Bessel equivariant model, which we suspect
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Figure 3: Our two stage model architecture comprising of a Bessel equivariant model and post-
processing model. Input (left) is speckled images. Output (right) is predicted image. The speckled
image resolution Bessel function bases transform the speckled image into a mode space of the group
SO+(2, 1). The complex weight matrix is diagonal. The original image resolution Bessel function
basis provides a mapping from the mode space to the output image space. The trainable parameters
of the Bessel equivariant model are the diagonal complex weight matrix only. The post-processing
model is a convolutional model.

will be similar to what is achievable by passing the speckled images through an inverted TM, and
predicts the original images. This model is composed of eight convolutional layers with ReLU non-
linearities. The motivation behind the explicit separation of the inversion and enhancement models
is that in some applications, especially safety-critical applications, it is important to be able to see
the results of an inversion conditioned on the observations alone, regardless of prior expectations.

4 Experiments

We investigate performance with both data generated with a theoretical TM and experimental data
collected using a real MMF fibre. We provide details of the theoretical TM generation in Section 2.2.
We use the data from a real fibre, as described in Moran et al. (2018), to validate that our new
approach can model the same data, despite using significantly fewer trainable model parameters.
Further, we generate data using a theoretical TM as this allows us to flexibly adapt the parameters
of the experiment and create new datasets to validate the new model design. Finally, the theoretical
TM allows us to experiment with images with higher resolution than has been previously been
considered. We provide details on the training of the models and datasets in Appendix A.3.

4.1 Real Multimode Fibre

We compare our model to the complex-valued linear model developed by Moran et al. (2018) by
considering both MNIST and fMNIST data. For this we train and test separate models for the
MNIST and fMNIST datasets. In addition, we compare multiple different versions of our model
where the diagonal restriction of the mapping between bases is relaxed to allow for a block diagonal
structure. We do this to account for manufacturing defects, sharp bends, dopant diffusion, elliptical
cores which causes the diagonal mapping of the fibre matrix within the TM to be block diagonal
(Carpenter et al., 2014). This relaxation allows for x-offsets above and below the main diagonal.

Table 1 shows that our model with a full mapping matrix between bases, i.e. full relaxation of the di-
agonal constraint, outperforms all other models. In addition, with a relaxation to allow for a 10 block
diagonal structure our model performs comparably. On the other hand, the complex linear model
outperforms our Bessel equivariant model when the diagonal restriction on the mapping function be-
tween bases is enforced. Despite this, our model still provides clear and accurate reconstructions of

Table 1: Comparison of the loss values of each model trained with MNIST or fMNIST data.
MNIST fMNIST

Model Train Loss Test Loss Train Loss Test Loss

Complex Linear 0.00396 0.00684 0.00509 0.01061
Bessel Equivariant Diag 0.03004 0.03125 0.02903 0.03140
Bessel Equivariant Diag + Post Proc 0.01317 0.01453 0.01609 0.01749
Bessel Equivariant 10 Off Diag + Post Proc 0.00488 0.00576 0.00943 0.01162
Bessel Equivariant Full 0.00300 0.00684 0.00548 0.01380
Bessel Equivariant Full + Post Proc 0.00145 0.00378 0.00306 0.00964
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(a) Input (b) Target (c) BEM (d) BEM+PP (e) Complex

Figure 4: Comparison of predicted images from inverting transmission effects of a MMF. The upper
row is fMNIST data, lower row MNIST data. (a) Input speckled image, (b) the target original image
to reconstruct, (c) Output of the Bessel equivariant model, (d) Output of the combination of Bessel
equivariant and post-processing model, and (e) the output of the complex-valued linear model.

the target images whilst using orders of magnitude fewer trainable parameters. Additional results are
presented in Tables 6 and 7. Further to a comparison of the loss values, we visually inspect the recon-
struction quality in Figure 4, and we provide further visualisations in Figures 16 and 17. Thus despite
our Bessel equivariant diagonal model achieving a larger loss value, the digit or item is still clearly
visible in the prediction and is correctly sharpened to a realistic prediction of the original image by
our post-processing model. The complex linear model can also be seen to predict a realistic looking
output of the correct digit and object, although some noise does feature in the prediction. In addition,
we visually compare each of our Bessel equivariant models with the diagonal restriction relaxed in
Figures 10 and 11, which demonstrates that as the diagonal restriction is relaxed the model can better
predict the original images with less noise in the prediction from the Bessel equivariant model.

We also compare the number of trainable parameters within the model in Table 2. This highlights
that our model requires two orders of magnitude fewer parameters that the complex linear model
when using the diagonal Bessel equivariant model. Therefore, our model has the potential to scale
to higher resolution images where the complex linear model will run out of GPU memory. As the
diagonal mapping between Bessel bases is relaxed to include 10-block diagonal structure the model
still requires two order of magnitude fewer parameters. In the most flexible version of our model
the number of trainable parameters is comparable with the complex Linear model, although we have
demonstrated that this level of flexibility is not required to achieve good image reconstruction.

Table 2: Comparison of # trainable parameters in each model trained with MNIST or fMNIST data.
Model Number of Trainable Parameters (Millions)

Complex Linear 78.826
Bessel Equivariant Diag + Post Proc 0.500
Bessel Equivariant 10 Off Diag + Post Proc 0.617
Bessel Equivariant Full + Post Proc 43.108

4.2 Theoretical TM

We compare our model to the complex linear model developed by Moran et al. (2018) with data
created using a theoretical TM. We create multiple datasets one using 28×28 fMNIST images, with
180× 180 speckled images, another with MNIST images, of the same size, and one with a subset of
images from the ImageNet dataset (Deng et al., 2009) where we fix the resolution to be 256 × 256
of both the images and speckled images. Using fMNIST and MNIST with a theory TM is useful
for developing understanding, due to the ease of creating different experiments and datasets, and for
testing the generalisability of the model between the two datasets. We include the ImageNet-based
dataset as these are higher resolution images containing more challenging information than fMNIST.
To the best of our knowledge, demonstrating the ability to invert transmission effects of such high
resolution images has not been previously achievable with a machine learning based approach.
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Table 3: Comparison of the loss values of each model trained with fMNIST data.
fMNIST MNIST

Model Train Loss Test Loss Test Loss

Complex Linear 0.0149 0.0146 0.0363
Bessel Equivariant 0.0141 0.0139 0.0026
Bessel Equivariant + Post Proc 0.0032 0.0032 0.0028

4.2.1 Generalisability of Models

We provide a comparison of the predictions of a complex valued linear model (Moran et al., 2018),
our equivariant model only, and our equivariant model coupled with a post-processing model trained
on fMNIST images and tested on both fMNIST and MNIST to analyse to what extent the models
can generalise to a new dataset. Table 3 presents the loss values for both the training and testing of
each model. Considering the fMNIST data this shows that the complex linear and Bessel equivariant
models achieve similar loss values. Although this is a result of the Bessel equivariant model under-
performing due to not being able to reconstruct pixel values close to the edge of the image as a
consequence of the circular nature of the Bessel bases functions, while the complex linear model
under-performs due to failing to reconstruct higher frequency information and over-fitting to the
general clothing categories. Finally, when our Bessel equivariant model is combined with the post-
processing model it outperforms all other models. The ability to generalise to a new data is assessed
through the MNIST dataset. This shows that our Bessel equivariant model significantly out-performs
the complex linear model in generalising to a new dataset.

Figure 5 shows reconstructions produced by the three models, with further reconstructions provided
in Figure 18. This demonstrates visually that our model, even without the post-processing part, is
able to better reconstruct the original images. The post-processing model refines the output of the
equivariant model and fills in gaps outside the fibre. Despite it being possible to estimate the general
category of clothing from the outputs of the complex linear model, the higher frequency information
has been lost, i.e. the pattern on the jumper or the curve in the trouser leg. On the other hand, our
model is able to reconstruct this higher frequency information.

Previous works have demonstrated some ability to generalise to new data classes (Rahmani et al.,
2018; Caramazza et al., 2019), although in each case the results are not perfect. Here, we compare
the different methods trained on fMNIST and then tested on MNIST data. Figure 6 demonstrates
that our Bessel equivariant model generalises well to a new data domain, with further reconstructions
provided in Figure 19. On the other hand, the complex linear model somewhat predicts the correct
digits. In this out of training domain our post-processing model does not add any value to the
original Bessel equivariant model. This highlights the benefit of our two-stage modelling approach
as we have one robust model and a second model to sharpen the images, as a result if a user believes
the situation could be unusual they could reliably use the output of our Bessel equivariant model and
not the post-processing part. Further to achieving strong generalisation results, we also consider the
effect of noise in the speckled images in Appendix A.6.

Figure 8 shows how the number of trainable model parameters scale. Even for 28 × 28 images our
model requires two orders of magnitude fewer trainable parameters than the complex linear model.

(a) Input (b) Target (c) BEM (d) BEM + PP (e) Complex

Figure 5: Comparison of predicted images from inverting transmission effects of a MMF. (a) Input
speckled image, (b) Target original image to reconstruct, (c) Output of the Bessel equivariant model,
(d) Output of the Bessel equivariant and post-processing model, and (e) Output of the complex
valued linear model.
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(a) Input (b) Target (c) BEM (d) BEM + PP (e) Complex

Figure 6: Comparison of predicted images from inverting transmission effects of a MMF. (a) Input
speckled images, (b) Target original images, (c) Output of the Bessel equivariant model, (d) Output
of Bessel equivariant and post-processing model, and (e) Output of the complex valued linear model.

4.2.2 Scaling to Larger Images – ImageNet

We now experiment with a subset of images from the ImageNet dataset, where we fix the resolution
to be 256 × 256. Inverting the transmission effects of such higher resolution images has not been
previously achievable. We only compare our equivariant model with our equivariant model coupled
with a fully convolutional post-processing model. The complex-valued linear model cannot fit in the
GPU memory of an A6000 with 48.7GiB of memory with this resolution of image.

(a) Input (b) Target (c) BEM (d) BEM + PP

Figure 7: Comparison of predicted images from inverting transmission effects of a MMF using high
resolution ImageNet data. (a) Input speckled image, (b) Target original image to reconstruct, (c)
Output of Bessel equivariant model (d) Output of Bessel equivariant and post-processing model.

We analyse our model visually, with Figure 7 showing that our Bessel equivariant model produces
a reconstruction from which one can determine the type of dog and its activity, although the recon-
struction does not capture all the high frequency information, and information in the corners is lost
due to the circular nature of the fibre. Further reconstructions are provided in Figure 20. When we
combine the two models some of the artifacts of the Bessel equivariant model are removed as the
post-processing model fills in information towards the corners and sharpens the image.

We present the loss values for both models in Table 4. This shows a similar result as for fMNIST,
that our Bessel equivariant model can solve the task well, but requires the post-processing model to
sharpen the image and fill in gaps in the corners. We compare the models’ memory requirements
in Figure 8. Note how fewer trainable parameters translate into significantly less memory use than
the complex linear model. This effect is seen more drastically when scaling to high resolution
images, where the complex linear model runs out of memory on a 24.2GiB Titan RTX for original
and speckled images of resolution 180 × 180 pixels. Our model, in contrast, has been tested on
256× 256 pixel images, requiring only 2.1GiB, and can scale to megapixel images.

Finally, we explore the impact on each model of reducing the size of the training dataset. Requiring
a reduced dataset size minimises the time taken in a lab collecting data. Figure 8 demonstrates that
our model outperforms the complex linear model with 10×-less training data, reducing the need to
collect 12000 samples to 1200. The reconstructions are visualised in Appendix A.12.

Table 4: Comparison of the loss values of each model trained with ImageNet data.
Model Train Loss Test Loss

Bessel Equivariant 0.0541 0.0574
Bessel Equivariant + Post Proc 0.0161 0.0159
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5 Conclusions

We present a new type of model for solving the task of inverting the transmission effects of a
MMF through developing a SO+(2, 1)-equivariant neural network and combining this with a post-
processing network. This improves upon complex linear models through incorporating a useful
physically informed inductive bias into the equivariant network. The equivariant network is shown
to perform well on new image classes, providing a general model for fibre inversion. The post-
processing network is specific to an image domain, as it generalises to new image classes as well as
a general convolutional network, although it improves the quality of returned images. The use of a
theoretical TM allows us to compare an ‘ideal’ inverse with the output of previous models based on
learning a full transmission matrix. This suggests that previous learned transmission matrices were
combining elements of the actual transmission matrix with elements of the post-processing network,
which would affect their ability to generalise to new images. We also anticipate that in interactive
safety-critical applications users might want the ability to switch between modes, to be sure that the
evidence was there, and not overly influenced by the priors in the training data.

This new model significantly improves the ability to scale to higher resolution images by improving
the scaling law from O(N4) to O(m), where N is pixel size and m is the number of fibre modes.
We provide a comparison between our model and prior works on both data created using a real
fibre and a theoretical TM, demonstrating in both cases that our model solves the task while using
significantly fewer trainable parameters than the complex and real linear models. In addition, we
demonstrate results on high resolution 256 × 256 images, which has previously been unachievable
due to the growth of parameters with previous models. Furthermore, we demonstrate the ability of
our model to generalise to new data classes outside of the training data, outperforming prior works.
The dramatic reduction in the number of parameters for each fibre configuration opens the way for
future models which can learn mappings for high-resolution images, from a wider set of perturbed
fibre poses and combine these using architectures such as VAEs.
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